1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "crypto/ghash.h" 6 7 #include <algorithm> 8 9 #include "base/logging.h" 10 #include "base/sys_byteorder.h" 11 12 namespace crypto { 13 14 // GaloisHash is a polynomial authenticator that works in GF(2^128). 15 // 16 // Elements of the field are represented in `little-endian' order (which 17 // matches the description in the paper[1]), thus the most significant bit is 18 // the right-most bit. (This is backwards from the way that everybody else does 19 // it.) 20 // 21 // We store field elements in a pair of such `little-endian' uint64s. So the 22 // value one is represented by {low = 2**63, high = 0} and doubling a value 23 // involves a *right* shift. 24 // 25 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 26 27 namespace { 28 29 // Get64 reads a 64-bit, big-endian number from |bytes|. 30 uint64 Get64(const uint8 bytes[8]) { 31 uint64 t; 32 memcpy(&t, bytes, sizeof(t)); 33 return base::NetToHost64(t); 34 } 35 36 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. 37 void Put64(uint8 bytes[8], uint64 x) { 38 x = base::HostToNet64(x); 39 memcpy(bytes, &x, sizeof(x)); 40 } 41 42 // Reverse reverses the order of the bits of 4-bit number in |i|. 43 int Reverse(int i) { 44 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); 45 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); 46 return i; 47 } 48 49 } // namespace 50 51 GaloisHash::GaloisHash(const uint8 key[16]) { 52 Reset(); 53 54 // We precompute 16 multiples of |key|. However, when we do lookups into this 55 // table we'll be using bits from a field element and therefore the bits will 56 // be in the reverse order. So normally one would expect, say, 4*key to be in 57 // index 4 of the table but due to this bit ordering it will actually be in 58 // index 0010 (base 2) = 2. 59 FieldElement x = {Get64(key), Get64(key+8)}; 60 product_table_[0].low = 0; 61 product_table_[0].hi = 0; 62 product_table_[Reverse(1)] = x; 63 64 for (int i = 0; i < 16; i += 2) { 65 product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); 66 product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); 67 } 68 } 69 70 void GaloisHash::Reset() { 71 state_ = kHashingAdditionalData; 72 additional_bytes_ = 0; 73 ciphertext_bytes_ = 0; 74 buf_used_ = 0; 75 y_.low = 0; 76 y_.hi = 0; 77 } 78 79 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { 80 DCHECK_EQ(state_, kHashingAdditionalData); 81 additional_bytes_ += length; 82 Update(data, length); 83 } 84 85 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { 86 if (state_ == kHashingAdditionalData) { 87 // If there's any remaining additional data it's zero padded to the next 88 // full block. 89 if (buf_used_ > 0) { 90 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); 91 UpdateBlocks(buf_, 1); 92 buf_used_ = 0; 93 } 94 state_ = kHashingCiphertext; 95 } 96 97 DCHECK_EQ(state_, kHashingCiphertext); 98 ciphertext_bytes_ += length; 99 Update(data, length); 100 } 101 102 void GaloisHash::Finish(void* output, size_t len) { 103 DCHECK(state_ != kComplete); 104 105 if (buf_used_ > 0) { 106 // If there's any remaining data (additional data or ciphertext), it's zero 107 // padded to the next full block. 108 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); 109 UpdateBlocks(buf_, 1); 110 buf_used_ = 0; 111 } 112 113 state_ = kComplete; 114 115 // The lengths of the additional data and ciphertext are included as the last 116 // block. The lengths are the number of bits. 117 y_.low ^= additional_bytes_*8; 118 y_.hi ^= ciphertext_bytes_*8; 119 MulAfterPrecomputation(product_table_, &y_); 120 121 uint8 *result, result_tmp[16]; 122 if (len >= 16) { 123 result = reinterpret_cast<uint8*>(output); 124 } else { 125 result = result_tmp; 126 } 127 128 Put64(result, y_.low); 129 Put64(result + 8, y_.hi); 130 131 if (len < 16) 132 memcpy(output, result_tmp, len); 133 } 134 135 // static 136 GaloisHash::FieldElement GaloisHash::Add( 137 const FieldElement& x, 138 const FieldElement& y) { 139 // Addition in a characteristic 2 field is just XOR. 140 FieldElement z = {x.low^y.low, x.hi^y.hi}; 141 return z; 142 } 143 144 // static 145 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { 146 const bool msb_set = x.hi & 1; 147 148 FieldElement xx; 149 // Because of the bit-ordering, doubling is actually a right shift. 150 xx.hi = x.hi >> 1; 151 xx.hi |= x.low << 63; 152 xx.low = x.low >> 1; 153 154 // If the most-significant bit was set before shifting then it, conceptually, 155 // becomes a term of x^128. This is greater than the irreducible polynomial 156 // so the result has to be reduced. The irreducible polynomial is 157 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 158 // which also means subtracting the other four terms. In characteristic 2 159 // fields, subtraction == addition == XOR. 160 if (msb_set) 161 xx.low ^= 0xe100000000000000ULL; 162 163 return xx; 164 } 165 166 void GaloisHash::MulAfterPrecomputation(const FieldElement* table, 167 FieldElement* x) { 168 FieldElement z = {0, 0}; 169 170 // In order to efficiently multiply, we use the precomputed table of i*key, 171 // for i in 0..15, to handle four bits at a time. We could obviously use 172 // larger tables for greater speedups but the next convenient table size is 173 // 4K, which is a little large. 174 // 175 // In other fields one would use bit positions spread out across the field in 176 // order to reduce the number of doublings required. However, in 177 // characteristic 2 fields, repeated doublings are exceptionally cheap and 178 // it's not worth spending more precomputation time to eliminate them. 179 for (unsigned i = 0; i < 2; i++) { 180 uint64 word; 181 if (i == 0) { 182 word = x->hi; 183 } else { 184 word = x->low; 185 } 186 187 for (unsigned j = 0; j < 64; j += 4) { 188 Mul16(&z); 189 // the values in |table| are ordered for little-endian bit positions. See 190 // the comment in the constructor. 191 const FieldElement& t = table[word & 0xf]; 192 z.low ^= t.low; 193 z.hi ^= t.hi; 194 word >>= 4; 195 } 196 } 197 198 *x = z; 199 } 200 201 // kReductionTable allows for rapid multiplications by 16. A multiplication by 202 // 16 is a right shift by four bits, which results in four bits at 2**128. 203 // These terms have to be eliminated by dividing by the irreducible polynomial. 204 // In GHASH, the polynomial is such that all the terms occur in the 205 // least-significant 8 bits, save for the term at x^128. Therefore we can 206 // precompute the value to be added to the field element for each of the 16 bit 207 // patterns at 2**128 and the values fit within 12 bits. 208 static const uint16 kReductionTable[16] = { 209 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, 210 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, 211 }; 212 213 // static 214 void GaloisHash::Mul16(FieldElement* x) { 215 const unsigned msw = x->hi & 0xf; 216 x->hi >>= 4; 217 x->hi |= x->low << 60; 218 x->low >>= 4; 219 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; 220 } 221 222 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { 223 for (size_t i = 0; i < num_blocks; i++) { 224 y_.low ^= Get64(bytes); 225 bytes += 8; 226 y_.hi ^= Get64(bytes); 227 bytes += 8; 228 MulAfterPrecomputation(product_table_, &y_); 229 } 230 } 231 232 void GaloisHash::Update(const uint8* data, size_t length) { 233 if (buf_used_ > 0) { 234 const size_t n = std::min(length, sizeof(buf_) - buf_used_); 235 memcpy(&buf_[buf_used_], data, n); 236 buf_used_ += n; 237 length -= n; 238 data += n; 239 240 if (buf_used_ == sizeof(buf_)) { 241 UpdateBlocks(buf_, 1); 242 buf_used_ = 0; 243 } 244 } 245 246 if (length >= 16) { 247 const size_t n = length / 16; 248 UpdateBlocks(data, n); 249 length -= n*16; 250 data += n*16; 251 } 252 253 if (length > 0) { 254 memcpy(buf_, data, length); 255 buf_used_ = length; 256 } 257 } 258 259 } // namespace crypto 260