1 /* Portions are Copyright (C) 2011 Google Inc */ 2 /* ***** BEGIN LICENSE BLOCK ***** 3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4 * 5 * The contents of this file are subject to the Mozilla Public License Version 6 * 1.1 (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * http://www.mozilla.org/MPL/ 9 * 10 * Software distributed under the License is distributed on an "AS IS" basis, 11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12 * for the specific language governing rights and limitations under the 13 * License. 14 * 15 * The Original Code is the Netscape Portable Runtime (NSPR). 16 * 17 * The Initial Developer of the Original Code is 18 * Netscape Communications Corporation. 19 * Portions created by the Initial Developer are Copyright (C) 1998-2000 20 * the Initial Developer. All Rights Reserved. 21 * 22 * Contributor(s): 23 * 24 * Alternatively, the contents of this file may be used under the terms of 25 * either the GNU General Public License Version 2 or later (the "GPL"), or 26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 27 * in which case the provisions of the GPL or the LGPL are applicable instead 28 * of those above. If you wish to allow use of your version of this file only 29 * under the terms of either the GPL or the LGPL, and not to allow others to 30 * use your version of this file under the terms of the MPL, indicate your 31 * decision by deleting the provisions above and replace them with the notice 32 * and other provisions required by the GPL or the LGPL. If you do not delete 33 * the provisions above, a recipient may use your version of this file under 34 * the terms of any one of the MPL, the GPL or the LGPL. 35 * 36 * ***** END LICENSE BLOCK ***** */ 37 38 /* 39 * prtime.cc -- 40 * NOTE: The original nspr file name is prtime.c 41 * 42 * NSPR date and time functions 43 * 44 * CVS revision 3.37 45 */ 46 47 /* 48 * The following functions were copied from the NSPR prtime.c file. 49 * PR_ParseTimeString 50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid 51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime 52 * and PR_ImplodeTime calls cancel each other out.) 53 * PR_NormalizeTime 54 * PR_GMTParameters 55 * PR_ImplodeTime 56 * This was modified to use the Win32 SYSTEMTIME/FILETIME structures 57 * and the timezone offsets are applied to the FILETIME structure. 58 * All types and macros are defined in the base/third_party/prtime.h file. 59 * These have been copied from the following nspr files. We have only copied 60 * over the types we need. 61 * 1. prtime.h 62 * 2. prtypes.h 63 * 3. prlong.h 64 */ 65 66 #include "base/logging.h" 67 #include "base/third_party/nspr/prtime.h" 68 #include "build/build_config.h" 69 70 #if defined(OS_WIN) 71 #include <windows.h> 72 #elif defined(OS_MACOSX) 73 #include <CoreFoundation/CoreFoundation.h> 74 #elif defined(OS_ANDROID) 75 #include <ctype.h> 76 #include "base/os_compat_android.h" // For timegm() 77 #elif defined(OS_NACL) 78 #include "base/os_compat_nacl.h" // For timegm() 79 #endif 80 #include <errno.h> /* for EINVAL */ 81 #include <time.h> 82 83 /* Implements the Unix localtime_r() function for windows */ 84 #if defined(OS_WIN) 85 static void localtime_r(const time_t* secs, struct tm* time) { 86 (void) localtime_s(time, secs); 87 } 88 #endif 89 90 /* 91 *------------------------------------------------------------------------ 92 * 93 * PR_ImplodeTime -- 94 * 95 * Cf. time_t mktime(struct tm *tp) 96 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. 97 * 98 *------------------------------------------------------------------------ 99 */ 100 PRTime 101 PR_ImplodeTime(const PRExplodedTime *exploded) 102 { 103 // This is important, we want to make sure multiplications are 104 // done with the correct precision. 105 static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000); 106 #if defined(OS_WIN) 107 // Create the system struct representing our exploded time. 108 SYSTEMTIME st = {0}; 109 FILETIME ft = {0}; 110 ULARGE_INTEGER uli = {0}; 111 112 st.wYear = exploded->tm_year; 113 st.wMonth = exploded->tm_month + 1; 114 st.wDayOfWeek = exploded->tm_wday; 115 st.wDay = exploded->tm_mday; 116 st.wHour = exploded->tm_hour; 117 st.wMinute = exploded->tm_min; 118 st.wSecond = exploded->tm_sec; 119 st.wMilliseconds = exploded->tm_usec/1000; 120 // Convert to FILETIME. 121 if (!SystemTimeToFileTime(&st, &ft)) { 122 NOTREACHED() << "Unable to convert time"; 123 return 0; 124 } 125 // Apply offsets. 126 uli.LowPart = ft.dwLowDateTime; 127 uli.HighPart = ft.dwHighDateTime; 128 // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units 129 // to microsecond units. 130 PRTime result = 131 static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64); 132 // Adjust for time zone and dst. Convert from seconds to microseconds. 133 result -= (exploded->tm_params.tp_gmt_offset + 134 exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds; 135 return result; 136 #elif defined(OS_MACOSX) 137 // Create the system struct representing our exploded time. 138 CFGregorianDate gregorian_date; 139 gregorian_date.year = exploded->tm_year; 140 gregorian_date.month = exploded->tm_month + 1; 141 gregorian_date.day = exploded->tm_mday; 142 gregorian_date.hour = exploded->tm_hour; 143 gregorian_date.minute = exploded->tm_min; 144 gregorian_date.second = exploded->tm_sec; 145 146 // Compute |absolute_time| in seconds, correct for gmt and dst 147 // (note the combined offset will be negative when we need to add it), then 148 // convert to microseconds which is what PRTime expects. 149 CFAbsoluteTime absolute_time = 150 CFGregorianDateGetAbsoluteTime(gregorian_date, NULL); 151 PRTime result = static_cast<PRTime>(absolute_time); 152 result -= exploded->tm_params.tp_gmt_offset + 153 exploded->tm_params.tp_dst_offset; 154 result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970 155 result *= kSecondsToMicroseconds; 156 result += exploded->tm_usec; 157 return result; 158 #elif defined(OS_POSIX) 159 struct tm exp_tm = {0}; 160 exp_tm.tm_sec = exploded->tm_sec; 161 exp_tm.tm_min = exploded->tm_min; 162 exp_tm.tm_hour = exploded->tm_hour; 163 exp_tm.tm_mday = exploded->tm_mday; 164 exp_tm.tm_mon = exploded->tm_month; 165 exp_tm.tm_year = exploded->tm_year - 1900; 166 167 time_t absolute_time = timegm(&exp_tm); 168 169 // If timegm returned -1. Since we don't pass it a time zone, the only 170 // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969). 171 if (absolute_time == -1 && 172 !(exploded->tm_year == 1969 && exploded->tm_month == 11 && 173 exploded->tm_mday == 31 && exploded->tm_hour == 23 && 174 exploded->tm_min == 59 && exploded->tm_sec == 59)) { 175 // If we get here, time_t must be 32 bits. 176 // Date was possibly too far in the future and would overflow. Return 177 // the most future date possible (year 2038). 178 if (exploded->tm_year >= 1970) 179 return INT_MAX * kSecondsToMicroseconds; 180 // Date was possibly too far in the past and would underflow. Return 181 // the most past date possible (year 1901). 182 return INT_MIN * kSecondsToMicroseconds; 183 } 184 185 PRTime result = static_cast<PRTime>(absolute_time); 186 result -= exploded->tm_params.tp_gmt_offset + 187 exploded->tm_params.tp_dst_offset; 188 result *= kSecondsToMicroseconds; 189 result += exploded->tm_usec; 190 return result; 191 #else 192 #error No PR_ImplodeTime implemented on your platform. 193 #endif 194 } 195 196 /* 197 * The COUNT_LEAPS macro counts the number of leap years passed by 198 * till the start of the given year Y. At the start of the year 4 199 * A.D. the number of leap years passed by is 0, while at the start of 200 * the year 5 A.D. this count is 1. The number of years divisible by 201 * 100 but not divisible by 400 (the non-leap years) is deducted from 202 * the count to get the correct number of leap years. 203 * 204 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the 205 * start of the given year Y. The number of days at the start of the year 206 * 1 is 0 while the number of days at the start of the year 2 is 365 207 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 208 * midnight 00:00:00. 209 */ 210 211 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) 212 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) 213 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) 214 215 /* 216 * Static variables used by functions in this file 217 */ 218 219 /* 220 * The following array contains the day of year for the last day of 221 * each month, where index 1 is January, and day 0 is January 1. 222 */ 223 224 static const int lastDayOfMonth[2][13] = { 225 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, 226 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} 227 }; 228 229 /* 230 * The number of days in a month 231 */ 232 233 static const PRInt8 nDays[2][12] = { 234 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, 235 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} 236 }; 237 238 /* 239 *------------------------------------------------------------------------- 240 * 241 * IsLeapYear -- 242 * 243 * Returns 1 if the year is a leap year, 0 otherwise. 244 * 245 *------------------------------------------------------------------------- 246 */ 247 248 static int IsLeapYear(PRInt16 year) 249 { 250 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) 251 return 1; 252 else 253 return 0; 254 } 255 256 /* 257 * 'secOffset' should be less than 86400 (i.e., a day). 258 * 'time' should point to a normalized PRExplodedTime. 259 */ 260 261 static void 262 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) 263 { 264 time->tm_sec += secOffset; 265 266 /* Note that in this implementation we do not count leap seconds */ 267 if (time->tm_sec < 0 || time->tm_sec >= 60) { 268 time->tm_min += time->tm_sec / 60; 269 time->tm_sec %= 60; 270 if (time->tm_sec < 0) { 271 time->tm_sec += 60; 272 time->tm_min--; 273 } 274 } 275 276 if (time->tm_min < 0 || time->tm_min >= 60) { 277 time->tm_hour += time->tm_min / 60; 278 time->tm_min %= 60; 279 if (time->tm_min < 0) { 280 time->tm_min += 60; 281 time->tm_hour--; 282 } 283 } 284 285 if (time->tm_hour < 0) { 286 /* Decrement mday, yday, and wday */ 287 time->tm_hour += 24; 288 time->tm_mday--; 289 time->tm_yday--; 290 if (time->tm_mday < 1) { 291 time->tm_month--; 292 if (time->tm_month < 0) { 293 time->tm_month = 11; 294 time->tm_year--; 295 if (IsLeapYear(time->tm_year)) 296 time->tm_yday = 365; 297 else 298 time->tm_yday = 364; 299 } 300 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 301 } 302 time->tm_wday--; 303 if (time->tm_wday < 0) 304 time->tm_wday = 6; 305 } else if (time->tm_hour > 23) { 306 /* Increment mday, yday, and wday */ 307 time->tm_hour -= 24; 308 time->tm_mday++; 309 time->tm_yday++; 310 if (time->tm_mday > 311 nDays[IsLeapYear(time->tm_year)][time->tm_month]) { 312 time->tm_mday = 1; 313 time->tm_month++; 314 if (time->tm_month > 11) { 315 time->tm_month = 0; 316 time->tm_year++; 317 time->tm_yday = 0; 318 } 319 } 320 time->tm_wday++; 321 if (time->tm_wday > 6) 322 time->tm_wday = 0; 323 } 324 } 325 326 void 327 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) 328 { 329 int daysInMonth; 330 PRInt32 numDays; 331 332 /* Get back to GMT */ 333 time->tm_sec -= time->tm_params.tp_gmt_offset 334 + time->tm_params.tp_dst_offset; 335 time->tm_params.tp_gmt_offset = 0; 336 time->tm_params.tp_dst_offset = 0; 337 338 /* Now normalize GMT */ 339 340 if (time->tm_usec < 0 || time->tm_usec >= 1000000) { 341 time->tm_sec += time->tm_usec / 1000000; 342 time->tm_usec %= 1000000; 343 if (time->tm_usec < 0) { 344 time->tm_usec += 1000000; 345 time->tm_sec--; 346 } 347 } 348 349 /* Note that we do not count leap seconds in this implementation */ 350 if (time->tm_sec < 0 || time->tm_sec >= 60) { 351 time->tm_min += time->tm_sec / 60; 352 time->tm_sec %= 60; 353 if (time->tm_sec < 0) { 354 time->tm_sec += 60; 355 time->tm_min--; 356 } 357 } 358 359 if (time->tm_min < 0 || time->tm_min >= 60) { 360 time->tm_hour += time->tm_min / 60; 361 time->tm_min %= 60; 362 if (time->tm_min < 0) { 363 time->tm_min += 60; 364 time->tm_hour--; 365 } 366 } 367 368 if (time->tm_hour < 0 || time->tm_hour >= 24) { 369 time->tm_mday += time->tm_hour / 24; 370 time->tm_hour %= 24; 371 if (time->tm_hour < 0) { 372 time->tm_hour += 24; 373 time->tm_mday--; 374 } 375 } 376 377 /* Normalize month and year before mday */ 378 if (time->tm_month < 0 || time->tm_month >= 12) { 379 time->tm_year += time->tm_month / 12; 380 time->tm_month %= 12; 381 if (time->tm_month < 0) { 382 time->tm_month += 12; 383 time->tm_year--; 384 } 385 } 386 387 /* Now that month and year are in proper range, normalize mday */ 388 389 if (time->tm_mday < 1) { 390 /* mday too small */ 391 do { 392 /* the previous month */ 393 time->tm_month--; 394 if (time->tm_month < 0) { 395 time->tm_month = 11; 396 time->tm_year--; 397 } 398 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; 399 } while (time->tm_mday < 1); 400 } else { 401 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 402 while (time->tm_mday > daysInMonth) { 403 /* mday too large */ 404 time->tm_mday -= daysInMonth; 405 time->tm_month++; 406 if (time->tm_month > 11) { 407 time->tm_month = 0; 408 time->tm_year++; 409 } 410 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 411 } 412 } 413 414 /* Recompute yday and wday */ 415 time->tm_yday = time->tm_mday + 416 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; 417 418 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; 419 time->tm_wday = (numDays + 4) % 7; 420 if (time->tm_wday < 0) { 421 time->tm_wday += 7; 422 } 423 424 /* Recompute time parameters */ 425 426 time->tm_params = params(time); 427 428 ApplySecOffset(time, time->tm_params.tp_gmt_offset 429 + time->tm_params.tp_dst_offset); 430 } 431 432 /* 433 *------------------------------------------------------------------------ 434 * 435 * PR_GMTParameters -- 436 * 437 * Returns the PRTimeParameters for Greenwich Mean Time. 438 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. 439 * 440 *------------------------------------------------------------------------ 441 */ 442 443 PRTimeParameters 444 PR_GMTParameters(const PRExplodedTime *gmt) 445 { 446 #if defined(XP_MAC) 447 #pragma unused (gmt) 448 #endif 449 450 PRTimeParameters retVal = { 0, 0 }; 451 return retVal; 452 } 453 454 /* 455 * The following code implements PR_ParseTimeString(). It is based on 456 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz (at) netscape.com>. 457 */ 458 459 /* 460 * We only recognize the abbreviations of a small subset of time zones 461 * in North America, Europe, and Japan. 462 * 463 * PST/PDT: Pacific Standard/Daylight Time 464 * MST/MDT: Mountain Standard/Daylight Time 465 * CST/CDT: Central Standard/Daylight Time 466 * EST/EDT: Eastern Standard/Daylight Time 467 * AST: Atlantic Standard Time 468 * NST: Newfoundland Standard Time 469 * GMT: Greenwich Mean Time 470 * BST: British Summer Time 471 * MET: Middle Europe Time 472 * EET: Eastern Europe Time 473 * JST: Japan Standard Time 474 */ 475 476 typedef enum 477 { 478 TT_UNKNOWN, 479 480 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, 481 482 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, 483 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, 484 485 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, 486 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST 487 } TIME_TOKEN; 488 489 /* 490 * This parses a time/date string into a PRTime 491 * (microseconds after "1-Jan-1970 00:00:00 GMT"). 492 * It returns PR_SUCCESS on success, and PR_FAILURE 493 * if the time/date string can't be parsed. 494 * 495 * Many formats are handled, including: 496 * 497 * 14 Apr 89 03:20:12 498 * 14 Apr 89 03:20 GMT 499 * Fri, 17 Mar 89 4:01:33 500 * Fri, 17 Mar 89 4:01 GMT 501 * Mon Jan 16 16:12 PDT 1989 502 * Mon Jan 16 16:12 +0130 1989 503 * 6 May 1992 16:41-JST (Wednesday) 504 * 22-AUG-1993 10:59:12.82 505 * 22-AUG-1993 10:59pm 506 * 22-AUG-1993 12:59am 507 * 22-AUG-1993 12:59 PM 508 * Friday, August 04, 1995 3:54 PM 509 * 06/21/95 04:24:34 PM 510 * 20/06/95 21:07 511 * 95-06-08 19:32:48 EDT 512 * 513 * If the input string doesn't contain a description of the timezone, 514 * we consult the `default_to_gmt' to decide whether the string should 515 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). 516 * The correct value for this argument depends on what standard specified 517 * the time string which you are parsing. 518 */ 519 520 PRStatus 521 PR_ParseTimeString( 522 const char *string, 523 PRBool default_to_gmt, 524 PRTime *result_imploded) 525 { 526 PRExplodedTime tm; 527 PRExplodedTime *result = &tm; 528 TIME_TOKEN dotw = TT_UNKNOWN; 529 TIME_TOKEN month = TT_UNKNOWN; 530 TIME_TOKEN zone = TT_UNKNOWN; 531 int zone_offset = -1; 532 int dst_offset = 0; 533 int date = -1; 534 PRInt32 year = -1; 535 int hour = -1; 536 int min = -1; 537 int sec = -1; 538 539 const char *rest = string; 540 541 int iterations = 0; 542 543 PR_ASSERT(string && result); 544 if (!string || !result) return PR_FAILURE; 545 546 while (*rest) 547 { 548 549 if (iterations++ > 1000) 550 { 551 return PR_FAILURE; 552 } 553 554 switch (*rest) 555 { 556 case 'a': case 'A': 557 if (month == TT_UNKNOWN && 558 (rest[1] == 'p' || rest[1] == 'P') && 559 (rest[2] == 'r' || rest[2] == 'R')) 560 month = TT_APR; 561 else if (zone == TT_UNKNOWN && 562 (rest[1] == 's' || rest[1] == 'S') && 563 (rest[2] == 't' || rest[2] == 'T')) 564 zone = TT_AST; 565 else if (month == TT_UNKNOWN && 566 (rest[1] == 'u' || rest[1] == 'U') && 567 (rest[2] == 'g' || rest[2] == 'G')) 568 month = TT_AUG; 569 break; 570 case 'b': case 'B': 571 if (zone == TT_UNKNOWN && 572 (rest[1] == 's' || rest[1] == 'S') && 573 (rest[2] == 't' || rest[2] == 'T')) 574 zone = TT_BST; 575 break; 576 case 'c': case 'C': 577 if (zone == TT_UNKNOWN && 578 (rest[1] == 'd' || rest[1] == 'D') && 579 (rest[2] == 't' || rest[2] == 'T')) 580 zone = TT_CDT; 581 else if (zone == TT_UNKNOWN && 582 (rest[1] == 's' || rest[1] == 'S') && 583 (rest[2] == 't' || rest[2] == 'T')) 584 zone = TT_CST; 585 break; 586 case 'd': case 'D': 587 if (month == TT_UNKNOWN && 588 (rest[1] == 'e' || rest[1] == 'E') && 589 (rest[2] == 'c' || rest[2] == 'C')) 590 month = TT_DEC; 591 break; 592 case 'e': case 'E': 593 if (zone == TT_UNKNOWN && 594 (rest[1] == 'd' || rest[1] == 'D') && 595 (rest[2] == 't' || rest[2] == 'T')) 596 zone = TT_EDT; 597 else if (zone == TT_UNKNOWN && 598 (rest[1] == 'e' || rest[1] == 'E') && 599 (rest[2] == 't' || rest[2] == 'T')) 600 zone = TT_EET; 601 else if (zone == TT_UNKNOWN && 602 (rest[1] == 's' || rest[1] == 'S') && 603 (rest[2] == 't' || rest[2] == 'T')) 604 zone = TT_EST; 605 break; 606 case 'f': case 'F': 607 if (month == TT_UNKNOWN && 608 (rest[1] == 'e' || rest[1] == 'E') && 609 (rest[2] == 'b' || rest[2] == 'B')) 610 month = TT_FEB; 611 else if (dotw == TT_UNKNOWN && 612 (rest[1] == 'r' || rest[1] == 'R') && 613 (rest[2] == 'i' || rest[2] == 'I')) 614 dotw = TT_FRI; 615 break; 616 case 'g': case 'G': 617 if (zone == TT_UNKNOWN && 618 (rest[1] == 'm' || rest[1] == 'M') && 619 (rest[2] == 't' || rest[2] == 'T')) 620 zone = TT_GMT; 621 break; 622 case 'j': case 'J': 623 if (month == TT_UNKNOWN && 624 (rest[1] == 'a' || rest[1] == 'A') && 625 (rest[2] == 'n' || rest[2] == 'N')) 626 month = TT_JAN; 627 else if (zone == TT_UNKNOWN && 628 (rest[1] == 's' || rest[1] == 'S') && 629 (rest[2] == 't' || rest[2] == 'T')) 630 zone = TT_JST; 631 else if (month == TT_UNKNOWN && 632 (rest[1] == 'u' || rest[1] == 'U') && 633 (rest[2] == 'l' || rest[2] == 'L')) 634 month = TT_JUL; 635 else if (month == TT_UNKNOWN && 636 (rest[1] == 'u' || rest[1] == 'U') && 637 (rest[2] == 'n' || rest[2] == 'N')) 638 month = TT_JUN; 639 break; 640 case 'm': case 'M': 641 if (month == TT_UNKNOWN && 642 (rest[1] == 'a' || rest[1] == 'A') && 643 (rest[2] == 'r' || rest[2] == 'R')) 644 month = TT_MAR; 645 else if (month == TT_UNKNOWN && 646 (rest[1] == 'a' || rest[1] == 'A') && 647 (rest[2] == 'y' || rest[2] == 'Y')) 648 month = TT_MAY; 649 else if (zone == TT_UNKNOWN && 650 (rest[1] == 'd' || rest[1] == 'D') && 651 (rest[2] == 't' || rest[2] == 'T')) 652 zone = TT_MDT; 653 else if (zone == TT_UNKNOWN && 654 (rest[1] == 'e' || rest[1] == 'E') && 655 (rest[2] == 't' || rest[2] == 'T')) 656 zone = TT_MET; 657 else if (dotw == TT_UNKNOWN && 658 (rest[1] == 'o' || rest[1] == 'O') && 659 (rest[2] == 'n' || rest[2] == 'N')) 660 dotw = TT_MON; 661 else if (zone == TT_UNKNOWN && 662 (rest[1] == 's' || rest[1] == 'S') && 663 (rest[2] == 't' || rest[2] == 'T')) 664 zone = TT_MST; 665 break; 666 case 'n': case 'N': 667 if (month == TT_UNKNOWN && 668 (rest[1] == 'o' || rest[1] == 'O') && 669 (rest[2] == 'v' || rest[2] == 'V')) 670 month = TT_NOV; 671 else if (zone == TT_UNKNOWN && 672 (rest[1] == 's' || rest[1] == 'S') && 673 (rest[2] == 't' || rest[2] == 'T')) 674 zone = TT_NST; 675 break; 676 case 'o': case 'O': 677 if (month == TT_UNKNOWN && 678 (rest[1] == 'c' || rest[1] == 'C') && 679 (rest[2] == 't' || rest[2] == 'T')) 680 month = TT_OCT; 681 break; 682 case 'p': case 'P': 683 if (zone == TT_UNKNOWN && 684 (rest[1] == 'd' || rest[1] == 'D') && 685 (rest[2] == 't' || rest[2] == 'T')) 686 zone = TT_PDT; 687 else if (zone == TT_UNKNOWN && 688 (rest[1] == 's' || rest[1] == 'S') && 689 (rest[2] == 't' || rest[2] == 'T')) 690 zone = TT_PST; 691 break; 692 case 's': case 'S': 693 if (dotw == TT_UNKNOWN && 694 (rest[1] == 'a' || rest[1] == 'A') && 695 (rest[2] == 't' || rest[2] == 'T')) 696 dotw = TT_SAT; 697 else if (month == TT_UNKNOWN && 698 (rest[1] == 'e' || rest[1] == 'E') && 699 (rest[2] == 'p' || rest[2] == 'P')) 700 month = TT_SEP; 701 else if (dotw == TT_UNKNOWN && 702 (rest[1] == 'u' || rest[1] == 'U') && 703 (rest[2] == 'n' || rest[2] == 'N')) 704 dotw = TT_SUN; 705 break; 706 case 't': case 'T': 707 if (dotw == TT_UNKNOWN && 708 (rest[1] == 'h' || rest[1] == 'H') && 709 (rest[2] == 'u' || rest[2] == 'U')) 710 dotw = TT_THU; 711 else if (dotw == TT_UNKNOWN && 712 (rest[1] == 'u' || rest[1] == 'U') && 713 (rest[2] == 'e' || rest[2] == 'E')) 714 dotw = TT_TUE; 715 break; 716 case 'u': case 'U': 717 if (zone == TT_UNKNOWN && 718 (rest[1] == 't' || rest[1] == 'T') && 719 !(rest[2] >= 'A' && rest[2] <= 'Z') && 720 !(rest[2] >= 'a' && rest[2] <= 'z')) 721 /* UT is the same as GMT but UTx is not. */ 722 zone = TT_GMT; 723 break; 724 case 'w': case 'W': 725 if (dotw == TT_UNKNOWN && 726 (rest[1] == 'e' || rest[1] == 'E') && 727 (rest[2] == 'd' || rest[2] == 'D')) 728 dotw = TT_WED; 729 break; 730 731 case '+': case '-': 732 { 733 const char *end; 734 int sign; 735 if (zone_offset != -1) 736 { 737 /* already got one... */ 738 rest++; 739 break; 740 } 741 if (zone != TT_UNKNOWN && zone != TT_GMT) 742 { 743 /* GMT+0300 is legal, but PST+0300 is not. */ 744 rest++; 745 break; 746 } 747 748 sign = ((*rest == '+') ? 1 : -1); 749 rest++; /* move over sign */ 750 end = rest; 751 while (*end >= '0' && *end <= '9') 752 end++; 753 if (rest == end) /* no digits here */ 754 break; 755 756 if ((end - rest) == 4) 757 /* offset in HHMM */ 758 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + 759 (((rest[2]-'0')*10) + (rest[3]-'0'))); 760 else if ((end - rest) == 2) 761 /* offset in hours */ 762 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; 763 else if ((end - rest) == 1) 764 /* offset in hours */ 765 zone_offset = (rest[0]-'0') * 60; 766 else 767 /* 3 or >4 */ 768 break; 769 770 zone_offset *= sign; 771 zone = TT_GMT; 772 break; 773 } 774 775 case '0': case '1': case '2': case '3': case '4': 776 case '5': case '6': case '7': case '8': case '9': 777 { 778 int tmp_hour = -1; 779 int tmp_min = -1; 780 int tmp_sec = -1; 781 const char *end = rest + 1; 782 while (*end >= '0' && *end <= '9') 783 end++; 784 785 /* end is now the first character after a range of digits. */ 786 787 if (*end == ':') 788 { 789 if (hour >= 0 && min >= 0) /* already got it */ 790 break; 791 792 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ 793 if ((end - rest) > 2) 794 /* it is [0-9][0-9][0-9]+: */ 795 break; 796 else if ((end - rest) == 2) 797 tmp_hour = ((rest[0]-'0')*10 + 798 (rest[1]-'0')); 799 else 800 tmp_hour = (rest[0]-'0'); 801 802 /* move over the colon, and parse minutes */ 803 804 rest = ++end; 805 while (*end >= '0' && *end <= '9') 806 end++; 807 808 if (end == rest) 809 /* no digits after first colon? */ 810 break; 811 else if ((end - rest) > 2) 812 /* it is [0-9][0-9][0-9]+: */ 813 break; 814 else if ((end - rest) == 2) 815 tmp_min = ((rest[0]-'0')*10 + 816 (rest[1]-'0')); 817 else 818 tmp_min = (rest[0]-'0'); 819 820 /* now go for seconds */ 821 rest = end; 822 if (*rest == ':') 823 rest++; 824 end = rest; 825 while (*end >= '0' && *end <= '9') 826 end++; 827 828 if (end == rest) 829 /* no digits after second colon - that's ok. */ 830 ; 831 else if ((end - rest) > 2) 832 /* it is [0-9][0-9][0-9]+: */ 833 break; 834 else if ((end - rest) == 2) 835 tmp_sec = ((rest[0]-'0')*10 + 836 (rest[1]-'0')); 837 else 838 tmp_sec = (rest[0]-'0'); 839 840 /* If we made it here, we've parsed hour and min, 841 and possibly sec, so it worked as a unit. */ 842 843 /* skip over whitespace and see if there's an AM or PM 844 directly following the time. 845 */ 846 if (tmp_hour <= 12) 847 { 848 const char *s = end; 849 while (*s && (*s == ' ' || *s == '\t')) 850 s++; 851 if ((s[0] == 'p' || s[0] == 'P') && 852 (s[1] == 'm' || s[1] == 'M')) 853 /* 10:05pm == 22:05, and 12:05pm == 12:05 */ 854 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); 855 else if (tmp_hour == 12 && 856 (s[0] == 'a' || s[0] == 'A') && 857 (s[1] == 'm' || s[1] == 'M')) 858 /* 12:05am == 00:05 */ 859 tmp_hour = 0; 860 } 861 862 hour = tmp_hour; 863 min = tmp_min; 864 sec = tmp_sec; 865 rest = end; 866 break; 867 } 868 else if ((*end == '/' || *end == '-') && 869 end[1] >= '0' && end[1] <= '9') 870 { 871 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 872 or even 95-06-05... 873 #### But it doesn't handle 1995-06-22. 874 */ 875 int n1, n2, n3; 876 const char *s; 877 878 if (month != TT_UNKNOWN) 879 /* if we saw a month name, this can't be. */ 880 break; 881 882 s = rest; 883 884 n1 = (*s++ - '0'); /* first 1 or 2 digits */ 885 if (*s >= '0' && *s <= '9') 886 n1 = n1*10 + (*s++ - '0'); 887 888 if (*s != '/' && *s != '-') /* slash */ 889 break; 890 s++; 891 892 if (*s < '0' || *s > '9') /* second 1 or 2 digits */ 893 break; 894 n2 = (*s++ - '0'); 895 if (*s >= '0' && *s <= '9') 896 n2 = n2*10 + (*s++ - '0'); 897 898 if (*s != '/' && *s != '-') /* slash */ 899 break; 900 s++; 901 902 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ 903 break; 904 n3 = (*s++ - '0'); 905 if (*s >= '0' && *s <= '9') 906 n3 = n3*10 + (*s++ - '0'); 907 908 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ 909 { 910 n3 = n3*10 + (*s++ - '0'); 911 if (*s < '0' || *s > '9') 912 break; 913 n3 = n3*10 + (*s++ - '0'); 914 if (*s >= '0' && *s <= '9') 915 n3 = n3*10 + (*s++ - '0'); 916 } 917 918 if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ 919 (*s >= 'A' && *s <= 'Z') || 920 (*s >= 'a' && *s <= 'z')) 921 break; 922 923 /* Ok, we parsed three 1-2 digit numbers, with / or - 924 between them. Now decide what the hell they are 925 (DD/MM/YY or MM/DD/YY or YY/MM/DD.) 926 */ 927 928 if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ 929 { 930 if (n2 > 12) break; 931 if (n3 > 31) break; 932 year = n1; 933 if (year < 70) 934 year += 2000; 935 else if (year < 100) 936 year += 1900; 937 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); 938 date = n3; 939 rest = s; 940 break; 941 } 942 943 if (n1 > 12 && n2 > 12) /* illegal */ 944 { 945 rest = s; 946 break; 947 } 948 949 if (n3 < 70) 950 n3 += 2000; 951 else if (n3 < 100) 952 n3 += 1900; 953 954 if (n1 > 12) /* must be DD/MM/YY */ 955 { 956 date = n1; 957 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); 958 year = n3; 959 } 960 else /* assume MM/DD/YY */ 961 { 962 /* #### In the ambiguous case, should we consult the 963 locale to find out the local default? */ 964 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); 965 date = n2; 966 year = n3; 967 } 968 rest = s; 969 } 970 else if ((*end >= 'A' && *end <= 'Z') || 971 (*end >= 'a' && *end <= 'z')) 972 /* Digits followed by non-punctuation - what's that? */ 973 ; 974 else if ((end - rest) == 5) /* five digits is a year */ 975 year = (year < 0 976 ? ((rest[0]-'0')*10000L + 977 (rest[1]-'0')*1000L + 978 (rest[2]-'0')*100L + 979 (rest[3]-'0')*10L + 980 (rest[4]-'0')) 981 : year); 982 else if ((end - rest) == 4) /* four digits is a year */ 983 year = (year < 0 984 ? ((rest[0]-'0')*1000L + 985 (rest[1]-'0')*100L + 986 (rest[2]-'0')*10L + 987 (rest[3]-'0')) 988 : year); 989 else if ((end - rest) == 2) /* two digits - date or year */ 990 { 991 int n = ((rest[0]-'0')*10 + 992 (rest[1]-'0')); 993 /* If we don't have a date (day of the month) and we see a number 994 less than 32, then assume that is the date. 995 996 Otherwise, if we have a date and not a year, assume this is the 997 year. If it is less than 70, then assume it refers to the 21st 998 century. If it is two digits (>= 70), assume it refers to this 999 century. Otherwise, assume it refers to an unambiguous year. 1000 1001 The world will surely end soon. 1002 */ 1003 if (date < 0 && n < 32) 1004 date = n; 1005 else if (year < 0) 1006 { 1007 if (n < 70) 1008 year = 2000 + n; 1009 else if (n < 100) 1010 year = 1900 + n; 1011 else 1012 year = n; 1013 } 1014 /* else what the hell is this. */ 1015 } 1016 else if ((end - rest) == 1) /* one digit - date */ 1017 date = (date < 0 ? (rest[0]-'0') : date); 1018 /* else, three or more than five digits - what's that? */ 1019 1020 break; 1021 } 1022 } 1023 1024 /* Skip to the end of this token, whether we parsed it or not. 1025 Tokens are delimited by whitespace, or ,;-/ 1026 But explicitly not :+-. 1027 */ 1028 while (*rest && 1029 *rest != ' ' && *rest != '\t' && 1030 *rest != ',' && *rest != ';' && 1031 *rest != '-' && *rest != '+' && 1032 *rest != '/' && 1033 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') 1034 rest++; 1035 /* skip over uninteresting chars. */ 1036 SKIP_MORE: 1037 while (*rest && 1038 (*rest == ' ' || *rest == '\t' || 1039 *rest == ',' || *rest == ';' || *rest == '/' || 1040 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) 1041 rest++; 1042 1043 /* "-" is ignored at the beginning of a token if we have not yet 1044 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if 1045 the character after the dash is not a digit. */ 1046 if (*rest == '-' && ((rest > string && 1047 isalpha((unsigned char)rest[-1]) && year < 0) || 1048 rest[1] < '0' || rest[1] > '9')) 1049 { 1050 rest++; 1051 goto SKIP_MORE; 1052 } 1053 1054 } 1055 1056 if (zone != TT_UNKNOWN && zone_offset == -1) 1057 { 1058 switch (zone) 1059 { 1060 case TT_PST: zone_offset = -8 * 60; break; 1061 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; 1062 case TT_MST: zone_offset = -7 * 60; break; 1063 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; 1064 case TT_CST: zone_offset = -6 * 60; break; 1065 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; 1066 case TT_EST: zone_offset = -5 * 60; break; 1067 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; 1068 case TT_AST: zone_offset = -4 * 60; break; 1069 case TT_NST: zone_offset = -3 * 60 - 30; break; 1070 case TT_GMT: zone_offset = 0 * 60; break; 1071 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; 1072 case TT_MET: zone_offset = 1 * 60; break; 1073 case TT_EET: zone_offset = 2 * 60; break; 1074 case TT_JST: zone_offset = 9 * 60; break; 1075 default: 1076 PR_ASSERT (0); 1077 break; 1078 } 1079 } 1080 1081 /* If we didn't find a year, month, or day-of-the-month, we can't 1082 possibly parse this, and in fact, mktime() will do something random 1083 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt 1084 a numerologically significant date... */ 1085 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) 1086 return PR_FAILURE; 1087 1088 memset(result, 0, sizeof(*result)); 1089 if (sec != -1) 1090 result->tm_sec = sec; 1091 if (min != -1) 1092 result->tm_min = min; 1093 if (hour != -1) 1094 result->tm_hour = hour; 1095 if (date != -1) 1096 result->tm_mday = date; 1097 if (month != TT_UNKNOWN) 1098 result->tm_month = (((int)month) - ((int)TT_JAN)); 1099 if (year != -1) 1100 result->tm_year = year; 1101 if (dotw != TT_UNKNOWN) 1102 result->tm_wday = (((int)dotw) - ((int)TT_SUN)); 1103 /* 1104 * Mainly to compute wday and yday, but normalized time is also required 1105 * by the check below that works around a Visual C++ 2005 mktime problem. 1106 */ 1107 PR_NormalizeTime(result, PR_GMTParameters); 1108 /* The remaining work is to set the gmt and dst offsets in tm_params. */ 1109 1110 if (zone == TT_UNKNOWN && default_to_gmt) 1111 { 1112 /* No zone was specified, so pretend the zone was GMT. */ 1113 zone = TT_GMT; 1114 zone_offset = 0; 1115 } 1116 1117 if (zone_offset == -1) 1118 { 1119 /* no zone was specified, and we're to assume that everything 1120 is local. */ 1121 struct tm localTime; 1122 time_t secs; 1123 1124 PR_ASSERT(result->tm_month > -1 && 1125 result->tm_mday > 0 && 1126 result->tm_hour > -1 && 1127 result->tm_min > -1 && 1128 result->tm_sec > -1); 1129 1130 /* 1131 * To obtain time_t from a tm structure representing the local 1132 * time, we call mktime(). However, we need to see if we are 1133 * on 1-Jan-1970 or before. If we are, we can't call mktime() 1134 * because mktime() will crash on win16. In that case, we 1135 * calculate zone_offset based on the zone offset at 1136 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the 1137 * date we are parsing to transform the date to GMT. We also 1138 * do so if mktime() returns (time_t) -1 (time out of range). 1139 */ 1140 1141 /* month, day, hours, mins and secs are always non-negative 1142 so we dont need to worry about them. */ 1143 if(result->tm_year >= 1970) 1144 { 1145 PRInt64 usec_per_sec; 1146 1147 localTime.tm_sec = result->tm_sec; 1148 localTime.tm_min = result->tm_min; 1149 localTime.tm_hour = result->tm_hour; 1150 localTime.tm_mday = result->tm_mday; 1151 localTime.tm_mon = result->tm_month; 1152 localTime.tm_year = result->tm_year - 1900; 1153 /* Set this to -1 to tell mktime "I don't care". If you set 1154 it to 0 or 1, you are making assertions about whether the 1155 date you are handing it is in daylight savings mode or not; 1156 and if you're wrong, it will "fix" it for you. */ 1157 localTime.tm_isdst = -1; 1158 1159 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ 1160 /* 1161 * mktime will return (time_t) -1 if the input is a date 1162 * after 23:59:59, December 31, 3000, US Pacific Time (not 1163 * UTC as documented): 1164 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx 1165 * But if the year is 3001, mktime also invokes the invalid 1166 * parameter handler, causing the application to crash. This 1167 * problem has been reported in 1168 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. 1169 * We avoid this crash by not calling mktime if the date is 1170 * out of range. To use a simple test that works in any time 1171 * zone, we consider year 3000 out of range as well. (See 1172 * bug 480740.) 1173 */ 1174 if (result->tm_year >= 3000) { 1175 /* Emulate what mktime would have done. */ 1176 errno = EINVAL; 1177 secs = (time_t) -1; 1178 } else { 1179 secs = mktime(&localTime); 1180 } 1181 #else 1182 secs = mktime(&localTime); 1183 #endif 1184 if (secs != (time_t) -1) 1185 { 1186 PRTime usecs64; 1187 LL_I2L(usecs64, secs); 1188 LL_I2L(usec_per_sec, PR_USEC_PER_SEC); 1189 LL_MUL(usecs64, usecs64, usec_per_sec); 1190 *result_imploded = usecs64; 1191 return PR_SUCCESS; 1192 } 1193 } 1194 1195 /* So mktime() can't handle this case. We assume the 1196 zone_offset for the date we are parsing is the same as 1197 the zone offset on 00:00:00 2 Jan 1970 GMT. */ 1198 secs = 86400; 1199 localtime_r(&secs, &localTime); 1200 zone_offset = localTime.tm_min 1201 + 60 * localTime.tm_hour 1202 + 1440 * (localTime.tm_mday - 2); 1203 } 1204 1205 result->tm_params.tp_gmt_offset = zone_offset * 60; 1206 result->tm_params.tp_dst_offset = dst_offset * 60; 1207 1208 *result_imploded = PR_ImplodeTime(result); 1209 return PR_SUCCESS; 1210 } 1211