Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Weak pointers are pointers to an object that do not affect its lifetime,
      6 // and which may be invalidated (i.e. reset to NULL) by the object, or its
      7 // owner, at any time, most commonly when the object is about to be deleted.
      8 
      9 // Weak pointers are useful when an object needs to be accessed safely by one
     10 // or more objects other than its owner, and those callers can cope with the
     11 // object vanishing and e.g. tasks posted to it being silently dropped.
     12 // Reference-counting such an object would complicate the ownership graph and
     13 // make it harder to reason about the object's lifetime.
     14 
     15 // EXAMPLE:
     16 //
     17 //  class Controller {
     18 //   public:
     19 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
     20 //    void WorkComplete(const Result& result) { ... }
     21 //   private:
     22 //    // Member variables should appear before the WeakPtrFactory, to ensure
     23 //    // that any WeakPtrs to Controller are invalidated before its members
     24 //    // variable's destructors are executed, rendering them invalid.
     25 //    WeakPtrFactory<Controller> weak_factory_;
     26 //  };
     27 //
     28 //  class Worker {
     29 //   public:
     30 //    static void StartNew(const WeakPtr<Controller>& controller) {
     31 //      Worker* worker = new Worker(controller);
     32 //      // Kick off asynchronous processing...
     33 //    }
     34 //   private:
     35 //    Worker(const WeakPtr<Controller>& controller)
     36 //        : controller_(controller) {}
     37 //    void DidCompleteAsynchronousProcessing(const Result& result) {
     38 //      if (controller_)
     39 //        controller_->WorkComplete(result);
     40 //    }
     41 //    WeakPtr<Controller> controller_;
     42 //  };
     43 //
     44 // With this implementation a caller may use SpawnWorker() to dispatch multiple
     45 // Workers and subsequently delete the Controller, without waiting for all
     46 // Workers to have completed.
     47 
     48 // ------------------------- IMPORTANT: Thread-safety -------------------------
     49 
     50 // Weak pointers may be passed safely between threads, but must always be
     51 // dereferenced and invalidated on the same thread otherwise checking the
     52 // pointer would be racey.
     53 //
     54 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
     55 // is dereferenced, the factory and its WeakPtrs become bound to the calling
     56 // thread, and cannot be dereferenced or invalidated on any other thread. Bound
     57 // WeakPtrs can still be handed off to other threads, e.g. to use to post tasks
     58 // back to object on the bound thread.
     59 //
     60 // Invalidating the factory's WeakPtrs un-binds it from the thread, allowing it
     61 // to be passed for a different thread to use or delete it.
     62 
     63 #ifndef BASE_MEMORY_WEAK_PTR_H_
     64 #define BASE_MEMORY_WEAK_PTR_H_
     65 
     66 #include "base/basictypes.h"
     67 #include "base/base_export.h"
     68 #include "base/logging.h"
     69 #include "base/memory/ref_counted.h"
     70 #include "base/sequence_checker.h"
     71 #include "base/template_util.h"
     72 
     73 namespace base {
     74 
     75 template <typename T> class SupportsWeakPtr;
     76 template <typename T> class WeakPtr;
     77 
     78 namespace internal {
     79 // These classes are part of the WeakPtr implementation.
     80 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
     81 
     82 class BASE_EXPORT WeakReference {
     83  public:
     84   // Although Flag is bound to a specific thread, it may be deleted from another
     85   // via base::WeakPtr::~WeakPtr().
     86   class Flag : public RefCountedThreadSafe<Flag> {
     87    public:
     88     Flag();
     89 
     90     void Invalidate();
     91     bool IsValid() const;
     92 
     93    private:
     94     friend class base::RefCountedThreadSafe<Flag>;
     95 
     96     ~Flag();
     97 
     98     SequenceChecker sequence_checker_;
     99     bool is_valid_;
    100   };
    101 
    102   WeakReference();
    103   explicit WeakReference(const Flag* flag);
    104   ~WeakReference();
    105 
    106   bool is_valid() const;
    107 
    108  private:
    109   scoped_refptr<const Flag> flag_;
    110 };
    111 
    112 class BASE_EXPORT WeakReferenceOwner {
    113  public:
    114   WeakReferenceOwner();
    115   ~WeakReferenceOwner();
    116 
    117   WeakReference GetRef() const;
    118 
    119   bool HasRefs() const {
    120     return flag_.get() && !flag_->HasOneRef();
    121   }
    122 
    123   void Invalidate();
    124 
    125  private:
    126   mutable scoped_refptr<WeakReference::Flag> flag_;
    127 };
    128 
    129 // This class simplifies the implementation of WeakPtr's type conversion
    130 // constructor by avoiding the need for a public accessor for ref_.  A
    131 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
    132 // base class gives us a way to access ref_ in a protected fashion.
    133 class BASE_EXPORT WeakPtrBase {
    134  public:
    135   WeakPtrBase();
    136   ~WeakPtrBase();
    137 
    138  protected:
    139   explicit WeakPtrBase(const WeakReference& ref);
    140 
    141   WeakReference ref_;
    142 };
    143 
    144 // This class provides a common implementation of common functions that would
    145 // otherwise get instantiated separately for each distinct instantiation of
    146 // SupportsWeakPtr<>.
    147 class SupportsWeakPtrBase {
    148  public:
    149   // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
    150   // conversion will only compile if there is exists a Base which inherits
    151   // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
    152   // function that makes calling this easier.
    153   template<typename Derived>
    154   static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
    155     typedef
    156         is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
    157     COMPILE_ASSERT(convertible::value,
    158                    AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
    159     return AsWeakPtrImpl<Derived>(t, *t);
    160   }
    161 
    162  private:
    163   // This template function uses type inference to find a Base of Derived
    164   // which is an instance of SupportsWeakPtr<Base>. We can then safely
    165   // static_cast the Base* to a Derived*.
    166   template <typename Derived, typename Base>
    167   static WeakPtr<Derived> AsWeakPtrImpl(
    168       Derived* t, const SupportsWeakPtr<Base>&) {
    169     WeakPtr<Base> ptr = t->Base::AsWeakPtr();
    170     return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
    171   }
    172 };
    173 
    174 }  // namespace internal
    175 
    176 template <typename T> class WeakPtrFactory;
    177 
    178 // The WeakPtr class holds a weak reference to |T*|.
    179 //
    180 // This class is designed to be used like a normal pointer.  You should always
    181 // null-test an object of this class before using it or invoking a method that
    182 // may result in the underlying object being destroyed.
    183 //
    184 // EXAMPLE:
    185 //
    186 //   class Foo { ... };
    187 //   WeakPtr<Foo> foo;
    188 //   if (foo)
    189 //     foo->method();
    190 //
    191 template <typename T>
    192 class WeakPtr : public internal::WeakPtrBase {
    193  public:
    194   WeakPtr() : ptr_(NULL) {
    195   }
    196 
    197   // Allow conversion from U to T provided U "is a" T. Note that this
    198   // is separate from the (implicit) copy constructor.
    199   template <typename U>
    200   WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
    201   }
    202 
    203   T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
    204 
    205   T& operator*() const {
    206     DCHECK(get() != NULL);
    207     return *get();
    208   }
    209   T* operator->() const {
    210     DCHECK(get() != NULL);
    211     return get();
    212   }
    213 
    214   // Allow WeakPtr<element_type> to be used in boolean expressions, but not
    215   // implicitly convertible to a real bool (which is dangerous).
    216   //
    217   // Note that this trick is only safe when the == and != operators
    218   // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
    219   // will compile but do the wrong thing (i.e., convert to Testable
    220   // and then do the comparison).
    221  private:
    222   typedef T* WeakPtr::*Testable;
    223 
    224  public:
    225   operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
    226 
    227   void reset() {
    228     ref_ = internal::WeakReference();
    229     ptr_ = NULL;
    230   }
    231 
    232  private:
    233   // Explicitly declare comparison operators as required by the bool
    234   // trick, but keep them private.
    235   template <class U> bool operator==(WeakPtr<U> const&) const;
    236   template <class U> bool operator!=(WeakPtr<U> const&) const;
    237 
    238   friend class internal::SupportsWeakPtrBase;
    239   template <typename U> friend class WeakPtr;
    240   friend class SupportsWeakPtr<T>;
    241   friend class WeakPtrFactory<T>;
    242 
    243   WeakPtr(const internal::WeakReference& ref, T* ptr)
    244       : WeakPtrBase(ref),
    245         ptr_(ptr) {
    246   }
    247 
    248   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
    249   // value is undefined (as opposed to NULL).
    250   T* ptr_;
    251 };
    252 
    253 // A class may be composed of a WeakPtrFactory and thereby
    254 // control how it exposes weak pointers to itself.  This is helpful if you only
    255 // need weak pointers within the implementation of a class.  This class is also
    256 // useful when working with primitive types.  For example, you could have a
    257 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
    258 template <class T>
    259 class WeakPtrFactory {
    260  public:
    261   explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
    262   }
    263 
    264   ~WeakPtrFactory() {
    265     ptr_ = NULL;
    266   }
    267 
    268   WeakPtr<T> GetWeakPtr() {
    269     DCHECK(ptr_);
    270     return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
    271   }
    272 
    273   // Call this method to invalidate all existing weak pointers.
    274   void InvalidateWeakPtrs() {
    275     DCHECK(ptr_);
    276     weak_reference_owner_.Invalidate();
    277   }
    278 
    279   // Call this method to determine if any weak pointers exist.
    280   bool HasWeakPtrs() const {
    281     DCHECK(ptr_);
    282     return weak_reference_owner_.HasRefs();
    283   }
    284 
    285  private:
    286   internal::WeakReferenceOwner weak_reference_owner_;
    287   T* ptr_;
    288   DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
    289 };
    290 
    291 // A class may extend from SupportsWeakPtr to let others take weak pointers to
    292 // it. This avoids the class itself implementing boilerplate to dispense weak
    293 // pointers.  However, since SupportsWeakPtr's destructor won't invalidate
    294 // weak pointers to the class until after the derived class' members have been
    295 // destroyed, its use can lead to subtle use-after-destroy issues.
    296 template <class T>
    297 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
    298  public:
    299   SupportsWeakPtr() {}
    300 
    301   WeakPtr<T> AsWeakPtr() {
    302     return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
    303   }
    304 
    305  protected:
    306   ~SupportsWeakPtr() {}
    307 
    308  private:
    309   internal::WeakReferenceOwner weak_reference_owner_;
    310   DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
    311 };
    312 
    313 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
    314 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
    315 // extends a Base that extends SupportsWeakPtr<Base>.
    316 //
    317 // EXAMPLE:
    318 //   class Base : public base::SupportsWeakPtr<Producer> {};
    319 //   class Derived : public Base {};
    320 //
    321 //   Derived derived;
    322 //   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
    323 //
    324 // Note that the following doesn't work (invalid type conversion) since
    325 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
    326 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
    327 // the caller.
    328 //
    329 //   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
    330 
    331 template <typename Derived>
    332 WeakPtr<Derived> AsWeakPtr(Derived* t) {
    333   return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
    334 }
    335 
    336 }  // namespace base
    337 
    338 #endif  // BASE_MEMORY_WEAK_PTR_H_
    339