Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012, 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // TODO(keir): Implement a generic "compare sparse matrix implementations" test
     32 // suite that can compare all the implementations. Then this file would shrink
     33 // in size.
     34 
     35 #include "ceres/dense_sparse_matrix.h"
     36 
     37 #include "ceres/casts.h"
     38 #include "ceres/linear_least_squares_problems.h"
     39 #include "ceres/triplet_sparse_matrix.h"
     40 #include "ceres/internal/eigen.h"
     41 #include "ceres/internal/scoped_ptr.h"
     42 #include "glog/logging.h"
     43 #include "gtest/gtest.h"
     44 
     45 namespace ceres {
     46 namespace internal {
     47 
     48 void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
     49   EXPECT_EQ(a->num_rows(), b->num_rows());
     50   EXPECT_EQ(a->num_cols(), b->num_cols());
     51 
     52   int num_rows = a->num_rows();
     53   int num_cols = a->num_cols();
     54 
     55   for (int i = 0; i < num_cols; ++i) {
     56     Vector x = Vector::Zero(num_cols);
     57     x(i) = 1.0;
     58 
     59     Vector y_a = Vector::Zero(num_rows);
     60     Vector y_b = Vector::Zero(num_rows);
     61 
     62     a->RightMultiply(x.data(), y_a.data());
     63     b->RightMultiply(x.data(), y_b.data());
     64 
     65     EXPECT_EQ((y_a - y_b).norm(), 0);
     66   }
     67 }
     68 
     69 class DenseSparseMatrixTest : public ::testing::Test {
     70  protected :
     71   virtual void SetUp() {
     72     scoped_ptr<LinearLeastSquaresProblem> problem(
     73         CreateLinearLeastSquaresProblemFromId(1));
     74 
     75     CHECK_NOTNULL(problem.get());
     76 
     77     tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
     78     dsm.reset(new DenseSparseMatrix(*tsm));
     79 
     80     num_rows = tsm->num_rows();
     81     num_cols = tsm->num_cols();
     82   }
     83 
     84   int num_rows;
     85   int num_cols;
     86 
     87   scoped_ptr<TripletSparseMatrix> tsm;
     88   scoped_ptr<DenseSparseMatrix> dsm;
     89 };
     90 
     91 TEST_F(DenseSparseMatrixTest, RightMultiply) {
     92   CompareMatrices(tsm.get(), dsm.get());
     93 
     94   // Try with a not entirely zero vector to verify column interactions, which
     95   // could be masked by a subtle bug when using the elementary vectors.
     96   Vector a(num_cols);
     97   for (int i = 0; i < num_cols; i++) {
     98     a(i) = i;
     99   }
    100   Vector b1 = Vector::Zero(num_rows);
    101   Vector b2 = Vector::Zero(num_rows);
    102 
    103   tsm->RightMultiply(a.data(), b1.data());
    104   dsm->RightMultiply(a.data(), b2.data());
    105 
    106   EXPECT_EQ((b1 - b2).norm(), 0);
    107 }
    108 
    109 TEST_F(DenseSparseMatrixTest, LeftMultiply) {
    110   for (int i = 0; i < num_rows; ++i) {
    111     Vector a = Vector::Zero(num_rows);
    112     a(i) = 1.0;
    113 
    114     Vector b1 = Vector::Zero(num_cols);
    115     Vector b2 = Vector::Zero(num_cols);
    116 
    117     tsm->LeftMultiply(a.data(), b1.data());
    118     dsm->LeftMultiply(a.data(), b2.data());
    119 
    120     EXPECT_EQ((b1 - b2).norm(), 0);
    121   }
    122 
    123   // Try with a not entirely zero vector to verify column interactions, which
    124   // could be masked by a subtle bug when using the elementary vectors.
    125   Vector a(num_rows);
    126   for (int i = 0; i < num_rows; i++) {
    127     a(i) = i;
    128   }
    129   Vector b1 = Vector::Zero(num_cols);
    130   Vector b2 = Vector::Zero(num_cols);
    131 
    132   tsm->LeftMultiply(a.data(), b1.data());
    133   dsm->LeftMultiply(a.data(), b2.data());
    134 
    135   EXPECT_EQ((b1 - b2).norm(), 0);
    136 }
    137 
    138 TEST_F(DenseSparseMatrixTest, ColumnNorm) {
    139   Vector b1 = Vector::Zero(num_cols);
    140   Vector b2 = Vector::Zero(num_cols);
    141 
    142   tsm->SquaredColumnNorm(b1.data());
    143   dsm->SquaredColumnNorm(b2.data());
    144 
    145   EXPECT_EQ((b1 - b2).norm(), 0);
    146 }
    147 
    148 TEST_F(DenseSparseMatrixTest, Scale) {
    149   Vector scale(num_cols);
    150   for (int i = 0; i < num_cols; ++i) {
    151     scale(i) = i + 1;
    152   }
    153   tsm->ScaleColumns(scale.data());
    154   dsm->ScaleColumns(scale.data());
    155   CompareMatrices(tsm.get(), dsm.get());
    156 }
    157 
    158 TEST_F(DenseSparseMatrixTest, ToDenseMatrix) {
    159   Matrix tsm_dense;
    160   Matrix dsm_dense;
    161 
    162   tsm->ToDenseMatrix(&tsm_dense);
    163   dsm->ToDenseMatrix(&dsm_dense);
    164 
    165   EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0);
    166 }
    167 
    168 }  // namespace internal
    169 }  // namespace ceres
    170