Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 
     31 #include "ceres/gradient_checking_cost_function.h"
     32 
     33 #include <algorithm>
     34 #include <cmath>
     35 #include <numeric>
     36 #include <string>
     37 #include <vector>
     38 
     39 #include "ceres/cost_function.h"
     40 #include "ceres/internal/eigen.h"
     41 #include "ceres/internal/scoped_ptr.h"
     42 #include "ceres/parameter_block.h"
     43 #include "ceres/problem.h"
     44 #include "ceres/problem_impl.h"
     45 #include "ceres/program.h"
     46 #include "ceres/residual_block.h"
     47 #include "ceres/runtime_numeric_diff_cost_function.h"
     48 #include "ceres/stringprintf.h"
     49 #include "ceres/types.h"
     50 #include "glog/logging.h"
     51 
     52 namespace ceres {
     53 namespace internal {
     54 namespace {
     55 
     56 // True if x and y have an absolute relative difference less than
     57 // relative_precision and false otherwise. Stores the relative and absolute
     58 // difference in relative/absolute_error if non-NULL.
     59 bool IsClose(double x, double y, double relative_precision,
     60              double *relative_error,
     61              double *absolute_error) {
     62   double local_absolute_error;
     63   double local_relative_error;
     64   if (!absolute_error) {
     65     absolute_error = &local_absolute_error;
     66   }
     67   if (!relative_error) {
     68     relative_error = &local_relative_error;
     69   }
     70   *absolute_error = fabs(x - y);
     71   *relative_error = *absolute_error / max(fabs(x), fabs(y));
     72   if (x == 0 || y == 0) {
     73     // If x or y is exactly zero, then relative difference doesn't have any
     74     // meaning. Take the absolute difference instead.
     75     *relative_error = *absolute_error;
     76   }
     77   return fabs(*relative_error) < fabs(relative_precision);
     78 }
     79 
     80 class GradientCheckingCostFunction : public CostFunction {
     81  public:
     82   GradientCheckingCostFunction(const CostFunction* function,
     83                                double relative_step_size,
     84                                double relative_precision,
     85                                const string& extra_info)
     86       : function_(function),
     87         finite_diff_cost_function_(
     88             CreateRuntimeNumericDiffCostFunction(function,
     89                                                  CENTRAL,
     90                                                  relative_step_size)),
     91         relative_precision_(relative_precision),
     92         extra_info_(extra_info) {
     93     *mutable_parameter_block_sizes() = function->parameter_block_sizes();
     94     set_num_residuals(function->num_residuals());
     95   }
     96 
     97   virtual ~GradientCheckingCostFunction() { }
     98 
     99   virtual bool Evaluate(double const* const* parameters,
    100                         double* residuals,
    101                         double** jacobians) const {
    102     if (!jacobians) {
    103       // Nothing to check in this case; just forward.
    104       return function_->Evaluate(parameters, residuals, NULL);
    105     }
    106 
    107     int num_residuals = function_->num_residuals();
    108 
    109     // Make space for the jacobians of the two methods.
    110     const vector<int16>& block_sizes = function_->parameter_block_sizes();
    111     vector<Matrix> term_jacobians(block_sizes.size());
    112     vector<Matrix> finite_difference_jacobians(block_sizes.size());
    113     vector<double*> term_jacobian_pointers(block_sizes.size());
    114     vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
    115     for (int i = 0; i < block_sizes.size(); i++) {
    116       term_jacobians[i].resize(num_residuals, block_sizes[i]);
    117       term_jacobian_pointers[i] = term_jacobians[i].data();
    118       finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
    119       finite_difference_jacobian_pointers[i] =
    120           finite_difference_jacobians[i].data();
    121     }
    122 
    123     // Evaluate the derivative using the user supplied code.
    124     if (!function_->Evaluate(parameters,
    125                              residuals,
    126                              &term_jacobian_pointers[0])) {
    127       LOG(WARNING) << "Function evaluation failed.";
    128       return false;
    129     }
    130 
    131     // Evaluate the derivative using numeric derivatives.
    132     finite_diff_cost_function_->Evaluate(
    133         parameters,
    134         residuals,
    135         &finite_difference_jacobian_pointers[0]);
    136 
    137     // See if any elements have relative error larger than the threshold.
    138     int num_bad_jacobian_components = 0;
    139     double worst_relative_error = 0;
    140 
    141     // Accumulate the error message for all the jacobians, since it won't get
    142     // output if there are no bad jacobian components.
    143     string m;
    144     for (int k = 0; k < block_sizes.size(); k++) {
    145       // Copy the original jacobian blocks into the jacobians array.
    146       if (jacobians[k] != NULL) {
    147         MatrixRef(jacobians[k],
    148                   term_jacobians[k].rows(),
    149                   term_jacobians[k].cols()) = term_jacobians[k];
    150       }
    151 
    152       StringAppendF(&m,
    153                     "========== "
    154                     "Jacobian for " "block %d: (%ld by %ld)) "
    155                     "==========\n",
    156                     k,
    157                     static_cast<long>(term_jacobians[k].rows()),
    158                     static_cast<long>(term_jacobians[k].cols()));
    159       // The funny spacing creates appropriately aligned column headers.
    160       m += " block  row  col        user dx/dy    num diff dx/dy         "
    161            "abs error    relative error         parameter          residual\n";
    162 
    163       for (int i = 0; i < term_jacobians[k].rows(); i++) {
    164         for (int j = 0; j < term_jacobians[k].cols(); j++) {
    165           double term_jacobian = term_jacobians[k](i, j);
    166           double finite_jacobian = finite_difference_jacobians[k](i, j);
    167           double relative_error, absolute_error;
    168           bool bad_jacobian_entry =
    169               !IsClose(term_jacobian,
    170                        finite_jacobian,
    171                        relative_precision_,
    172                        &relative_error,
    173                        &absolute_error);
    174           worst_relative_error = std::max(worst_relative_error,
    175                                           relative_error);
    176 
    177           StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
    178                         k, i, j,
    179                         term_jacobian, finite_jacobian,
    180                         absolute_error, relative_error,
    181                         parameters[k][j],
    182                         residuals[i]);
    183 
    184           if (bad_jacobian_entry) {
    185             num_bad_jacobian_components++;
    186             StringAppendF(
    187                 &m, " ------ (%d,%d,%d) Relative error worse than %g",
    188                 k, i, j, relative_precision_);
    189           }
    190           m += "\n";
    191         }
    192       }
    193     }
    194 
    195     // Since there were some bad errors, dump comprehensive debug info.
    196     if (num_bad_jacobian_components) {
    197       string header = StringPrintf("Detected %d bad jacobian component(s). "
    198                                    "Worst relative error was %g.\n",
    199                                    num_bad_jacobian_components,
    200                                    worst_relative_error);
    201       if (!extra_info_.empty()) {
    202         header += "Extra info for this residual: " + extra_info_ + "\n";
    203       }
    204       LOG(WARNING) << "\n" << header << m;
    205     }
    206     return true;
    207   }
    208 
    209  private:
    210   const CostFunction* function_;
    211   internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
    212   double relative_precision_;
    213   string extra_info_;
    214 };
    215 
    216 }  // namespace
    217 
    218 CostFunction *CreateGradientCheckingCostFunction(
    219     const CostFunction *cost_function,
    220     double relative_step_size,
    221     double relative_precision,
    222     const string& extra_info) {
    223   return new GradientCheckingCostFunction(cost_function,
    224                                           relative_step_size,
    225                                           relative_precision,
    226                                           extra_info);
    227 }
    228 
    229 ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
    230                                                double relative_step_size,
    231                                                double relative_precision) {
    232   // We create new CostFunctions by wrapping the original CostFunction
    233   // in a gradient checking CostFunction. So its okay for the
    234   // ProblemImpl to take ownership of it and destroy it. The
    235   // LossFunctions and LocalParameterizations are reused and since
    236   // they are owned by problem_impl, gradient_checking_problem_impl
    237   // should not take ownership of it.
    238   Problem::Options gradient_checking_problem_options;
    239   gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
    240   gradient_checking_problem_options.loss_function_ownership =
    241       DO_NOT_TAKE_OWNERSHIP;
    242   gradient_checking_problem_options.local_parameterization_ownership =
    243       DO_NOT_TAKE_OWNERSHIP;
    244 
    245   ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
    246       gradient_checking_problem_options);
    247 
    248   Program* program = problem_impl->mutable_program();
    249 
    250   // For every ParameterBlock in problem_impl, create a new parameter
    251   // block with the same local parameterization and constancy.
    252   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
    253   for (int i = 0; i < parameter_blocks.size(); ++i) {
    254     ParameterBlock* parameter_block = parameter_blocks[i];
    255     gradient_checking_problem_impl->AddParameterBlock(
    256         parameter_block->mutable_user_state(),
    257         parameter_block->Size(),
    258         parameter_block->mutable_local_parameterization());
    259 
    260     if (parameter_block->IsConstant()) {
    261       gradient_checking_problem_impl->SetParameterBlockConstant(
    262           parameter_block->mutable_user_state());
    263     }
    264   }
    265 
    266   // For every ResidualBlock in problem_impl, create a new
    267   // ResidualBlock by wrapping its CostFunction inside a
    268   // GradientCheckingCostFunction.
    269   const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
    270   for (int i = 0; i < residual_blocks.size(); ++i) {
    271     ResidualBlock* residual_block = residual_blocks[i];
    272 
    273     // Build a human readable string which identifies the
    274     // ResidualBlock. This is used by the GradientCheckingCostFunction
    275     // when logging debugging information.
    276     string extra_info = StringPrintf(
    277         "Residual block id %d; depends on parameters [", i);
    278     vector<double*> parameter_blocks;
    279     for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
    280       ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
    281       parameter_blocks.push_back(parameter_block->mutable_user_state());
    282       StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
    283       extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
    284     }
    285 
    286     // Wrap the original CostFunction in a GradientCheckingCostFunction.
    287     CostFunction* gradient_checking_cost_function =
    288         CreateGradientCheckingCostFunction(residual_block->cost_function(),
    289                                            relative_step_size,
    290                                            relative_precision,
    291                                            extra_info);
    292 
    293     // The const_cast is necessary because
    294     // ProblemImpl::AddResidualBlock can potentially take ownership of
    295     // the LossFunction, but in this case we are guaranteed that this
    296     // will not be the case, so this const_cast is harmless.
    297     gradient_checking_problem_impl->AddResidualBlock(
    298         gradient_checking_cost_function,
    299         const_cast<LossFunction*>(residual_block->loss_function()),
    300         parameter_blocks);
    301   }
    302 
    303   return gradient_checking_problem_impl;
    304 }
    305 
    306 
    307 }  // namespace internal
    308 }  // namespace ceres
    309