Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // A preconditioned conjugate gradients solver
     32 // (ConjugateGradientsSolver) for positive semidefinite linear
     33 // systems.
     34 //
     35 // We have also augmented the termination criterion used by this
     36 // solver to support not just residual based termination but also
     37 // termination based on decrease in the value of the quadratic model
     38 // that CG optimizes.
     39 
     40 #include "ceres/conjugate_gradients_solver.h"
     41 
     42 #include <cmath>
     43 #include <cstddef>
     44 #include "ceres/fpclassify.h"
     45 #include "ceres/internal/eigen.h"
     46 #include "ceres/linear_operator.h"
     47 #include "ceres/types.h"
     48 #include "glog/logging.h"
     49 
     50 namespace ceres {
     51 namespace internal {
     52 namespace {
     53 
     54 bool IsZeroOrInfinity(double x) {
     55   return ((x == 0.0) || (IsInfinite(x)));
     56 }
     57 
     58 // Constant used in the MATLAB implementation ~ 2 * eps.
     59 const double kEpsilon = 2.2204e-16;
     60 
     61 }  // namespace
     62 
     63 ConjugateGradientsSolver::ConjugateGradientsSolver(
     64     const LinearSolver::Options& options)
     65     : options_(options) {
     66 }
     67 
     68 LinearSolver::Summary ConjugateGradientsSolver::Solve(
     69     LinearOperator* A,
     70     const double* b,
     71     const LinearSolver::PerSolveOptions& per_solve_options,
     72     double* x) {
     73   CHECK_NOTNULL(A);
     74   CHECK_NOTNULL(x);
     75   CHECK_NOTNULL(b);
     76   CHECK_EQ(A->num_rows(), A->num_cols());
     77 
     78   LinearSolver::Summary summary;
     79   summary.termination_type = MAX_ITERATIONS;
     80   summary.num_iterations = 0;
     81 
     82   int num_cols = A->num_cols();
     83   VectorRef xref(x, num_cols);
     84   ConstVectorRef bref(b, num_cols);
     85 
     86   double norm_b = bref.norm();
     87   if (norm_b == 0.0) {
     88     xref.setZero();
     89     summary.termination_type = TOLERANCE;
     90     return summary;
     91   }
     92 
     93   Vector r(num_cols);
     94   Vector p(num_cols);
     95   Vector z(num_cols);
     96   Vector tmp(num_cols);
     97 
     98   double tol_r = per_solve_options.r_tolerance * norm_b;
     99 
    100   tmp.setZero();
    101   A->RightMultiply(x, tmp.data());
    102   r = bref - tmp;
    103   double norm_r = r.norm();
    104 
    105   if (norm_r <= tol_r) {
    106     summary.termination_type = TOLERANCE;
    107     return summary;
    108   }
    109 
    110   double rho = 1.0;
    111 
    112   // Initial value of the quadratic model Q = x'Ax - 2 * b'x.
    113   double Q0 = -1.0 * xref.dot(bref + r);
    114 
    115   for (summary.num_iterations = 1;
    116        summary.num_iterations < options_.max_num_iterations;
    117        ++summary.num_iterations) {
    118     VLOG(3) << "cg iteration " << summary.num_iterations;
    119 
    120     // Apply preconditioner
    121     if (per_solve_options.preconditioner != NULL) {
    122       z.setZero();
    123       per_solve_options.preconditioner->RightMultiply(r.data(), z.data());
    124     } else {
    125       z = r;
    126     }
    127 
    128     double last_rho = rho;
    129     rho = r.dot(z);
    130 
    131     if (IsZeroOrInfinity(rho)) {
    132       LOG(ERROR) << "Numerical failure. rho = " << rho;
    133       summary.termination_type = FAILURE;
    134       break;
    135     };
    136 
    137     if (summary.num_iterations == 1) {
    138       p = z;
    139     } else {
    140       double beta = rho / last_rho;
    141       if (IsZeroOrInfinity(beta)) {
    142         LOG(ERROR) << "Numerical failure. beta = " << beta;
    143         summary.termination_type = FAILURE;
    144         break;
    145       }
    146       p = z + beta * p;
    147     }
    148 
    149     Vector& q = z;
    150     q.setZero();
    151     A->RightMultiply(p.data(), q.data());
    152     double pq = p.dot(q);
    153 
    154     if ((pq <= 0) || IsInfinite(pq))  {
    155       LOG(ERROR) << "Numerical failure. pq = " << pq;
    156       summary.termination_type = FAILURE;
    157       break;
    158     }
    159 
    160     double alpha = rho / pq;
    161     if (IsInfinite(alpha)) {
    162       LOG(ERROR) << "Numerical failure. alpha " << alpha;
    163       summary.termination_type = FAILURE;
    164       break;
    165     }
    166 
    167     xref = xref + alpha * p;
    168 
    169     // Ideally we would just use the update r = r - alpha*q to keep
    170     // track of the residual vector. However this estimate tends to
    171     // drift over time due to round off errors. Thus every
    172     // residual_reset_period iterations, we calculate the residual as
    173     // r = b - Ax. We do not do this every iteration because this
    174     // requires an additional matrix vector multiply which would
    175     // double the complexity of the CG algorithm.
    176     if (summary.num_iterations % options_.residual_reset_period == 0) {
    177       tmp.setZero();
    178       A->RightMultiply(x, tmp.data());
    179       r = bref - tmp;
    180     } else {
    181       r = r - alpha * q;
    182     }
    183 
    184     // Quadratic model based termination.
    185     //   Q1 = x'Ax - 2 * b' x.
    186     double Q1 = -1.0 * xref.dot(bref + r);
    187 
    188     // For PSD matrices A, let
    189     //
    190     //   Q(x) = x'Ax - 2b'x
    191     //
    192     // be the cost of the quadratic function defined by A and b. Then,
    193     // the solver terminates at iteration i if
    194     //
    195     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
    196     //
    197     // This termination criterion is more useful when using CG to
    198     // solve the Newton step. This particular convergence test comes
    199     // from Stephen Nash's work on truncated Newton
    200     // methods. References:
    201     //
    202     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
    203     //   Direction Within A Truncated Newton Method, Operation
    204     //   Research Letters 9(1990) 219-221.
    205     //
    206     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
    207     //   Journal of Computational and Applied Mathematics,
    208     //   124(1-2), 45-59, 2000.
    209     //
    210     double zeta = summary.num_iterations * (Q1 - Q0) / Q1;
    211     VLOG(3) << "Q termination: zeta " << zeta
    212             << " " << per_solve_options.q_tolerance;
    213     if (zeta < per_solve_options.q_tolerance) {
    214       summary.termination_type = TOLERANCE;
    215       break;
    216     }
    217     Q0 = Q1;
    218 
    219     // Residual based termination.
    220     norm_r = r. norm();
    221     VLOG(3) << "R termination: norm_r " << norm_r
    222             << " " << tol_r;
    223     if (norm_r <= tol_r) {
    224       summary.termination_type = TOLERANCE;
    225       break;
    226     }
    227   }
    228 
    229   return summary;
    230 };
    231 
    232 }  // namespace internal
    233 }  // namespace ceres
    234