Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // A simple example of using the Ceres minimizer.
     32 //
     33 // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
     34 // automatic differentiation.
     35 
     36 #include "ceres/ceres.h"
     37 #include "glog/logging.h"
     38 
     39 using ceres::AutoDiffCostFunction;
     40 using ceres::CostFunction;
     41 using ceres::Problem;
     42 using ceres::Solver;
     43 using ceres::Solve;
     44 
     45 // A templated cost functor that implements the residual r = 10 -
     46 // x. The method operator() is templated so that we can then use an
     47 // automatic differentiation wrapper around it to generate its
     48 // derivatives.
     49 struct CostFunctor {
     50   template <typename T> bool operator()(const T* const x, T* residual) const {
     51     residual[0] = T(10.0) - x[0];
     52     return true;
     53   }
     54 };
     55 
     56 int main(int argc, char** argv) {
     57   google::InitGoogleLogging(argv[0]);
     58 
     59   // The variable to solve for with its initial value. It will be
     60   // mutated in place by the solver.
     61   double x = 0.5;
     62   const double initial_x = x;
     63 
     64   // Build the problem.
     65   Problem problem;
     66 
     67   // Set up the only cost function (also known as residual). This uses
     68   // auto-differentiation to obtain the derivative (jacobian).
     69   CostFunction* cost_function =
     70       new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
     71   problem.AddResidualBlock(cost_function, NULL, &x);
     72 
     73   // Run the solver!
     74   Solver::Options options;
     75   options.minimizer_progress_to_stdout = true;
     76   Solver::Summary summary;
     77   Solve(options, &problem, &summary);
     78 
     79   std::cout << summary.BriefReport() << "\n";
     80   std::cout << "x : " << initial_x
     81             << " -> " << x << "\n";
     82   return 0;
     83 }
     84