1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*************************** Fraunhofer IIS FDK Tools ********************** 85 86 Author(s): M. Lohwasser, M. Gayer 87 Description: 88 89 ******************************************************************************/ 90 91 #include "fft_rad2.h" 92 93 #include "scramble.h" 94 95 #define __FFT_RAD2_CPP__ 96 97 #if defined(__arm__) /* cppp replaced: elif */ 98 #include "arm/fft_rad2_arm.cpp" 99 100 #elif defined(__GNUC__) && defined(__mips__) && defined(__mips_dsp) /* cppp replaced: elif */ 101 #include "mips/fft_rad2_mips.cpp" 102 103 #endif 104 105 106 107 /***************************************************************************** 108 109 functionname: dit_fft (analysis) 110 description: dit-tukey-algorithm 111 scrambles data at entry 112 i.e. loop is made with scrambled data 113 returns: 114 input: 115 output: 116 117 *****************************************************************************/ 118 119 #ifndef FUNCTION_dit_fft 120 121 void dit_fft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata, const INT trigDataSize) 122 { 123 const INT n=1<<ldn; 124 INT trigstep,i,ldm; 125 126 scramble(x,n); 127 /* 128 * 1+2 stage radix 4 129 */ 130 131 for (i=0;i<n*2;i+=8) 132 { 133 FIXP_DBL a00, a10, a20, a30; 134 a00 = (x[i + 0] + x[i + 2])>>1; /* Re A + Re B */ 135 a10 = (x[i + 4] + x[i + 6])>>1; /* Re C + Re D */ 136 a20 = (x[i + 1] + x[i + 3])>>1; /* Im A + Im B */ 137 a30 = (x[i + 5] + x[i + 7])>>1; /* Im C + Im D */ 138 139 x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */ 140 x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */ 141 x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */ 142 x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */ 143 144 a00 = a00 - x[i + 2]; /* Re A - Re B */ 145 a10 = a10 - x[i + 6]; /* Re C - Re D */ 146 a20 = a20 - x[i + 3]; /* Im A - Im B */ 147 a30 = a30 - x[i + 7]; /* Im C - Im D */ 148 149 x[i + 2] = a00 + a30; /* Re B' = Re A - Re B + Im C - Im D */ 150 x[i + 6] = a00 - a30; /* Re D' = Re A - Re B - Im C + Im D */ 151 x[i + 3] = a20 - a10; /* Im B' = Im A - Im B - Re C + Re D */ 152 x[i + 7] = a20 + a10; /* Im D' = Im A - Im B + Re C - Re D */ 153 } 154 155 for(ldm=3; ldm<=ldn; ++ldm) 156 { 157 INT m=(1<<ldm); 158 INT mh=(m>>1); 159 INT j,r; 160 161 trigstep=((trigDataSize << 2)>>ldm); 162 163 FDK_ASSERT(trigstep > 0); 164 165 /* Do first iteration with c=1.0 and s=0.0 separately to avoid loosing to much precision. 166 Beware: The impact on the overal FFT precision is rather large. */ 167 { 168 j = 0; 169 170 for(r=0; r<n; r+=m) 171 { 172 INT t1 = (r+j)<<1; 173 INT t2 = t1 + (mh<<1); 174 FIXP_DBL vr,vi,ur,ui; 175 176 //cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0); 177 vi = x[t2+1]>>1; 178 vr = x[t2]>>1; 179 180 ur = x[t1]>>1; 181 ui = x[t1+1]>>1; 182 183 x[t1] = ur+vr; 184 x[t1+1] = ui+vi; 185 186 x[t2] = ur-vr; 187 x[t2+1] = ui-vi; 188 189 t1 += mh; 190 t2 = t1+(mh<<1); 191 192 //cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0); 193 vr = x[t2+1]>>1; 194 vi = x[t2]>>1; 195 196 ur = x[t1]>>1; 197 ui = x[t1+1]>>1; 198 199 x[t1] = ur+vr; 200 x[t1+1] = ui-vi; 201 202 x[t2] = ur-vr; 203 x[t2+1] = ui+vi; 204 } 205 } 206 for(j=1; j<mh/4; ++j) 207 { 208 FIXP_STP cs; 209 210 cs = trigdata[j*trigstep]; 211 212 for(r=0; r<n; r+=m) 213 { 214 INT t1 = (r+j)<<1; 215 INT t2 = t1 + (mh<<1); 216 FIXP_DBL vr,vi,ur,ui; 217 218 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], cs); 219 220 ur = x[t1]>>1; 221 ui = x[t1+1]>>1; 222 223 x[t1] = ur+vr; 224 x[t1+1] = ui+vi; 225 226 x[t2] = ur-vr; 227 x[t2+1] = ui-vi; 228 229 t1 += mh; 230 t2 = t1+(mh<<1); 231 232 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], cs); 233 234 ur = x[t1]>>1; 235 ui = x[t1+1]>>1; 236 237 x[t1] = ur+vr; 238 x[t1+1] = ui-vi; 239 240 x[t2] = ur-vr; 241 x[t2+1] = ui+vi; 242 243 /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */ 244 t1 = (r+mh/2-j)<<1; 245 t2 = t1 + (mh<<1); 246 247 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], cs); 248 249 ur = x[t1]>>1; 250 ui = x[t1+1]>>1; 251 252 x[t1] = ur+vr; 253 x[t1+1] = ui-vi; 254 255 x[t2] = ur-vr; 256 x[t2+1] = ui+vi; 257 258 t1 += mh; 259 t2 = t1+(mh<<1); 260 261 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], cs); 262 263 ur = x[t1]>>1; 264 ui = x[t1+1]>>1; 265 266 x[t1] = ur-vr; 267 x[t1+1] = ui-vi; 268 269 x[t2] = ur+vr; 270 x[t2+1] = ui+vi; 271 } 272 } 273 { 274 j = mh/4; 275 276 for(r=0; r<n; r+=m) 277 { 278 INT t1 = (r+j)<<1; 279 INT t2 = t1 + (mh<<1); 280 FIXP_DBL vr,vi,ur,ui; 281 282 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], STC(0x5a82799a), STC(0x5a82799a)); 283 284 ur = x[t1]>>1; 285 ui = x[t1+1]>>1; 286 287 x[t1] = ur+vr; 288 x[t1+1] = ui+vi; 289 290 x[t2] = ur-vr; 291 x[t2+1] = ui-vi; 292 293 t1 += mh; 294 t2 = t1+(mh<<1); 295 296 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], STC(0x5a82799a), STC(0x5a82799a)); 297 298 ur = x[t1]>>1; 299 ui = x[t1+1]>>1; 300 301 x[t1] = ur+vr; 302 x[t1+1] = ui-vi; 303 304 x[t2] = ur-vr; 305 x[t2+1] = ui+vi; 306 } 307 } 308 } 309 } 310 #endif 311 312 313 /***************************************************************************** 314 315 functionname: dit_ifft (synthesis) 316 description: dit-tukey-algorithm 317 scrambles data at entry 318 i.e. loop is made with scrambled data 319 returns: 320 input: 321 output: 322 323 *****************************************************************************/ 324 325 #if !defined(FUNCTION_dit_ifft) 326 void dit_ifft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata, const INT trigDataSize) 327 { 328 const INT n=1<<ldn; 329 INT trigstep,i,ldm; 330 331 scramble(x,n); 332 333 /* 334 1+2 stage radix 4 335 */ 336 337 for (i=0;i<n*2;i+=8) 338 { 339 FIXP_DBL a0, a1, a2, a3, a00, a10, a20, a30; 340 341 a00 = (x[i + 0] + x[i + 2])>>1; /* Re A + Re B */ 342 a10 = (x[i + 4] + x[i + 6])>>1; /* Re C + Re D */ 343 a20 = (x[i + 1] + x[i + 3])>>1; /* Im A + Im B */ 344 a30 = (x[i + 5] + x[i + 7])>>1; /* Im C + Im D */ 345 a0 = (x[i + 0] - x[i + 2])>>1; /* Re A - Re B */ 346 a2 = (x[i + 4] - x[i + 6])>>1; /* Re C - Re D */ 347 a3 = (x[i + 1] - x[i + 3])>>1; /* Im A - Im B */ 348 a1 = (x[i + 5] - x[i + 7])>>1; /* Im C - Im D */ 349 350 x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */ 351 x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */ 352 x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */ 353 x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */ 354 x[i + 2] = a0 - a1; /* Re B' = Re A - Re B - Im C + Im D */ 355 x[i + 6] = a0 + a1; /* Re D' = Re A - Re B + Im C - Im D */ 356 x[i + 3] = a3 + a2; /* Im B' = Im A - Im B + Re C - Re D */ 357 x[i + 7] = a3 - a2; /* Im D' = Im A - Im B - Re C + Re D */ 358 } 359 360 for(ldm=3; ldm<=ldn; ++ldm) 361 { 362 const INT m=(1<<ldm); 363 const INT mh=(m>>1); 364 365 INT j,r; 366 367 trigstep=((trigDataSize << 2)>>ldm); 368 369 { 370 j = 0; 371 372 for(r=0; r<n; r+=m) 373 { 374 INT t1 = (r+j)<<1; 375 INT t2 = t1 + (mh<<1); 376 FIXP_DBL vr,vi,ur,ui; 377 378 //cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], FL2FXCONST_SGL(1.0), (FIXP_SGL)0.0); 379 vi = x[t2+1]>>1; 380 vr = x[t2]>>1; 381 382 ur = x[t1]>>1; 383 ui = x[t1+1]>>1; 384 385 x[t1] = ur+vr; 386 x[t1+1] = ui+vi; 387 388 x[t2] = ur-vr; 389 x[t2+1] = ui-vi; 390 391 t1 += mh; 392 t2 = t1+(mh<<1); 393 394 //cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], FL2FXCONST_SGL(1.0), FL2FXCONST_SGL(0.0)); 395 vr = x[t2+1]>>1; 396 vi = x[t2]>>1; 397 398 ur = x[t1]>>1; 399 ui = x[t1+1]>>1; 400 401 x[t1] = ur-vr; 402 x[t1+1] = ui+vi; 403 404 x[t2] = ur+vr; 405 x[t2+1] = ui-vi; 406 } 407 } 408 for(j=1; j<mh/4; ++j) 409 { 410 FIXP_STP cs; 411 412 cs = trigdata[j*trigstep]; 413 414 for(r=0; r<n; r+=m) 415 { 416 INT t1 = (r+j)<<1; 417 INT t2 = t1 + (mh<<1); 418 FIXP_DBL vr,vi,ur,ui; 419 420 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], cs); 421 422 ur = x[t1]>>1; 423 ui = x[t1+1]>>1; 424 425 x[t1] = ur+vr; 426 x[t1+1] = ui+vi; 427 428 x[t2] = ur-vr; 429 x[t2+1] = ui-vi; 430 431 t1 += mh; 432 t2 = t1+(mh<<1); 433 434 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], cs); 435 436 ur = x[t1]>>1; 437 ui = x[t1+1]>>1; 438 439 x[t1] = ur-vr; 440 x[t1+1] = ui+vi; 441 442 x[t2] = ur+vr; 443 x[t2+1] = ui-vi; 444 445 /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */ 446 t1 = (r+mh/2-j)<<1; 447 t2 = t1 + (mh<<1); 448 449 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], cs); 450 451 ur = x[t1]>>1; 452 ui = x[t1+1]>>1; 453 454 x[t1] = ur-vr; 455 x[t1+1] = ui+vi; 456 457 x[t2] = ur+vr; 458 x[t2+1] = ui-vi; 459 460 t1 += mh; 461 t2 = t1+(mh<<1); 462 463 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], cs); 464 465 ur = x[t1]>>1; 466 ui = x[t1+1]>>1; 467 468 x[t1] = ur-vr; 469 x[t1+1] = ui-vi; 470 471 x[t2] = ur+vr; 472 x[t2+1] = ui+vi; 473 } 474 } 475 { 476 j = mh/4; 477 for(r=0; r<n; r+=m) 478 { 479 INT t1 = (r+mh/2-j)<<1; 480 INT t2 = t1 + (mh<<1); 481 FIXP_DBL vr,vi,ur,ui; 482 483 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], STC(0x5a82799a), STC(0x5a82799a)); 484 485 ur = x[t1]>>1; 486 ui = x[t1+1]>>1; 487 488 x[t1] = ur+vr; 489 x[t1+1] = ui+vi; 490 491 x[t2] = ur-vr; 492 x[t2+1] = ui-vi; 493 494 t1 += mh; 495 t2 = t1+(mh<<1); 496 497 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], STC(0x5a82799a), STC(0x5a82799a)); 498 499 ur = x[t1]>>1; 500 ui = x[t1+1]>>1; 501 502 x[t1] = ur-vr; 503 x[t1+1] = ui+vi; 504 505 x[t2] = ur+vr; 506 x[t2+1] = ui-vi; 507 } 508 } 509 } 510 } 511 #endif 512 513