Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  BoxBOD            (BoxBOD.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 42)
      6                Certified Values  (lines 41 to 47)
      7                Data              (lines 61 to 66)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   These data are described in detail in Box, Hunter and
     12                Hunter (1978).  The response variable is biochemical
     13                oxygen demand (BOD) in mg/l, and the predictor
     14                variable is incubation time in days.
     15 
     16 
     17 Reference:     Box, G. P., W. G. Hunter, and J. S. Hunter (1978).
     18                Statistics for Experimenters.  
     19                New York, NY: Wiley, pp. 483-487.
     20 
     21 
     22 
     23 
     24 
     25 Data:          1 Response  (y = biochemical oxygen demand)
     26                1 Predictor (x = incubation time)
     27                6 Observations
     28                Higher Level of Difficulty
     29                Observed Data
     30 
     31 Model:         Exponential Class
     32                2 Parameters (b1 and b2)
     33 
     34                y = b1*(1-exp[-b2*x])  +  e
     35 
     36 
     37  
     38           Starting values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   1           100           2.1380940889E+02  1.2354515176E+01
     42   b2 =   1             0.75        5.4723748542E-01  1.0455993237E-01
     43 
     44 Residual Sum of Squares:                    1.1680088766E+03
     45 Residual Standard Deviation:                1.7088072423E+01
     46 Degrees of Freedom:                                4
     47 Number of Observations:                            6  
     48 
     49 
     50 
     51 
     52 
     53 
     54 
     55 
     56 
     57 
     58 
     59 
     60 Data:   y             x
     61       109             1
     62       149             2
     63       149             3
     64       191             5
     65       213             7
     66       224            10
     67