1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // Scopers help you manage ownership of a pointer, helping you easily manage the 6 // a pointer within a scope, and automatically destroying the pointer at the 7 // end of a scope. There are two main classes you will use, which correspond 8 // to the operators new/delete and new[]/delete[]. 9 // 10 // Example usage (scoped_ptr): 11 // { 12 // scoped_ptr<Foo> foo(new Foo("wee")); 13 // } // foo goes out of scope, releasing the pointer with it. 14 // 15 // { 16 // scoped_ptr<Foo> foo; // No pointer managed. 17 // foo.reset(new Foo("wee")); // Now a pointer is managed. 18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. 19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. 20 // foo->Method(); // Foo::Method() called. 21 // foo.get()->Method(); // Foo::Method() called. 22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer 23 // // manages a pointer. 24 // foo.reset(new Foo("wee4")); // foo manages a pointer again. 25 // foo.reset(); // Foo("wee4") destroyed, foo no longer 26 // // manages a pointer. 27 // } // foo wasn't managing a pointer, so nothing was destroyed. 28 // 29 // Example usage (scoped_array): 30 // { 31 // scoped_array<Foo> foo(new Foo[100]); 32 // foo.get()->Method(); // Foo::Method on the 0th element. 33 // foo[10].Method(); // Foo::Method on the 10th element. 34 // } 35 36 #ifndef BASE_MEMORY_SCOPED_PTR_H_ 37 #define BASE_MEMORY_SCOPED_PTR_H_ 38 #pragma once 39 40 // This is an implementation designed to match the anticipated future TR2 41 // implementation of the scoped_ptr class, and its closely-related brethren, 42 // scoped_array, scoped_ptr_malloc. 43 44 #include <assert.h> 45 #include <stddef.h> 46 #include <stdlib.h> 47 48 #include "base/compiler_specific.h" 49 50 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 51 // automatically deletes the pointer it holds (if any). 52 // That is, scoped_ptr<T> owns the T object that it points to. 53 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 54 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 55 // dereference it, you get the threadsafety guarantees of T. 56 // 57 // The size of a scoped_ptr is small: 58 // sizeof(scoped_ptr<C>) == sizeof(C*) 59 template <class C> 60 class scoped_ptr { 61 public: 62 63 // The element type 64 typedef C element_type; 65 66 // Constructor. Defaults to initializing with NULL. 67 // There is no way to create an uninitialized scoped_ptr. 68 // The input parameter must be allocated with new. 69 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 70 71 // Destructor. If there is a C object, delete it. 72 // We don't need to test ptr_ == NULL because C++ does that for us. 73 ~scoped_ptr() { 74 enum { type_must_be_complete = sizeof(C) }; 75 delete ptr_; 76 } 77 78 // Reset. Deletes the current owned object, if any. 79 // Then takes ownership of a new object, if given. 80 // this->reset(this->get()) works. 81 void reset(C* p = NULL) { 82 if (p != ptr_) { 83 enum { type_must_be_complete = sizeof(C) }; 84 delete ptr_; 85 ptr_ = p; 86 } 87 } 88 89 // Accessors to get the owned object. 90 // operator* and operator-> will assert() if there is no current object. 91 C& operator*() const { 92 assert(ptr_ != NULL); 93 return *ptr_; 94 } 95 C* operator->() const { 96 assert(ptr_ != NULL); 97 return ptr_; 98 } 99 C* get() const { return ptr_; } 100 101 // Comparison operators. 102 // These return whether two scoped_ptr refer to the same object, not just to 103 // two different but equal objects. 104 bool operator==(C* p) const { return ptr_ == p; } 105 bool operator!=(C* p) const { return ptr_ != p; } 106 107 // Swap two scoped pointers. 108 void swap(scoped_ptr& p2) { 109 C* tmp = ptr_; 110 ptr_ = p2.ptr_; 111 p2.ptr_ = tmp; 112 } 113 114 // Release a pointer. 115 // The return value is the current pointer held by this object. 116 // If this object holds a NULL pointer, the return value is NULL. 117 // After this operation, this object will hold a NULL pointer, 118 // and will not own the object any more. 119 C* release() WARN_UNUSED_RESULT { 120 C* retVal = ptr_; 121 ptr_ = NULL; 122 return retVal; 123 } 124 125 private: 126 C* ptr_; 127 128 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 129 // make sense, and if C2 == C, it still doesn't make sense because you should 130 // never have the same object owned by two different scoped_ptrs. 131 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 132 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 133 134 // Disallow evil constructors 135 scoped_ptr(const scoped_ptr&); 136 void operator=(const scoped_ptr&); 137 }; 138 139 // Free functions 140 template <class C> 141 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 142 p1.swap(p2); 143 } 144 145 template <class C> 146 bool operator==(C* p1, const scoped_ptr<C>& p2) { 147 return p1 == p2.get(); 148 } 149 150 template <class C> 151 bool operator!=(C* p1, const scoped_ptr<C>& p2) { 152 return p1 != p2.get(); 153 } 154 155 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 156 // with new [] and the destructor deletes objects with delete []. 157 // 158 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 159 // or is NULL. A scoped_array<C> owns the object that it points to. 160 // scoped_array<T> is thread-compatible, and once you index into it, 161 // the returned objects have only the threadsafety guarantees of T. 162 // 163 // Size: sizeof(scoped_array<C>) == sizeof(C*) 164 template <class C> 165 class scoped_array { 166 public: 167 168 // The element type 169 typedef C element_type; 170 171 // Constructor. Defaults to intializing with NULL. 172 // There is no way to create an uninitialized scoped_array. 173 // The input parameter must be allocated with new []. 174 explicit scoped_array(C* p = NULL) : array_(p) { } 175 176 // Destructor. If there is a C object, delete it. 177 // We don't need to test ptr_ == NULL because C++ does that for us. 178 ~scoped_array() { 179 enum { type_must_be_complete = sizeof(C) }; 180 delete[] array_; 181 } 182 183 // Reset. Deletes the current owned object, if any. 184 // Then takes ownership of a new object, if given. 185 // this->reset(this->get()) works. 186 void reset(C* p = NULL) { 187 if (p != array_) { 188 enum { type_must_be_complete = sizeof(C) }; 189 delete[] array_; 190 array_ = p; 191 } 192 } 193 194 // Get one element of the current object. 195 // Will assert() if there is no current object, or index i is negative. 196 C& operator[](ptrdiff_t i) const { 197 assert(i >= 0); 198 assert(array_ != NULL); 199 return array_[i]; 200 } 201 202 // Get a pointer to the zeroth element of the current object. 203 // If there is no current object, return NULL. 204 C* get() const { 205 return array_; 206 } 207 208 // Comparison operators. 209 // These return whether two scoped_array refer to the same object, not just to 210 // two different but equal objects. 211 bool operator==(C* p) const { return array_ == p; } 212 bool operator!=(C* p) const { return array_ != p; } 213 214 // Swap two scoped arrays. 215 void swap(scoped_array& p2) { 216 C* tmp = array_; 217 array_ = p2.array_; 218 p2.array_ = tmp; 219 } 220 221 // Release an array. 222 // The return value is the current pointer held by this object. 223 // If this object holds a NULL pointer, the return value is NULL. 224 // After this operation, this object will hold a NULL pointer, 225 // and will not own the object any more. 226 C* release() WARN_UNUSED_RESULT { 227 C* retVal = array_; 228 array_ = NULL; 229 return retVal; 230 } 231 232 private: 233 C* array_; 234 235 // Forbid comparison of different scoped_array types. 236 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 237 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 238 239 // Disallow evil constructors 240 scoped_array(const scoped_array&); 241 void operator=(const scoped_array&); 242 }; 243 244 // Free functions 245 template <class C> 246 void swap(scoped_array<C>& p1, scoped_array<C>& p2) { 247 p1.swap(p2); 248 } 249 250 template <class C> 251 bool operator==(C* p1, const scoped_array<C>& p2) { 252 return p1 == p2.get(); 253 } 254 255 template <class C> 256 bool operator!=(C* p1, const scoped_array<C>& p2) { 257 return p1 != p2.get(); 258 } 259 260 // This class wraps the c library function free() in a class that can be 261 // passed as a template argument to scoped_ptr_malloc below. 262 class ScopedPtrMallocFree { 263 public: 264 inline void operator()(void* x) const { 265 free(x); 266 } 267 }; 268 269 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a 270 // second template argument, the functor used to free the object. 271 272 template<class C, class FreeProc = ScopedPtrMallocFree> 273 class scoped_ptr_malloc { 274 public: 275 276 // The element type 277 typedef C element_type; 278 279 // Constructor. Defaults to initializing with NULL. 280 // There is no way to create an uninitialized scoped_ptr. 281 // The input parameter must be allocated with an allocator that matches the 282 // Free functor. For the default Free functor, this is malloc, calloc, or 283 // realloc. 284 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} 285 286 // Destructor. If there is a C object, call the Free functor. 287 ~scoped_ptr_malloc() { 288 free_(ptr_); 289 } 290 291 // Reset. Calls the Free functor on the current owned object, if any. 292 // Then takes ownership of a new object, if given. 293 // this->reset(this->get()) works. 294 void reset(C* p = NULL) { 295 if (ptr_ != p) { 296 free_(ptr_); 297 ptr_ = p; 298 } 299 } 300 301 // Get the current object. 302 // operator* and operator-> will cause an assert() failure if there is 303 // no current object. 304 C& operator*() const { 305 assert(ptr_ != NULL); 306 return *ptr_; 307 } 308 309 C* operator->() const { 310 assert(ptr_ != NULL); 311 return ptr_; 312 } 313 314 C* get() const { 315 return ptr_; 316 } 317 318 // Comparison operators. 319 // These return whether a scoped_ptr_malloc and a plain pointer refer 320 // to the same object, not just to two different but equal objects. 321 // For compatibility with the boost-derived implementation, these 322 // take non-const arguments. 323 bool operator==(C* p) const { 324 return ptr_ == p; 325 } 326 327 bool operator!=(C* p) const { 328 return ptr_ != p; 329 } 330 331 // Swap two scoped pointers. 332 void swap(scoped_ptr_malloc & b) { 333 C* tmp = b.ptr_; 334 b.ptr_ = ptr_; 335 ptr_ = tmp; 336 } 337 338 // Release a pointer. 339 // The return value is the current pointer held by this object. 340 // If this object holds a NULL pointer, the return value is NULL. 341 // After this operation, this object will hold a NULL pointer, 342 // and will not own the object any more. 343 C* release() WARN_UNUSED_RESULT { 344 C* tmp = ptr_; 345 ptr_ = NULL; 346 return tmp; 347 } 348 349 private: 350 C* ptr_; 351 352 // no reason to use these: each scoped_ptr_malloc should have its own object 353 template <class C2, class GP> 354 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; 355 template <class C2, class GP> 356 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; 357 358 static FreeProc const free_; 359 360 // Disallow evil constructors 361 scoped_ptr_malloc(const scoped_ptr_malloc&); 362 void operator=(const scoped_ptr_malloc&); 363 }; 364 365 template<class C, class FP> 366 FP const scoped_ptr_malloc<C, FP>::free_ = FP(); 367 368 template<class C, class FP> inline 369 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { 370 a.swap(b); 371 } 372 373 template<class C, class FP> inline 374 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { 375 return p == b.get(); 376 } 377 378 template<class C, class FP> inline 379 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { 380 return p != b.get(); 381 } 382 383 #endif // BASE_MEMORY_SCOPED_PTR_H_ 384