1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/message_loop/message_pump_win.h" 6 7 #include <math.h> 8 9 #include "base/debug/trace_event.h" 10 #include "base/message_loop/message_loop.h" 11 #include "base/metrics/histogram.h" 12 #include "base/process/memory.h" 13 #include "base/strings/stringprintf.h" 14 #include "base/win/wrapped_window_proc.h" 15 16 namespace base { 17 18 namespace { 19 20 enum MessageLoopProblems { 21 MESSAGE_POST_ERROR, 22 COMPLETION_POST_ERROR, 23 SET_TIMER_ERROR, 24 MESSAGE_LOOP_PROBLEM_MAX, 25 }; 26 27 } // namespace 28 29 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p"; 30 31 // Message sent to get an additional time slice for pumping (processing) another 32 // task (a series of such messages creates a continuous task pump). 33 static const int kMsgHaveWork = WM_USER + 1; 34 35 //----------------------------------------------------------------------------- 36 // MessagePumpWin public: 37 38 void MessagePumpWin::AddObserver(MessagePumpObserver* observer) { 39 observers_.AddObserver(observer); 40 } 41 42 void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) { 43 observers_.RemoveObserver(observer); 44 } 45 46 void MessagePumpWin::WillProcessMessage(const MSG& msg) { 47 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg)); 48 } 49 50 void MessagePumpWin::DidProcessMessage(const MSG& msg) { 51 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg)); 52 } 53 54 void MessagePumpWin::RunWithDispatcher( 55 Delegate* delegate, MessagePumpDispatcher* dispatcher) { 56 RunState s; 57 s.delegate = delegate; 58 s.dispatcher = dispatcher; 59 s.should_quit = false; 60 s.run_depth = state_ ? state_->run_depth + 1 : 1; 61 62 RunState* previous_state = state_; 63 state_ = &s; 64 65 DoRunLoop(); 66 67 state_ = previous_state; 68 } 69 70 void MessagePumpWin::Quit() { 71 DCHECK(state_); 72 state_->should_quit = true; 73 } 74 75 //----------------------------------------------------------------------------- 76 // MessagePumpWin protected: 77 78 int MessagePumpWin::GetCurrentDelay() const { 79 if (delayed_work_time_.is_null()) 80 return -1; 81 82 // Be careful here. TimeDelta has a precision of microseconds, but we want a 83 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or 84 // 6? It should be 6 to avoid executing delayed work too early. 85 double timeout = 86 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); 87 88 // If this value is negative, then we need to run delayed work soon. 89 int delay = static_cast<int>(timeout); 90 if (delay < 0) 91 delay = 0; 92 93 return delay; 94 } 95 96 //----------------------------------------------------------------------------- 97 // MessagePumpForUI public: 98 99 MessagePumpForUI::MessagePumpForUI() 100 : atom_(0), 101 message_filter_(new MessageFilter) { 102 InitMessageWnd(); 103 } 104 105 MessagePumpForUI::~MessagePumpForUI() { 106 DestroyWindow(message_hwnd_); 107 UnregisterClass(MAKEINTATOM(atom_), 108 GetModuleFromAddress(&WndProcThunk)); 109 } 110 111 void MessagePumpForUI::ScheduleWork() { 112 if (InterlockedExchange(&have_work_, 1)) 113 return; // Someone else continued the pumping. 114 115 // Make sure the MessagePump does some work for us. 116 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork, 117 reinterpret_cast<WPARAM>(this), 0); 118 if (ret) 119 return; // There was room in the Window Message queue. 120 121 // We have failed to insert a have-work message, so there is a chance that we 122 // will starve tasks/timers while sitting in a nested message loop. Nested 123 // loops only look at Windows Message queues, and don't look at *our* task 124 // queues, etc., so we might not get a time slice in such. :-( 125 // We could abort here, but the fear is that this failure mode is plausibly 126 // common (queue is full, of about 2000 messages), so we'll do a near-graceful 127 // recovery. Nested loops are pretty transient (we think), so this will 128 // probably be recoverable. 129 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert. 130 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, 131 MESSAGE_LOOP_PROBLEM_MAX); 132 } 133 134 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 135 // 136 // We would *like* to provide high resolution timers. Windows timers using 137 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup 138 // mechanism because the application can enter modal windows loops where it 139 // is not running our MessageLoop; the only way to have our timers fire in 140 // these cases is to post messages there. 141 // 142 // To provide sub-10ms timers, we process timers directly from our run loop. 143 // For the common case, timers will be processed there as the run loop does 144 // its normal work. However, we *also* set the system timer so that WM_TIMER 145 // events fire. This mops up the case of timers not being able to work in 146 // modal message loops. It is possible for the SetTimer to pop and have no 147 // pending timers, because they could have already been processed by the 148 // run loop itself. 149 // 150 // We use a single SetTimer corresponding to the timer that will expire 151 // soonest. As new timers are created and destroyed, we update SetTimer. 152 // Getting a spurrious SetTimer event firing is benign, as we'll just be 153 // processing an empty timer queue. 154 // 155 delayed_work_time_ = delayed_work_time; 156 157 int delay_msec = GetCurrentDelay(); 158 DCHECK_GE(delay_msec, 0); 159 if (delay_msec < USER_TIMER_MINIMUM) 160 delay_msec = USER_TIMER_MINIMUM; 161 162 // Create a WM_TIMER event that will wake us up to check for any pending 163 // timers (in case we are running within a nested, external sub-pump). 164 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), 165 delay_msec, NULL); 166 if (ret) 167 return; 168 // If we can't set timers, we are in big trouble... but cross our fingers for 169 // now. 170 // TODO(jar): If we don't see this error, use a CHECK() here instead. 171 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, 172 MESSAGE_LOOP_PROBLEM_MAX); 173 } 174 175 //----------------------------------------------------------------------------- 176 // MessagePumpForUI private: 177 178 // static 179 LRESULT CALLBACK MessagePumpForUI::WndProcThunk( 180 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { 181 switch (message) { 182 case kMsgHaveWork: 183 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); 184 break; 185 case WM_TIMER: 186 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); 187 break; 188 } 189 return DefWindowProc(hwnd, message, wparam, lparam); 190 } 191 192 void MessagePumpForUI::DoRunLoop() { 193 // IF this was just a simple PeekMessage() loop (servicing all possible work 194 // queues), then Windows would try to achieve the following order according 195 // to MSDN documentation about PeekMessage with no filter): 196 // * Sent messages 197 // * Posted messages 198 // * Sent messages (again) 199 // * WM_PAINT messages 200 // * WM_TIMER messages 201 // 202 // Summary: none of the above classes is starved, and sent messages has twice 203 // the chance of being processed (i.e., reduced service time). 204 205 for (;;) { 206 // If we do any work, we may create more messages etc., and more work may 207 // possibly be waiting in another task group. When we (for example) 208 // ProcessNextWindowsMessage(), there is a good chance there are still more 209 // messages waiting. On the other hand, when any of these methods return 210 // having done no work, then it is pretty unlikely that calling them again 211 // quickly will find any work to do. Finally, if they all say they had no 212 // work, then it is a good time to consider sleeping (waiting) for more 213 // work. 214 215 bool more_work_is_plausible = ProcessNextWindowsMessage(); 216 if (state_->should_quit) 217 break; 218 219 more_work_is_plausible |= state_->delegate->DoWork(); 220 if (state_->should_quit) 221 break; 222 223 more_work_is_plausible |= 224 state_->delegate->DoDelayedWork(&delayed_work_time_); 225 // If we did not process any delayed work, then we can assume that our 226 // existing WM_TIMER if any will fire when delayed work should run. We 227 // don't want to disturb that timer if it is already in flight. However, 228 // if we did do all remaining delayed work, then lets kill the WM_TIMER. 229 if (more_work_is_plausible && delayed_work_time_.is_null()) 230 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 231 if (state_->should_quit) 232 break; 233 234 if (more_work_is_plausible) 235 continue; 236 237 more_work_is_plausible = state_->delegate->DoIdleWork(); 238 if (state_->should_quit) 239 break; 240 241 if (more_work_is_plausible) 242 continue; 243 244 WaitForWork(); // Wait (sleep) until we have work to do again. 245 } 246 } 247 248 void MessagePumpForUI::InitMessageWnd() { 249 // Generate a unique window class name. 250 string16 class_name = StringPrintf(kWndClassFormat, this); 251 252 HINSTANCE instance = GetModuleFromAddress(&WndProcThunk); 253 WNDCLASSEX wc = {0}; 254 wc.cbSize = sizeof(wc); 255 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>; 256 wc.hInstance = instance; 257 wc.lpszClassName = class_name.c_str(); 258 atom_ = RegisterClassEx(&wc); 259 DCHECK(atom_); 260 261 message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0, 262 HWND_MESSAGE, 0, instance, 0); 263 DCHECK(message_hwnd_); 264 } 265 266 void MessagePumpForUI::WaitForWork() { 267 // Wait until a message is available, up to the time needed by the timer 268 // manager to fire the next set of timers. 269 int delay = GetCurrentDelay(); 270 if (delay < 0) // Negative value means no timers waiting. 271 delay = INFINITE; 272 273 DWORD result; 274 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, 275 MWMO_INPUTAVAILABLE); 276 277 if (WAIT_OBJECT_0 == result) { 278 // A WM_* message is available. 279 // If a parent child relationship exists between windows across threads 280 // then their thread inputs are implicitly attached. 281 // This causes the MsgWaitForMultipleObjectsEx API to return indicating 282 // that messages are ready for processing (Specifically, mouse messages 283 // intended for the child window may appear if the child window has 284 // capture). 285 // The subsequent PeekMessages call may fail to return any messages thus 286 // causing us to enter a tight loop at times. 287 // The WaitMessage call below is a workaround to give the child window 288 // some time to process its input messages. 289 MSG msg = {0}; 290 DWORD queue_status = GetQueueStatus(QS_MOUSE); 291 if (HIWORD(queue_status) & QS_MOUSE && 292 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { 293 WaitMessage(); 294 } 295 return; 296 } 297 298 DCHECK_NE(WAIT_FAILED, result) << GetLastError(); 299 } 300 301 void MessagePumpForUI::HandleWorkMessage() { 302 // If we are being called outside of the context of Run, then don't try to do 303 // any work. This could correspond to a MessageBox call or something of that 304 // sort. 305 if (!state_) { 306 // Since we handled a kMsgHaveWork message, we must still update this flag. 307 InterlockedExchange(&have_work_, 0); 308 return; 309 } 310 311 // Let whatever would have run had we not been putting messages in the queue 312 // run now. This is an attempt to make our dummy message not starve other 313 // messages that may be in the Windows message queue. 314 ProcessPumpReplacementMessage(); 315 316 // Now give the delegate a chance to do some work. He'll let us know if he 317 // needs to do more work. 318 if (state_->delegate->DoWork()) 319 ScheduleWork(); 320 } 321 322 void MessagePumpForUI::HandleTimerMessage() { 323 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 324 325 // If we are being called outside of the context of Run, then don't do 326 // anything. This could correspond to a MessageBox call or something of 327 // that sort. 328 if (!state_) 329 return; 330 331 state_->delegate->DoDelayedWork(&delayed_work_time_); 332 if (!delayed_work_time_.is_null()) { 333 // A bit gratuitous to set delayed_work_time_ again, but oh well. 334 ScheduleDelayedWork(delayed_work_time_); 335 } 336 } 337 338 bool MessagePumpForUI::ProcessNextWindowsMessage() { 339 // If there are sent messages in the queue then PeekMessage internally 340 // dispatches the message and returns false. We return true in this 341 // case to ensure that the message loop peeks again instead of calling 342 // MsgWaitForMultipleObjectsEx again. 343 bool sent_messages_in_queue = false; 344 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); 345 if (HIWORD(queue_status) & QS_SENDMESSAGE) 346 sent_messages_in_queue = true; 347 348 MSG msg; 349 if (message_filter_->DoPeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 350 return ProcessMessageHelper(msg); 351 352 return sent_messages_in_queue; 353 } 354 355 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { 356 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper", 357 "message", msg.message); 358 if (WM_QUIT == msg.message) { 359 // Repost the QUIT message so that it will be retrieved by the primary 360 // GetMessage() loop. 361 state_->should_quit = true; 362 PostQuitMessage(static_cast<int>(msg.wParam)); 363 return false; 364 } 365 366 // While running our main message pump, we discard kMsgHaveWork messages. 367 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) 368 return ProcessPumpReplacementMessage(); 369 370 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode)) 371 return true; 372 373 WillProcessMessage(msg); 374 375 if (!message_filter_->ProcessMessage(msg)) { 376 if (state_->dispatcher) { 377 if (!state_->dispatcher->Dispatch(msg)) 378 state_->should_quit = true; 379 } else { 380 TranslateMessage(&msg); 381 DispatchMessage(&msg); 382 } 383 } 384 385 DidProcessMessage(msg); 386 return true; 387 } 388 389 bool MessagePumpForUI::ProcessPumpReplacementMessage() { 390 // When we encounter a kMsgHaveWork message, this method is called to peek 391 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The 392 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though 393 // a continuous stream of such messages are posted. This method carefully 394 // peeks a message while there is no chance for a kMsgHaveWork to be pending, 395 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to 396 // possibly be posted), and finally dispatches that peeked replacement. Note 397 // that the re-post of kMsgHaveWork may be asynchronous to this thread!! 398 399 bool have_message = false; 400 MSG msg; 401 // We should not process all window messages if we are in the context of an 402 // OS modal loop, i.e. in the context of a windows API call like MessageBox. 403 // This is to ensure that these messages are peeked out by the OS modal loop. 404 if (MessageLoop::current()->os_modal_loop()) { 405 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. 406 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || 407 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); 408 } else { 409 have_message = !!message_filter_->DoPeekMessage(&msg, NULL, 0, 0, 410 PM_REMOVE); 411 } 412 413 DCHECK(!have_message || kMsgHaveWork != msg.message || 414 msg.hwnd != message_hwnd_); 415 416 // Since we discarded a kMsgHaveWork message, we must update the flag. 417 int old_have_work = InterlockedExchange(&have_work_, 0); 418 DCHECK(old_have_work); 419 420 // We don't need a special time slice if we didn't have_message to process. 421 if (!have_message) 422 return false; 423 424 // Guarantee we'll get another time slice in the case where we go into native 425 // windows code. This ScheduleWork() may hurt performance a tiny bit when 426 // tasks appear very infrequently, but when the event queue is busy, the 427 // kMsgHaveWork events get (percentage wise) rarer and rarer. 428 ScheduleWork(); 429 return ProcessMessageHelper(msg); 430 } 431 432 void MessagePumpForUI::SetMessageFilter( 433 scoped_ptr<MessageFilter> message_filter) { 434 message_filter_ = message_filter.Pass(); 435 } 436 437 //----------------------------------------------------------------------------- 438 // MessagePumpForIO public: 439 440 MessagePumpForIO::MessagePumpForIO() { 441 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); 442 DCHECK(port_.IsValid()); 443 } 444 445 void MessagePumpForIO::ScheduleWork() { 446 if (InterlockedExchange(&have_work_, 1)) 447 return; // Someone else continued the pumping. 448 449 // Make sure the MessagePump does some work for us. 450 BOOL ret = PostQueuedCompletionStatus(port_, 0, 451 reinterpret_cast<ULONG_PTR>(this), 452 reinterpret_cast<OVERLAPPED*>(this)); 453 if (ret) 454 return; // Post worked perfectly. 455 456 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. 457 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed. 458 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, 459 MESSAGE_LOOP_PROBLEM_MAX); 460 } 461 462 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 463 // We know that we can't be blocked right now since this method can only be 464 // called on the same thread as Run, so we only need to update our record of 465 // how long to sleep when we do sleep. 466 delayed_work_time_ = delayed_work_time; 467 } 468 469 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, 470 IOHandler* handler) { 471 ULONG_PTR key = HandlerToKey(handler, true); 472 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); 473 DPCHECK(port); 474 } 475 476 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, 477 IOHandler* handler) { 478 // Job object notifications use the OVERLAPPED pointer to carry the message 479 // data. Mark the completion key correspondingly, so we will not try to 480 // convert OVERLAPPED* to IOContext*. 481 ULONG_PTR key = HandlerToKey(handler, false); 482 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; 483 info.CompletionKey = reinterpret_cast<void*>(key); 484 info.CompletionPort = port_; 485 return SetInformationJobObject(job_handle, 486 JobObjectAssociateCompletionPortInformation, 487 &info, 488 sizeof(info)) != FALSE; 489 } 490 491 //----------------------------------------------------------------------------- 492 // MessagePumpForIO private: 493 494 void MessagePumpForIO::DoRunLoop() { 495 for (;;) { 496 // If we do any work, we may create more messages etc., and more work may 497 // possibly be waiting in another task group. When we (for example) 498 // WaitForIOCompletion(), there is a good chance there are still more 499 // messages waiting. On the other hand, when any of these methods return 500 // having done no work, then it is pretty unlikely that calling them 501 // again quickly will find any work to do. Finally, if they all say they 502 // had no work, then it is a good time to consider sleeping (waiting) for 503 // more work. 504 505 bool more_work_is_plausible = state_->delegate->DoWork(); 506 if (state_->should_quit) 507 break; 508 509 more_work_is_plausible |= WaitForIOCompletion(0, NULL); 510 if (state_->should_quit) 511 break; 512 513 more_work_is_plausible |= 514 state_->delegate->DoDelayedWork(&delayed_work_time_); 515 if (state_->should_quit) 516 break; 517 518 if (more_work_is_plausible) 519 continue; 520 521 more_work_is_plausible = state_->delegate->DoIdleWork(); 522 if (state_->should_quit) 523 break; 524 525 if (more_work_is_plausible) 526 continue; 527 528 WaitForWork(); // Wait (sleep) until we have work to do again. 529 } 530 } 531 532 // Wait until IO completes, up to the time needed by the timer manager to fire 533 // the next set of timers. 534 void MessagePumpForIO::WaitForWork() { 535 // We do not support nested IO message loops. This is to avoid messy 536 // recursion problems. 537 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; 538 539 int timeout = GetCurrentDelay(); 540 if (timeout < 0) // Negative value means no timers waiting. 541 timeout = INFINITE; 542 543 WaitForIOCompletion(timeout, NULL); 544 } 545 546 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { 547 IOItem item; 548 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { 549 // We have to ask the system for another IO completion. 550 if (!GetIOItem(timeout, &item)) 551 return false; 552 553 if (ProcessInternalIOItem(item)) 554 return true; 555 } 556 557 // If |item.has_valid_io_context| is false then |item.context| does not point 558 // to a context structure, and so should not be dereferenced, although it may 559 // still hold valid non-pointer data. 560 if (!item.has_valid_io_context || item.context->handler) { 561 if (filter && item.handler != filter) { 562 // Save this item for later 563 completed_io_.push_back(item); 564 } else { 565 DCHECK(!item.has_valid_io_context || 566 (item.context->handler == item.handler)); 567 WillProcessIOEvent(); 568 item.handler->OnIOCompleted(item.context, item.bytes_transfered, 569 item.error); 570 DidProcessIOEvent(); 571 } 572 } else { 573 // The handler must be gone by now, just cleanup the mess. 574 delete item.context; 575 } 576 return true; 577 } 578 579 // Asks the OS for another IO completion result. 580 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { 581 memset(item, 0, sizeof(*item)); 582 ULONG_PTR key = NULL; 583 OVERLAPPED* overlapped = NULL; 584 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, 585 &overlapped, timeout)) { 586 if (!overlapped) 587 return false; // Nothing in the queue. 588 item->error = GetLastError(); 589 item->bytes_transfered = 0; 590 } 591 592 item->handler = KeyToHandler(key, &item->has_valid_io_context); 593 item->context = reinterpret_cast<IOContext*>(overlapped); 594 return true; 595 } 596 597 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { 598 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && 599 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { 600 // This is our internal completion. 601 DCHECK(!item.bytes_transfered); 602 InterlockedExchange(&have_work_, 0); 603 return true; 604 } 605 return false; 606 } 607 608 // Returns a completion item that was previously received. 609 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { 610 DCHECK(!completed_io_.empty()); 611 for (std::list<IOItem>::iterator it = completed_io_.begin(); 612 it != completed_io_.end(); ++it) { 613 if (!filter || it->handler == filter) { 614 *item = *it; 615 completed_io_.erase(it); 616 return true; 617 } 618 } 619 return false; 620 } 621 622 void MessagePumpForIO::AddIOObserver(IOObserver *obs) { 623 io_observers_.AddObserver(obs); 624 } 625 626 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { 627 io_observers_.RemoveObserver(obs); 628 } 629 630 void MessagePumpForIO::WillProcessIOEvent() { 631 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); 632 } 633 634 void MessagePumpForIO::DidProcessIOEvent() { 635 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); 636 } 637 638 // static 639 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler, 640 bool has_valid_io_context) { 641 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); 642 643 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are 644 // always cleared. We use the lowest bit to distinguish completion keys with 645 // and without the associated |IOContext|. 646 DCHECK((key & 1) == 0); 647 648 // Mark the completion key as context-less. 649 if (!has_valid_io_context) 650 key = key | 1; 651 return key; 652 } 653 654 // static 655 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler( 656 ULONG_PTR key, 657 bool* has_valid_io_context) { 658 *has_valid_io_context = ((key & 1) == 0); 659 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1)); 660 } 661 662 } // namespace base 663