Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // his code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 #if GTEST_CAN_STREAM_RESULTS_
     83 
     84 class StreamingListenerTest : public Test {
     85  public:
     86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
     87    public:
     88     // Sends a string to the socket.
     89     virtual void Send(const string& message) { output_ += message; }
     90 
     91     string output_;
     92   };
     93 
     94   StreamingListenerTest()
     95       : fake_sock_writer_(new FakeSocketWriter),
     96         streamer_(fake_sock_writer_),
     97         test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
     98 
     99  protected:
    100   string* output() { return &(fake_sock_writer_->output_); }
    101 
    102   FakeSocketWriter* const fake_sock_writer_;
    103   StreamingListener streamer_;
    104   UnitTest unit_test_;
    105   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
    106 };
    107 
    108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
    109   *output() = "";
    110   streamer_.OnTestProgramEnd(unit_test_);
    111   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
    112 }
    113 
    114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
    115   *output() = "";
    116   streamer_.OnTestIterationEnd(unit_test_, 42);
    117   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
    118 }
    119 
    120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
    121   *output() = "";
    122   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
    123   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
    124 }
    125 
    126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
    127   *output() = "";
    128   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
    129   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
    130 }
    131 
    132 TEST_F(StreamingListenerTest, OnTestStart) {
    133   *output() = "";
    134   streamer_.OnTestStart(test_info_obj_);
    135   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
    136 }
    137 
    138 TEST_F(StreamingListenerTest, OnTestEnd) {
    139   *output() = "";
    140   streamer_.OnTestEnd(test_info_obj_);
    141   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
    142 }
    143 
    144 TEST_F(StreamingListenerTest, OnTestPartResult) {
    145   *output() = "";
    146   streamer_.OnTestPartResult(TestPartResult(
    147       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
    148 
    149   // Meta characters in the failure message should be properly escaped.
    150   EXPECT_EQ(
    151       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
    152       *output());
    153 }
    154 
    155 #endif  // GTEST_CAN_STREAM_RESULTS_
    156 
    157 // Provides access to otherwise private parts of the TestEventListeners class
    158 // that are needed to test it.
    159 class TestEventListenersAccessor {
    160  public:
    161   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
    162     return listeners->repeater();
    163   }
    164 
    165   static void SetDefaultResultPrinter(TestEventListeners* listeners,
    166                                       TestEventListener* listener) {
    167     listeners->SetDefaultResultPrinter(listener);
    168   }
    169   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    170                                      TestEventListener* listener) {
    171     listeners->SetDefaultXmlGenerator(listener);
    172   }
    173 
    174   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    175     return listeners.EventForwardingEnabled();
    176   }
    177 
    178   static void SuppressEventForwarding(TestEventListeners* listeners) {
    179     listeners->SuppressEventForwarding();
    180   }
    181 };
    182 
    183 }  // namespace internal
    184 }  // namespace testing
    185 
    186 using testing::AssertionFailure;
    187 using testing::AssertionResult;
    188 using testing::AssertionSuccess;
    189 using testing::DoubleLE;
    190 using testing::EmptyTestEventListener;
    191 using testing::FloatLE;
    192 using testing::GTEST_FLAG(also_run_disabled_tests);
    193 using testing::GTEST_FLAG(break_on_failure);
    194 using testing::GTEST_FLAG(catch_exceptions);
    195 using testing::GTEST_FLAG(color);
    196 using testing::GTEST_FLAG(death_test_use_fork);
    197 using testing::GTEST_FLAG(filter);
    198 using testing::GTEST_FLAG(list_tests);
    199 using testing::GTEST_FLAG(output);
    200 using testing::GTEST_FLAG(print_time);
    201 using testing::GTEST_FLAG(random_seed);
    202 using testing::GTEST_FLAG(repeat);
    203 using testing::GTEST_FLAG(show_internal_stack_frames);
    204 using testing::GTEST_FLAG(shuffle);
    205 using testing::GTEST_FLAG(stack_trace_depth);
    206 using testing::GTEST_FLAG(stream_result_to);
    207 using testing::GTEST_FLAG(throw_on_failure);
    208 using testing::IsNotSubstring;
    209 using testing::IsSubstring;
    210 using testing::Message;
    211 using testing::ScopedFakeTestPartResultReporter;
    212 using testing::StaticAssertTypeEq;
    213 using testing::Test;
    214 using testing::TestCase;
    215 using testing::TestEventListeners;
    216 using testing::TestPartResult;
    217 using testing::TestPartResultArray;
    218 using testing::TestProperty;
    219 using testing::TestResult;
    220 using testing::TimeInMillis;
    221 using testing::UnitTest;
    222 using testing::kMaxStackTraceDepth;
    223 using testing::internal::AddReference;
    224 using testing::internal::AlwaysFalse;
    225 using testing::internal::AlwaysTrue;
    226 using testing::internal::AppendUserMessage;
    227 using testing::internal::ArrayAwareFind;
    228 using testing::internal::ArrayEq;
    229 using testing::internal::CodePointToUtf8;
    230 using testing::internal::CompileAssertTypesEqual;
    231 using testing::internal::CopyArray;
    232 using testing::internal::CountIf;
    233 using testing::internal::EqFailure;
    234 using testing::internal::FloatingPoint;
    235 using testing::internal::ForEach;
    236 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    237 using testing::internal::FormatTimeInMillisAsSeconds;
    238 using testing::internal::GTestFlagSaver;
    239 using testing::internal::GetCurrentOsStackTraceExceptTop;
    240 using testing::internal::GetElementOr;
    241 using testing::internal::GetNextRandomSeed;
    242 using testing::internal::GetRandomSeedFromFlag;
    243 using testing::internal::GetTestTypeId;
    244 using testing::internal::GetTimeInMillis;
    245 using testing::internal::GetTypeId;
    246 using testing::internal::GetUnitTestImpl;
    247 using testing::internal::ImplicitlyConvertible;
    248 using testing::internal::Int32;
    249 using testing::internal::Int32FromEnvOrDie;
    250 using testing::internal::IsAProtocolMessage;
    251 using testing::internal::IsContainer;
    252 using testing::internal::IsContainerTest;
    253 using testing::internal::IsNotContainer;
    254 using testing::internal::NativeArray;
    255 using testing::internal::ParseInt32Flag;
    256 using testing::internal::RemoveConst;
    257 using testing::internal::RemoveReference;
    258 using testing::internal::ShouldRunTestOnShard;
    259 using testing::internal::ShouldShard;
    260 using testing::internal::ShouldUseColor;
    261 using testing::internal::Shuffle;
    262 using testing::internal::ShuffleRange;
    263 using testing::internal::SkipPrefix;
    264 using testing::internal::StreamableToString;
    265 using testing::internal::String;
    266 using testing::internal::TestEventListenersAccessor;
    267 using testing::internal::TestResultAccessor;
    268 using testing::internal::UInt32;
    269 using testing::internal::WideStringToUtf8;
    270 using testing::internal::kCopy;
    271 using testing::internal::kMaxRandomSeed;
    272 using testing::internal::kReference;
    273 using testing::internal::kTestTypeIdInGoogleTest;
    274 using testing::internal::scoped_ptr;
    275 
    276 #if GTEST_HAS_STREAM_REDIRECTION
    277 using testing::internal::CaptureStdout;
    278 using testing::internal::GetCapturedStdout;
    279 #endif
    280 
    281 #if GTEST_IS_THREADSAFE
    282 using testing::internal::ThreadWithParam;
    283 #endif
    284 
    285 class TestingVector : public std::vector<int> {
    286 };
    287 
    288 ::std::ostream& operator<<(::std::ostream& os,
    289                            const TestingVector& vector) {
    290   os << "{ ";
    291   for (size_t i = 0; i < vector.size(); i++) {
    292     os << vector[i] << " ";
    293   }
    294   os << "}";
    295   return os;
    296 }
    297 
    298 // This line tests that we can define tests in an unnamed namespace.
    299 namespace {
    300 
    301 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    302   const int seed = GetRandomSeedFromFlag(0);
    303   EXPECT_LE(1, seed);
    304   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    305 }
    306 
    307 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    308   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    309   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    310   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    311   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    312             GetRandomSeedFromFlag(kMaxRandomSeed));
    313 }
    314 
    315 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    316   const int seed1 = GetRandomSeedFromFlag(-1);
    317   EXPECT_LE(1, seed1);
    318   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    319 
    320   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    321   EXPECT_LE(1, seed2);
    322   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    323 }
    324 
    325 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    326   EXPECT_EQ(2, GetNextRandomSeed(1));
    327   EXPECT_EQ(3, GetNextRandomSeed(2));
    328   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    329             GetNextRandomSeed(kMaxRandomSeed - 1));
    330   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    331 
    332   // We deliberately don't test GetNextRandomSeed() with invalid
    333   // inputs, as that requires death tests, which are expensive.  This
    334   // is fine as GetNextRandomSeed() is internal and has a
    335   // straightforward definition.
    336 }
    337 
    338 static void ClearCurrentTestPartResults() {
    339   TestResultAccessor::ClearTestPartResults(
    340       GetUnitTestImpl()->current_test_result());
    341 }
    342 
    343 // Tests GetTypeId.
    344 
    345 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    346   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    347   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    348 }
    349 
    350 class SubClassOfTest : public Test {};
    351 class AnotherSubClassOfTest : public Test {};
    352 
    353 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    354   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    355   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    356   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    357   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    358   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    359   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    360 }
    361 
    362 // Verifies that GetTestTypeId() returns the same value, no matter it
    363 // is called from inside Google Test or outside of it.
    364 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    365   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    366 }
    367 
    368 // Tests FormatTimeInMillisAsSeconds().
    369 
    370 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    371   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    372 }
    373 
    374 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    375   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    376   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    377   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    378   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    379   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    380 }
    381 
    382 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    383   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    384   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    385   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    386   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    387   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    388 }
    389 
    390 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    391 // for particular dates below was verified in Python using
    392 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    393 
    394 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    395 // have to set up a particular timezone to obtain predictable results.
    396 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    397  public:
    398   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    399   // 32 bits, even when 64-bit integer types are available.  We have to
    400   // force the constants to have a 64-bit type here.
    401   static const TimeInMillis kMillisPerSec = 1000;
    402 
    403  private:
    404   virtual void SetUp() {
    405     saved_tz_ = NULL;
    406 #if _MSC_VER
    407 # pragma warning(push)          // Saves the current warning state.
    408 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    409                                 // (function or variable may be unsafe
    410                                 // for getenv, function is deprecated for
    411                                 // strdup).
    412     if (getenv("TZ"))
    413       saved_tz_ = strdup(getenv("TZ"));
    414 # pragma warning(pop)           // Restores the warning state again.
    415 #else
    416     if (getenv("TZ"))
    417       saved_tz_ = strdup(getenv("TZ"));
    418 #endif
    419 
    420     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    421     // cannot use the local time zone because the function's output depends
    422     // on the time zone.
    423     SetTimeZone("UTC+00");
    424   }
    425 
    426   virtual void TearDown() {
    427     SetTimeZone(saved_tz_);
    428     free(const_cast<char*>(saved_tz_));
    429     saved_tz_ = NULL;
    430   }
    431 
    432   static void SetTimeZone(const char* time_zone) {
    433     // tzset() distinguishes between the TZ variable being present and empty
    434     // and not being present, so we have to consider the case of time_zone
    435     // being NULL.
    436 #if _MSC_VER
    437     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    438     // distinguish between an empty and a missing variable.
    439     const std::string env_var =
    440         std::string("TZ=") + (time_zone ? time_zone : "");
    441     _putenv(env_var.c_str());
    442 # pragma warning(push)          // Saves the current warning state.
    443 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    444                                 // (function is deprecated).
    445     tzset();
    446 # pragma warning(pop)           // Restores the warning state again.
    447 #else
    448     if (time_zone) {
    449       setenv(("TZ"), time_zone, 1);
    450     } else {
    451       unsetenv("TZ");
    452     }
    453     tzset();
    454 #endif
    455   }
    456 
    457   const char* saved_tz_;
    458 };
    459 
    460 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    461 
    462 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    463   EXPECT_EQ("2011-10-31T18:52:42",
    464             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    465 }
    466 
    467 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    468   EXPECT_EQ(
    469       "2011-10-31T18:52:42",
    470       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    471 }
    472 
    473 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    474   EXPECT_EQ("2011-09-03T05:07:02",
    475             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    476 }
    477 
    478 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    479   EXPECT_EQ("2011-09-28T17:08:22",
    480             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    481 }
    482 
    483 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    484   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    485 }
    486 
    487 #if GTEST_CAN_COMPARE_NULL
    488 
    489 # ifdef __BORLANDC__
    490 // Silences warnings: "Condition is always true", "Unreachable code"
    491 #  pragma option push -w-ccc -w-rch
    492 # endif
    493 
    494 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    495 // pointer literal.
    496 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    497   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    498   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    499   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    500   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    501 
    502 # ifndef __BORLANDC__
    503 
    504   // Some compilers may fail to detect some null pointer literals;
    505   // as long as users of the framework don't use such literals, this
    506   // is harmless.
    507   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
    508 
    509 # endif
    510 }
    511 
    512 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    513 // pointer literal.
    514 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    515   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    516   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    517   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    518   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    519 }
    520 
    521 # ifdef __BORLANDC__
    522 // Restores warnings after previous "#pragma option push" suppressed them.
    523 #  pragma option pop
    524 # endif
    525 
    526 #endif  // GTEST_CAN_COMPARE_NULL
    527 //
    528 // Tests CodePointToUtf8().
    529 
    530 // Tests that the NUL character L'\0' is encoded correctly.
    531 TEST(CodePointToUtf8Test, CanEncodeNul) {
    532   EXPECT_EQ("", CodePointToUtf8(L'\0'));
    533 }
    534 
    535 // Tests that ASCII characters are encoded correctly.
    536 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    537   EXPECT_EQ("a", CodePointToUtf8(L'a'));
    538   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
    539   EXPECT_EQ("&", CodePointToUtf8(L'&'));
    540   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
    541 }
    542 
    543 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    544 // as 110xxxxx 10xxxxxx.
    545 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    546   // 000 1101 0011 => 110-00011 10-010011
    547   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
    548 
    549   // 101 0111 0110 => 110-10101 10-110110
    550   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    551   // in wide strings and wide chars. In order to accomodate them, we have to
    552   // introduce such character constants as integers.
    553   EXPECT_EQ("\xD5\xB6",
    554             CodePointToUtf8(static_cast<wchar_t>(0x576)));
    555 }
    556 
    557 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    558 // as 1110xxxx 10xxxxxx 10xxxxxx.
    559 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    560   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    561   EXPECT_EQ("\xE0\xA3\x93",
    562             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
    563 
    564   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    565   EXPECT_EQ("\xEC\x9D\x8D",
    566             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
    567 }
    568 
    569 #if !GTEST_WIDE_STRING_USES_UTF16_
    570 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    571 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    572 // 16-bit wide. This code may not compile on those systems.
    573 
    574 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    575 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    576 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    577   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    578   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
    579 
    580   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    581   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
    582 
    583   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    584   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
    585 }
    586 
    587 // Tests that encoding an invalid code-point generates the expected result.
    588 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    589   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
    590 }
    591 
    592 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    593 
    594 // Tests WideStringToUtf8().
    595 
    596 // Tests that the NUL character L'\0' is encoded correctly.
    597 TEST(WideStringToUtf8Test, CanEncodeNul) {
    598   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    599   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    600 }
    601 
    602 // Tests that ASCII strings are encoded correctly.
    603 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    604   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    605   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    606   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    607   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    608 }
    609 
    610 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    611 // as 110xxxxx 10xxxxxx.
    612 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    613   // 000 1101 0011 => 110-00011 10-010011
    614   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    615   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    616 
    617   // 101 0111 0110 => 110-10101 10-110110
    618   const wchar_t s[] = { 0x576, '\0' };
    619   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    620   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    621 }
    622 
    623 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    624 // as 1110xxxx 10xxxxxx 10xxxxxx.
    625 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    626   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    627   const wchar_t s1[] = { 0x8D3, '\0' };
    628   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    629   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    630 
    631   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    632   const wchar_t s2[] = { 0xC74D, '\0' };
    633   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    634   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    635 }
    636 
    637 // Tests that the conversion stops when the function encounters \0 character.
    638 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    639   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    640 }
    641 
    642 // Tests that the conversion stops when the function reaches the limit
    643 // specified by the 'length' parameter.
    644 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    645   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    646 }
    647 
    648 #if !GTEST_WIDE_STRING_USES_UTF16_
    649 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    650 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    651 // on the systems using UTF-16 encoding.
    652 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    653   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    654   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    655   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    656 
    657   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    658   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    659   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    660 }
    661 
    662 // Tests that encoding an invalid code-point generates the expected result.
    663 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    664   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    665                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    666 }
    667 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    668 // Tests that surrogate pairs are encoded correctly on the systems using
    669 // UTF-16 encoding in the wide strings.
    670 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    671   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    672   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    673 }
    674 
    675 // Tests that encoding an invalid UTF-16 surrogate pair
    676 // generates the expected result.
    677 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    678   // Leading surrogate is at the end of the string.
    679   const wchar_t s1[] = { 0xD800, '\0' };
    680   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    681   // Leading surrogate is not followed by the trailing surrogate.
    682   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    683   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    684   // Trailing surrogate appearas without a leading surrogate.
    685   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    686   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    687 }
    688 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    689 
    690 // Tests that codepoint concatenation works correctly.
    691 #if !GTEST_WIDE_STRING_USES_UTF16_
    692 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    693   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    694   EXPECT_STREQ(
    695       "\xF4\x88\x98\xB4"
    696           "\xEC\x9D\x8D"
    697           "\n"
    698           "\xD5\xB6"
    699           "\xE0\xA3\x93"
    700           "\xF4\x88\x98\xB4",
    701       WideStringToUtf8(s, -1).c_str());
    702 }
    703 #else
    704 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    705   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    706   EXPECT_STREQ(
    707       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    708       WideStringToUtf8(s, -1).c_str());
    709 }
    710 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    711 
    712 // Tests the Random class.
    713 
    714 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    715   testing::internal::Random random(42);
    716   EXPECT_DEATH_IF_SUPPORTED(
    717       random.Generate(0),
    718       "Cannot generate a number in the range \\[0, 0\\)");
    719   EXPECT_DEATH_IF_SUPPORTED(
    720       random.Generate(testing::internal::Random::kMaxRange + 1),
    721       "Generation of a number in \\[0, 2147483649\\) was requested, "
    722       "but this can only generate numbers in \\[0, 2147483648\\)");
    723 }
    724 
    725 TEST(RandomTest, GeneratesNumbersWithinRange) {
    726   const UInt32 kRange = 10000;
    727   testing::internal::Random random(12345);
    728   for (int i = 0; i < 10; i++) {
    729     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    730   }
    731 
    732   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    733   for (int i = 0; i < 10; i++) {
    734     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    735   }
    736 }
    737 
    738 TEST(RandomTest, RepeatsWhenReseeded) {
    739   const int kSeed = 123;
    740   const int kArraySize = 10;
    741   const UInt32 kRange = 10000;
    742   UInt32 values[kArraySize];
    743 
    744   testing::internal::Random random(kSeed);
    745   for (int i = 0; i < kArraySize; i++) {
    746     values[i] = random.Generate(kRange);
    747   }
    748 
    749   random.Reseed(kSeed);
    750   for (int i = 0; i < kArraySize; i++) {
    751     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    752   }
    753 }
    754 
    755 // Tests STL container utilities.
    756 
    757 // Tests CountIf().
    758 
    759 static bool IsPositive(int n) { return n > 0; }
    760 
    761 TEST(ContainerUtilityTest, CountIf) {
    762   std::vector<int> v;
    763   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    764 
    765   v.push_back(-1);
    766   v.push_back(0);
    767   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    768 
    769   v.push_back(2);
    770   v.push_back(-10);
    771   v.push_back(10);
    772   EXPECT_EQ(2, CountIf(v, IsPositive));
    773 }
    774 
    775 // Tests ForEach().
    776 
    777 static int g_sum = 0;
    778 static void Accumulate(int n) { g_sum += n; }
    779 
    780 TEST(ContainerUtilityTest, ForEach) {
    781   std::vector<int> v;
    782   g_sum = 0;
    783   ForEach(v, Accumulate);
    784   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    785 
    786   g_sum = 0;
    787   v.push_back(1);
    788   ForEach(v, Accumulate);
    789   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    790 
    791   g_sum = 0;
    792   v.push_back(20);
    793   v.push_back(300);
    794   ForEach(v, Accumulate);
    795   EXPECT_EQ(321, g_sum);
    796 }
    797 
    798 // Tests GetElementOr().
    799 TEST(ContainerUtilityTest, GetElementOr) {
    800   std::vector<char> a;
    801   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    802 
    803   a.push_back('a');
    804   a.push_back('b');
    805   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    806   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    807   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    808   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    809 }
    810 
    811 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    812   std::vector<int> a;
    813   a.push_back(0);
    814   a.push_back(1);
    815   a.push_back(2);
    816   testing::internal::Random random(1);
    817 
    818   EXPECT_DEATH_IF_SUPPORTED(
    819       ShuffleRange(&random, -1, 1, &a),
    820       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    821   EXPECT_DEATH_IF_SUPPORTED(
    822       ShuffleRange(&random, 4, 4, &a),
    823       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    824   EXPECT_DEATH_IF_SUPPORTED(
    825       ShuffleRange(&random, 3, 2, &a),
    826       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    827   EXPECT_DEATH_IF_SUPPORTED(
    828       ShuffleRange(&random, 3, 4, &a),
    829       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    830 }
    831 
    832 class VectorShuffleTest : public Test {
    833  protected:
    834   static const int kVectorSize = 20;
    835 
    836   VectorShuffleTest() : random_(1) {
    837     for (int i = 0; i < kVectorSize; i++) {
    838       vector_.push_back(i);
    839     }
    840   }
    841 
    842   static bool VectorIsCorrupt(const TestingVector& vector) {
    843     if (kVectorSize != static_cast<int>(vector.size())) {
    844       return true;
    845     }
    846 
    847     bool found_in_vector[kVectorSize] = { false };
    848     for (size_t i = 0; i < vector.size(); i++) {
    849       const int e = vector[i];
    850       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    851         return true;
    852       }
    853       found_in_vector[e] = true;
    854     }
    855 
    856     // Vector size is correct, elements' range is correct, no
    857     // duplicate elements.  Therefore no corruption has occurred.
    858     return false;
    859   }
    860 
    861   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    862     return !VectorIsCorrupt(vector);
    863   }
    864 
    865   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    866     for (int i = begin; i < end; i++) {
    867       if (i != vector[i]) {
    868         return true;
    869       }
    870     }
    871     return false;
    872   }
    873 
    874   static bool RangeIsUnshuffled(
    875       const TestingVector& vector, int begin, int end) {
    876     return !RangeIsShuffled(vector, begin, end);
    877   }
    878 
    879   static bool VectorIsShuffled(const TestingVector& vector) {
    880     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    881   }
    882 
    883   static bool VectorIsUnshuffled(const TestingVector& vector) {
    884     return !VectorIsShuffled(vector);
    885   }
    886 
    887   testing::internal::Random random_;
    888   TestingVector vector_;
    889 };  // class VectorShuffleTest
    890 
    891 const int VectorShuffleTest::kVectorSize;
    892 
    893 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    894   // Tests an empty range at the beginning...
    895   ShuffleRange(&random_, 0, 0, &vector_);
    896   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    897   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    898 
    899   // ...in the middle...
    900   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    901   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    902   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    903 
    904   // ...at the end...
    905   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    906   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    907   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    908 
    909   // ...and past the end.
    910   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    911   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    912   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    913 }
    914 
    915 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    916   // Tests a size one range at the beginning...
    917   ShuffleRange(&random_, 0, 1, &vector_);
    918   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    919   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    920 
    921   // ...in the middle...
    922   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    923   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    924   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    925 
    926   // ...and at the end.
    927   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    928   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    929   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    930 }
    931 
    932 // Because we use our own random number generator and a fixed seed,
    933 // we can guarantee that the following "random" tests will succeed.
    934 
    935 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    936   Shuffle(&random_, &vector_);
    937   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    938   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    939 
    940   // Tests the first and last elements in particular to ensure that
    941   // there are no off-by-one problems in our shuffle algorithm.
    942   EXPECT_NE(0, vector_[0]);
    943   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    944 }
    945 
    946 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    947   const int kRangeSize = kVectorSize/2;
    948 
    949   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    950 
    951   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    952   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    953   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    954 }
    955 
    956 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    957   const int kRangeSize = kVectorSize / 2;
    958   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    959 
    960   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    961   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    962   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    963 }
    964 
    965 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    966   int kRangeSize = kVectorSize/3;
    967   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    968 
    969   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    970   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    971   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    972   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    973 }
    974 
    975 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    976   TestingVector vector2;
    977   for (int i = 0; i < kVectorSize; i++) {
    978     vector2.push_back(i);
    979   }
    980 
    981   random_.Reseed(1234);
    982   Shuffle(&random_, &vector_);
    983   random_.Reseed(1234);
    984   Shuffle(&random_, &vector2);
    985 
    986   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    987   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    988 
    989   for (int i = 0; i < kVectorSize; i++) {
    990     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    991   }
    992 }
    993 
    994 // Tests the size of the AssertHelper class.
    995 
    996 TEST(AssertHelperTest, AssertHelperIsSmall) {
    997   // To avoid breaking clients that use lots of assertions in one
    998   // function, we cannot grow the size of AssertHelper.
    999   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
   1000 }
   1001 
   1002 // Tests String::EndsWithCaseInsensitive().
   1003 TEST(StringTest, EndsWithCaseInsensitive) {
   1004   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
   1005   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
   1006   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
   1007   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
   1008 
   1009   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
   1010   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
   1011   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
   1012 }
   1013 
   1014 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1015 // appear in macro parameters after wide char literals.  Provide an alias
   1016 // for NULL as a workaround.
   1017 static const wchar_t* const kNull = NULL;
   1018 
   1019 // Tests String::CaseInsensitiveWideCStringEquals
   1020 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1021   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1022   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1023   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1024   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1025   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1027   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1028   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1029 }
   1030 
   1031 #if GTEST_OS_WINDOWS
   1032 
   1033 // Tests String::ShowWideCString().
   1034 TEST(StringTest, ShowWideCString) {
   1035   EXPECT_STREQ("(null)",
   1036                String::ShowWideCString(NULL).c_str());
   1037   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1038   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1039 }
   1040 
   1041 # if GTEST_OS_WINDOWS_MOBILE
   1042 TEST(StringTest, AnsiAndUtf16Null) {
   1043   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1044   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1045 }
   1046 
   1047 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1048   const char* ansi = String::Utf16ToAnsi(L"str");
   1049   EXPECT_STREQ("str", ansi);
   1050   delete [] ansi;
   1051   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1052   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1053   delete [] utf16;
   1054 }
   1055 
   1056 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1057   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1058   EXPECT_STREQ(".:\\ \"*?", ansi);
   1059   delete [] ansi;
   1060   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1061   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1062   delete [] utf16;
   1063 }
   1064 # endif  // GTEST_OS_WINDOWS_MOBILE
   1065 
   1066 #endif  // GTEST_OS_WINDOWS
   1067 
   1068 // Tests TestProperty construction.
   1069 TEST(TestPropertyTest, StringValue) {
   1070   TestProperty property("key", "1");
   1071   EXPECT_STREQ("key", property.key());
   1072   EXPECT_STREQ("1", property.value());
   1073 }
   1074 
   1075 // Tests TestProperty replacing a value.
   1076 TEST(TestPropertyTest, ReplaceStringValue) {
   1077   TestProperty property("key", "1");
   1078   EXPECT_STREQ("1", property.value());
   1079   property.SetValue("2");
   1080   EXPECT_STREQ("2", property.value());
   1081 }
   1082 
   1083 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1084 // functions (i.e. their definitions cannot be inlined at the call
   1085 // sites), or C++Builder won't compile the code.
   1086 static void AddFatalFailure() {
   1087   FAIL() << "Expected fatal failure.";
   1088 }
   1089 
   1090 static void AddNonfatalFailure() {
   1091   ADD_FAILURE() << "Expected non-fatal failure.";
   1092 }
   1093 
   1094 class ScopedFakeTestPartResultReporterTest : public Test {
   1095  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1096   enum FailureMode {
   1097     FATAL_FAILURE,
   1098     NONFATAL_FAILURE
   1099   };
   1100   static void AddFailure(FailureMode failure) {
   1101     if (failure == FATAL_FAILURE) {
   1102       AddFatalFailure();
   1103     } else {
   1104       AddNonfatalFailure();
   1105     }
   1106   }
   1107 };
   1108 
   1109 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1110 // failures.
   1111 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1112   TestPartResultArray results;
   1113   {
   1114     ScopedFakeTestPartResultReporter reporter(
   1115         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1116         &results);
   1117     AddFailure(NONFATAL_FAILURE);
   1118     AddFailure(FATAL_FAILURE);
   1119   }
   1120 
   1121   EXPECT_EQ(2, results.size());
   1122   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1123   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1124 }
   1125 
   1126 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1127   TestPartResultArray results;
   1128   {
   1129     // Tests, that the deprecated constructor still works.
   1130     ScopedFakeTestPartResultReporter reporter(&results);
   1131     AddFailure(NONFATAL_FAILURE);
   1132   }
   1133   EXPECT_EQ(1, results.size());
   1134 }
   1135 
   1136 #if GTEST_IS_THREADSAFE
   1137 
   1138 class ScopedFakeTestPartResultReporterWithThreadsTest
   1139   : public ScopedFakeTestPartResultReporterTest {
   1140  protected:
   1141   static void AddFailureInOtherThread(FailureMode failure) {
   1142     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1143     thread.Join();
   1144   }
   1145 };
   1146 
   1147 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1148        InterceptsTestFailuresInAllThreads) {
   1149   TestPartResultArray results;
   1150   {
   1151     ScopedFakeTestPartResultReporter reporter(
   1152         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1153     AddFailure(NONFATAL_FAILURE);
   1154     AddFailure(FATAL_FAILURE);
   1155     AddFailureInOtherThread(NONFATAL_FAILURE);
   1156     AddFailureInOtherThread(FATAL_FAILURE);
   1157   }
   1158 
   1159   EXPECT_EQ(4, results.size());
   1160   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1161   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1162   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1163   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1164 }
   1165 
   1166 #endif  // GTEST_IS_THREADSAFE
   1167 
   1168 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1169 // work even if the failure is generated in a called function rather than
   1170 // the current context.
   1171 
   1172 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1173 
   1174 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1175   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1176 }
   1177 
   1178 #if GTEST_HAS_GLOBAL_STRING
   1179 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1180   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1181 }
   1182 #endif
   1183 
   1184 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1185   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1186                        ::std::string("Expected fatal failure."));
   1187 }
   1188 
   1189 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1190   // We have another test below to verify that the macro catches fatal
   1191   // failures generated on another thread.
   1192   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1193                                       "Expected fatal failure.");
   1194 }
   1195 
   1196 #ifdef __BORLANDC__
   1197 // Silences warnings: "Condition is always true"
   1198 # pragma option push -w-ccc
   1199 #endif
   1200 
   1201 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1202 // function even when the statement in it contains ASSERT_*.
   1203 
   1204 int NonVoidFunction() {
   1205   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1206   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1207   return 0;
   1208 }
   1209 
   1210 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1211   NonVoidFunction();
   1212 }
   1213 
   1214 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1215 // current function even though 'statement' generates a fatal failure.
   1216 
   1217 void DoesNotAbortHelper(bool* aborted) {
   1218   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1219   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1220 
   1221   *aborted = false;
   1222 }
   1223 
   1224 #ifdef __BORLANDC__
   1225 // Restores warnings after previous "#pragma option push" suppressed them.
   1226 # pragma option pop
   1227 #endif
   1228 
   1229 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1230   bool aborted = true;
   1231   DoesNotAbortHelper(&aborted);
   1232   EXPECT_FALSE(aborted);
   1233 }
   1234 
   1235 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1236 // statement that contains a macro which expands to code containing an
   1237 // unprotected comma.
   1238 
   1239 static int global_var = 0;
   1240 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1241 
   1242 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1243 #ifndef __BORLANDC__
   1244   // ICE's in C++Builder.
   1245   EXPECT_FATAL_FAILURE({
   1246     GTEST_USE_UNPROTECTED_COMMA_;
   1247     AddFatalFailure();
   1248   }, "");
   1249 #endif
   1250 
   1251   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1252     GTEST_USE_UNPROTECTED_COMMA_;
   1253     AddFatalFailure();
   1254   }, "");
   1255 }
   1256 
   1257 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1258 
   1259 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1260 
   1261 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1262   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1263                           "Expected non-fatal failure.");
   1264 }
   1265 
   1266 #if GTEST_HAS_GLOBAL_STRING
   1267 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1268   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1269                           ::string("Expected non-fatal failure."));
   1270 }
   1271 #endif
   1272 
   1273 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1274   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1275                           ::std::string("Expected non-fatal failure."));
   1276 }
   1277 
   1278 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1279   // We have another test below to verify that the macro catches
   1280   // non-fatal failures generated on another thread.
   1281   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1282                                          "Expected non-fatal failure.");
   1283 }
   1284 
   1285 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1286 // statement that contains a macro which expands to code containing an
   1287 // unprotected comma.
   1288 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1289   EXPECT_NONFATAL_FAILURE({
   1290     GTEST_USE_UNPROTECTED_COMMA_;
   1291     AddNonfatalFailure();
   1292   }, "");
   1293 
   1294   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1295     GTEST_USE_UNPROTECTED_COMMA_;
   1296     AddNonfatalFailure();
   1297   }, "");
   1298 }
   1299 
   1300 #if GTEST_IS_THREADSAFE
   1301 
   1302 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1303     ExpectFailureWithThreadsTest;
   1304 
   1305 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1306   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1307                                       "Expected fatal failure.");
   1308 }
   1309 
   1310 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1311   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1312       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1313 }
   1314 
   1315 #endif  // GTEST_IS_THREADSAFE
   1316 
   1317 // Tests the TestProperty class.
   1318 
   1319 TEST(TestPropertyTest, ConstructorWorks) {
   1320   const TestProperty property("key", "value");
   1321   EXPECT_STREQ("key", property.key());
   1322   EXPECT_STREQ("value", property.value());
   1323 }
   1324 
   1325 TEST(TestPropertyTest, SetValue) {
   1326   TestProperty property("key", "value_1");
   1327   EXPECT_STREQ("key", property.key());
   1328   property.SetValue("value_2");
   1329   EXPECT_STREQ("key", property.key());
   1330   EXPECT_STREQ("value_2", property.value());
   1331 }
   1332 
   1333 // Tests the TestResult class
   1334 
   1335 // The test fixture for testing TestResult.
   1336 class TestResultTest : public Test {
   1337  protected:
   1338   typedef std::vector<TestPartResult> TPRVector;
   1339 
   1340   // We make use of 2 TestPartResult objects,
   1341   TestPartResult * pr1, * pr2;
   1342 
   1343   // ... and 3 TestResult objects.
   1344   TestResult * r0, * r1, * r2;
   1345 
   1346   virtual void SetUp() {
   1347     // pr1 is for success.
   1348     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1349                              "foo/bar.cc",
   1350                              10,
   1351                              "Success!");
   1352 
   1353     // pr2 is for fatal failure.
   1354     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1355                              "foo/bar.cc",
   1356                              -1,  // This line number means "unknown"
   1357                              "Failure!");
   1358 
   1359     // Creates the TestResult objects.
   1360     r0 = new TestResult();
   1361     r1 = new TestResult();
   1362     r2 = new TestResult();
   1363 
   1364     // In order to test TestResult, we need to modify its internal
   1365     // state, in particular the TestPartResult vector it holds.
   1366     // test_part_results() returns a const reference to this vector.
   1367     // We cast it to a non-const object s.t. it can be modified (yes,
   1368     // this is a hack).
   1369     TPRVector* results1 = const_cast<TPRVector*>(
   1370         &TestResultAccessor::test_part_results(*r1));
   1371     TPRVector* results2 = const_cast<TPRVector*>(
   1372         &TestResultAccessor::test_part_results(*r2));
   1373 
   1374     // r0 is an empty TestResult.
   1375 
   1376     // r1 contains a single SUCCESS TestPartResult.
   1377     results1->push_back(*pr1);
   1378 
   1379     // r2 contains a SUCCESS, and a FAILURE.
   1380     results2->push_back(*pr1);
   1381     results2->push_back(*pr2);
   1382   }
   1383 
   1384   virtual void TearDown() {
   1385     delete pr1;
   1386     delete pr2;
   1387 
   1388     delete r0;
   1389     delete r1;
   1390     delete r2;
   1391   }
   1392 
   1393   // Helper that compares two two TestPartResults.
   1394   static void CompareTestPartResult(const TestPartResult& expected,
   1395                                     const TestPartResult& actual) {
   1396     EXPECT_EQ(expected.type(), actual.type());
   1397     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1398     EXPECT_EQ(expected.line_number(), actual.line_number());
   1399     EXPECT_STREQ(expected.summary(), actual.summary());
   1400     EXPECT_STREQ(expected.message(), actual.message());
   1401     EXPECT_EQ(expected.passed(), actual.passed());
   1402     EXPECT_EQ(expected.failed(), actual.failed());
   1403     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1404     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1405   }
   1406 };
   1407 
   1408 // Tests TestResult::total_part_count().
   1409 TEST_F(TestResultTest, total_part_count) {
   1410   ASSERT_EQ(0, r0->total_part_count());
   1411   ASSERT_EQ(1, r1->total_part_count());
   1412   ASSERT_EQ(2, r2->total_part_count());
   1413 }
   1414 
   1415 // Tests TestResult::Passed().
   1416 TEST_F(TestResultTest, Passed) {
   1417   ASSERT_TRUE(r0->Passed());
   1418   ASSERT_TRUE(r1->Passed());
   1419   ASSERT_FALSE(r2->Passed());
   1420 }
   1421 
   1422 // Tests TestResult::Failed().
   1423 TEST_F(TestResultTest, Failed) {
   1424   ASSERT_FALSE(r0->Failed());
   1425   ASSERT_FALSE(r1->Failed());
   1426   ASSERT_TRUE(r2->Failed());
   1427 }
   1428 
   1429 // Tests TestResult::GetTestPartResult().
   1430 
   1431 typedef TestResultTest TestResultDeathTest;
   1432 
   1433 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1434   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1435   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1436   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1437   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1438 }
   1439 
   1440 // Tests TestResult has no properties when none are added.
   1441 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1442   TestResult test_result;
   1443   ASSERT_EQ(0, test_result.test_property_count());
   1444 }
   1445 
   1446 // Tests TestResult has the expected property when added.
   1447 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1448   TestResult test_result;
   1449   TestProperty property("key_1", "1");
   1450   TestResultAccessor::RecordProperty(&test_result, property);
   1451   ASSERT_EQ(1, test_result.test_property_count());
   1452   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1453   EXPECT_STREQ("key_1", actual_property.key());
   1454   EXPECT_STREQ("1", actual_property.value());
   1455 }
   1456 
   1457 // Tests TestResult has multiple properties when added.
   1458 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1459   TestResult test_result;
   1460   TestProperty property_1("key_1", "1");
   1461   TestProperty property_2("key_2", "2");
   1462   TestResultAccessor::RecordProperty(&test_result, property_1);
   1463   TestResultAccessor::RecordProperty(&test_result, property_2);
   1464   ASSERT_EQ(2, test_result.test_property_count());
   1465   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1466   EXPECT_STREQ("key_1", actual_property_1.key());
   1467   EXPECT_STREQ("1", actual_property_1.value());
   1468 
   1469   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1470   EXPECT_STREQ("key_2", actual_property_2.key());
   1471   EXPECT_STREQ("2", actual_property_2.value());
   1472 }
   1473 
   1474 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1475 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1476   TestResult test_result;
   1477   TestProperty property_1_1("key_1", "1");
   1478   TestProperty property_2_1("key_2", "2");
   1479   TestProperty property_1_2("key_1", "12");
   1480   TestProperty property_2_2("key_2", "22");
   1481   TestResultAccessor::RecordProperty(&test_result, property_1_1);
   1482   TestResultAccessor::RecordProperty(&test_result, property_2_1);
   1483   TestResultAccessor::RecordProperty(&test_result, property_1_2);
   1484   TestResultAccessor::RecordProperty(&test_result, property_2_2);
   1485 
   1486   ASSERT_EQ(2, test_result.test_property_count());
   1487   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1488   EXPECT_STREQ("key_1", actual_property_1.key());
   1489   EXPECT_STREQ("12", actual_property_1.value());
   1490 
   1491   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1492   EXPECT_STREQ("key_2", actual_property_2.key());
   1493   EXPECT_STREQ("22", actual_property_2.value());
   1494 }
   1495 
   1496 // Tests TestResult::GetTestProperty().
   1497 TEST(TestResultPropertyDeathTest, GetTestProperty) {
   1498   TestResult test_result;
   1499   TestProperty property_1("key_1", "1");
   1500   TestProperty property_2("key_2", "2");
   1501   TestProperty property_3("key_3", "3");
   1502   TestResultAccessor::RecordProperty(&test_result, property_1);
   1503   TestResultAccessor::RecordProperty(&test_result, property_2);
   1504   TestResultAccessor::RecordProperty(&test_result, property_3);
   1505 
   1506   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1507   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1508   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1509 
   1510   EXPECT_STREQ("key_1", fetched_property_1.key());
   1511   EXPECT_STREQ("1", fetched_property_1.value());
   1512 
   1513   EXPECT_STREQ("key_2", fetched_property_2.key());
   1514   EXPECT_STREQ("2", fetched_property_2.value());
   1515 
   1516   EXPECT_STREQ("key_3", fetched_property_3.key());
   1517   EXPECT_STREQ("3", fetched_property_3.value());
   1518 
   1519   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1520   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1521 }
   1522 
   1523 // When a property using a reserved key is supplied to this function, it tests
   1524 // that a non-fatal failure is added, a fatal failure is not added, and that the
   1525 // property is not recorded.
   1526 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
   1527   TestResult test_result;
   1528   TestProperty property(key, "1");
   1529   EXPECT_NONFATAL_FAILURE(
   1530       TestResultAccessor::RecordProperty(&test_result, property),
   1531       "Reserved key");
   1532   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
   1533 }
   1534 
   1535 // Attempting to recording a property with the Reserved literal "name"
   1536 // should add a non-fatal failure and the property should not be recorded.
   1537 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
   1538   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
   1539 }
   1540 
   1541 // Attempting to recording a property with the Reserved literal "status"
   1542 // should add a non-fatal failure and the property should not be recorded.
   1543 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
   1544   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
   1545 }
   1546 
   1547 // Attempting to recording a property with the Reserved literal "time"
   1548 // should add a non-fatal failure and the property should not be recorded.
   1549 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
   1550   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
   1551 }
   1552 
   1553 // Attempting to recording a property with the Reserved literal "classname"
   1554 // should add a non-fatal failure and the property should not be recorded.
   1555 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
   1556   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
   1557 }
   1558 
   1559 // Tests that GTestFlagSaver works on Windows and Mac.
   1560 
   1561 class GTestFlagSaverTest : public Test {
   1562  protected:
   1563   // Saves the Google Test flags such that we can restore them later, and
   1564   // then sets them to their default values.  This will be called
   1565   // before the first test in this test case is run.
   1566   static void SetUpTestCase() {
   1567     saver_ = new GTestFlagSaver;
   1568 
   1569     GTEST_FLAG(also_run_disabled_tests) = false;
   1570     GTEST_FLAG(break_on_failure) = false;
   1571     GTEST_FLAG(catch_exceptions) = false;
   1572     GTEST_FLAG(death_test_use_fork) = false;
   1573     GTEST_FLAG(color) = "auto";
   1574     GTEST_FLAG(filter) = "";
   1575     GTEST_FLAG(list_tests) = false;
   1576     GTEST_FLAG(output) = "";
   1577     GTEST_FLAG(print_time) = true;
   1578     GTEST_FLAG(random_seed) = 0;
   1579     GTEST_FLAG(repeat) = 1;
   1580     GTEST_FLAG(shuffle) = false;
   1581     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1582     GTEST_FLAG(stream_result_to) = "";
   1583     GTEST_FLAG(throw_on_failure) = false;
   1584   }
   1585 
   1586   // Restores the Google Test flags that the tests have modified.  This will
   1587   // be called after the last test in this test case is run.
   1588   static void TearDownTestCase() {
   1589     delete saver_;
   1590     saver_ = NULL;
   1591   }
   1592 
   1593   // Verifies that the Google Test flags have their default values, and then
   1594   // modifies each of them.
   1595   void VerifyAndModifyFlags() {
   1596     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1597     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1598     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1599     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1600     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1601     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1602     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1603     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1604     EXPECT_TRUE(GTEST_FLAG(print_time));
   1605     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1606     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1607     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1608     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1609     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1610     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1611 
   1612     GTEST_FLAG(also_run_disabled_tests) = true;
   1613     GTEST_FLAG(break_on_failure) = true;
   1614     GTEST_FLAG(catch_exceptions) = true;
   1615     GTEST_FLAG(color) = "no";
   1616     GTEST_FLAG(death_test_use_fork) = true;
   1617     GTEST_FLAG(filter) = "abc";
   1618     GTEST_FLAG(list_tests) = true;
   1619     GTEST_FLAG(output) = "xml:foo.xml";
   1620     GTEST_FLAG(print_time) = false;
   1621     GTEST_FLAG(random_seed) = 1;
   1622     GTEST_FLAG(repeat) = 100;
   1623     GTEST_FLAG(shuffle) = true;
   1624     GTEST_FLAG(stack_trace_depth) = 1;
   1625     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1626     GTEST_FLAG(throw_on_failure) = true;
   1627   }
   1628 
   1629  private:
   1630   // For saving Google Test flags during this test case.
   1631   static GTestFlagSaver* saver_;
   1632 };
   1633 
   1634 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1635 
   1636 // Google Test doesn't guarantee the order of tests.  The following two
   1637 // tests are designed to work regardless of their order.
   1638 
   1639 // Modifies the Google Test flags in the test body.
   1640 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1641   VerifyAndModifyFlags();
   1642 }
   1643 
   1644 // Verifies that the Google Test flags in the body of the previous test were
   1645 // restored to their original values.
   1646 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1647   VerifyAndModifyFlags();
   1648 }
   1649 
   1650 // Sets an environment variable with the given name to the given
   1651 // value.  If the value argument is "", unsets the environment
   1652 // variable.  The caller must ensure that both arguments are not NULL.
   1653 static void SetEnv(const char* name, const char* value) {
   1654 #if GTEST_OS_WINDOWS_MOBILE
   1655   // Environment variables are not supported on Windows CE.
   1656   return;
   1657 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1658   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1659   // ensure that the string remains valid as long as it might be needed.
   1660   // We use an std::map to do so.
   1661   static std::map<std::string, std::string*> added_env;
   1662 
   1663   // Because putenv stores a pointer to the string buffer, we can't delete the
   1664   // previous string (if present) until after it's replaced.
   1665   std::string *prev_env = NULL;
   1666   if (added_env.find(name) != added_env.end()) {
   1667     prev_env = added_env[name];
   1668   }
   1669   added_env[name] = new std::string(
   1670       (Message() << name << "=" << value).GetString());
   1671 
   1672   // The standard signature of putenv accepts a 'char*' argument. Other
   1673   // implementations, like C++Builder's, accept a 'const char*'.
   1674   // We cast away the 'const' since that would work for both variants.
   1675   putenv(const_cast<char*>(added_env[name]->c_str()));
   1676   delete prev_env;
   1677 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1678   _putenv((Message() << name << "=" << value).GetString().c_str());
   1679 #else
   1680   if (*value == '\0') {
   1681     unsetenv(name);
   1682   } else {
   1683     setenv(name, value, 1);
   1684   }
   1685 #endif  // GTEST_OS_WINDOWS_MOBILE
   1686 }
   1687 
   1688 #if !GTEST_OS_WINDOWS_MOBILE
   1689 // Environment variables are not supported on Windows CE.
   1690 
   1691 using testing::internal::Int32FromGTestEnv;
   1692 
   1693 // Tests Int32FromGTestEnv().
   1694 
   1695 // Tests that Int32FromGTestEnv() returns the default value when the
   1696 // environment variable is not set.
   1697 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1698   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1699   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1700 }
   1701 
   1702 // Tests that Int32FromGTestEnv() returns the default value when the
   1703 // environment variable overflows as an Int32.
   1704 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1705   printf("(expecting 2 warnings)\n");
   1706 
   1707   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1708   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1709 
   1710   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1711   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1712 }
   1713 
   1714 // Tests that Int32FromGTestEnv() returns the default value when the
   1715 // environment variable does not represent a valid decimal integer.
   1716 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1717   printf("(expecting 2 warnings)\n");
   1718 
   1719   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1720   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1721 
   1722   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1723   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1724 }
   1725 
   1726 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1727 // environment variable when it represents a valid decimal integer in
   1728 // the range of an Int32.
   1729 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1730   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1731   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1732 
   1733   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1734   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1735 }
   1736 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1737 
   1738 // Tests ParseInt32Flag().
   1739 
   1740 // Tests that ParseInt32Flag() returns false and doesn't change the
   1741 // output value when the flag has wrong format
   1742 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1743   Int32 value = 123;
   1744   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1745   EXPECT_EQ(123, value);
   1746 
   1747   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1748   EXPECT_EQ(123, value);
   1749 }
   1750 
   1751 // Tests that ParseInt32Flag() returns false and doesn't change the
   1752 // output value when the flag overflows as an Int32.
   1753 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1754   printf("(expecting 2 warnings)\n");
   1755 
   1756   Int32 value = 123;
   1757   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1758   EXPECT_EQ(123, value);
   1759 
   1760   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1761   EXPECT_EQ(123, value);
   1762 }
   1763 
   1764 // Tests that ParseInt32Flag() returns false and doesn't change the
   1765 // output value when the flag does not represent a valid decimal
   1766 // integer.
   1767 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1768   printf("(expecting 2 warnings)\n");
   1769 
   1770   Int32 value = 123;
   1771   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1772   EXPECT_EQ(123, value);
   1773 
   1774   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1775   EXPECT_EQ(123, value);
   1776 }
   1777 
   1778 // Tests that ParseInt32Flag() parses the value of the flag and
   1779 // returns true when the flag represents a valid decimal integer in
   1780 // the range of an Int32.
   1781 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1782   Int32 value = 123;
   1783   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1784   EXPECT_EQ(456, value);
   1785 
   1786   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1787                              "abc", &value));
   1788   EXPECT_EQ(-789, value);
   1789 }
   1790 
   1791 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1792 // returns the correct default.
   1793 // Environment variables are not supported on Windows CE.
   1794 #if !GTEST_OS_WINDOWS_MOBILE
   1795 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1796   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1797   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1798   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1799   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1800   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1801 }
   1802 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1803 
   1804 // Tests that Int32FromEnvOrDie() aborts with an error message
   1805 // if the variable is not an Int32.
   1806 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1807   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1808   EXPECT_DEATH_IF_SUPPORTED(
   1809       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1810       ".*");
   1811 }
   1812 
   1813 // Tests that Int32FromEnvOrDie() aborts with an error message
   1814 // if the variable cannot be represnted by an Int32.
   1815 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1816   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1817   EXPECT_DEATH_IF_SUPPORTED(
   1818       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1819       ".*");
   1820 }
   1821 
   1822 // Tests that ShouldRunTestOnShard() selects all tests
   1823 // where there is 1 shard.
   1824 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1825   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   1826   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   1827   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   1828   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   1829   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   1830 }
   1831 
   1832 class ShouldShardTest : public testing::Test {
   1833  protected:
   1834   virtual void SetUp() {
   1835     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   1836     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   1837   }
   1838 
   1839   virtual void TearDown() {
   1840     SetEnv(index_var_, "");
   1841     SetEnv(total_var_, "");
   1842   }
   1843 
   1844   const char* index_var_;
   1845   const char* total_var_;
   1846 };
   1847 
   1848 // Tests that sharding is disabled if neither of the environment variables
   1849 // are set.
   1850 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   1851   SetEnv(index_var_, "");
   1852   SetEnv(total_var_, "");
   1853 
   1854   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1855   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1856 }
   1857 
   1858 // Tests that sharding is not enabled if total_shards  == 1.
   1859 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   1860   SetEnv(index_var_, "0");
   1861   SetEnv(total_var_, "1");
   1862   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1863   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1864 }
   1865 
   1866 // Tests that sharding is enabled if total_shards > 1 and
   1867 // we are not in a death test subprocess.
   1868 // Environment variables are not supported on Windows CE.
   1869 #if !GTEST_OS_WINDOWS_MOBILE
   1870 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   1871   SetEnv(index_var_, "4");
   1872   SetEnv(total_var_, "22");
   1873   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1874   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1875 
   1876   SetEnv(index_var_, "8");
   1877   SetEnv(total_var_, "9");
   1878   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1879   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1880 
   1881   SetEnv(index_var_, "0");
   1882   SetEnv(total_var_, "9");
   1883   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1884   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1885 }
   1886 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1887 
   1888 // Tests that we exit in error if the sharding values are not valid.
   1889 
   1890 typedef ShouldShardTest ShouldShardDeathTest;
   1891 
   1892 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   1893   SetEnv(index_var_, "4");
   1894   SetEnv(total_var_, "4");
   1895   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1896 
   1897   SetEnv(index_var_, "4");
   1898   SetEnv(total_var_, "-2");
   1899   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1900 
   1901   SetEnv(index_var_, "5");
   1902   SetEnv(total_var_, "");
   1903   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1904 
   1905   SetEnv(index_var_, "");
   1906   SetEnv(total_var_, "5");
   1907   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1908 }
   1909 
   1910 // Tests that ShouldRunTestOnShard is a partition when 5
   1911 // shards are used.
   1912 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   1913   // Choose an arbitrary number of tests and shards.
   1914   const int num_tests = 17;
   1915   const int num_shards = 5;
   1916 
   1917   // Check partitioning: each test should be on exactly 1 shard.
   1918   for (int test_id = 0; test_id < num_tests; test_id++) {
   1919     int prev_selected_shard_index = -1;
   1920     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1921       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   1922         if (prev_selected_shard_index < 0) {
   1923           prev_selected_shard_index = shard_index;
   1924         } else {
   1925           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   1926             << shard_index << " are both selected to run test " << test_id;
   1927         }
   1928       }
   1929     }
   1930   }
   1931 
   1932   // Check balance: This is not required by the sharding protocol, but is a
   1933   // desirable property for performance.
   1934   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1935     int num_tests_on_shard = 0;
   1936     for (int test_id = 0; test_id < num_tests; test_id++) {
   1937       num_tests_on_shard +=
   1938         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   1939     }
   1940     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   1941   }
   1942 }
   1943 
   1944 // For the same reason we are not explicitly testing everything in the
   1945 // Test class, there are no separate tests for the following classes
   1946 // (except for some trivial cases):
   1947 //
   1948 //   TestCase, UnitTest, UnitTestResultPrinter.
   1949 //
   1950 // Similarly, there are no separate tests for the following macros:
   1951 //
   1952 //   TEST, TEST_F, RUN_ALL_TESTS
   1953 
   1954 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   1955   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   1956   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   1957 }
   1958 
   1959 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   1960   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   1961   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   1962 }
   1963 
   1964 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   1965 // of various arities.  They do not attempt to be exhaustive.  Rather,
   1966 // view them as smoke tests that can be easily reviewed and verified.
   1967 // A more complete set of tests for predicate assertions can be found
   1968 // in gtest_pred_impl_unittest.cc.
   1969 
   1970 // First, some predicates and predicate-formatters needed by the tests.
   1971 
   1972 // Returns true iff the argument is an even number.
   1973 bool IsEven(int n) {
   1974   return (n % 2) == 0;
   1975 }
   1976 
   1977 // A functor that returns true iff the argument is an even number.
   1978 struct IsEvenFunctor {
   1979   bool operator()(int n) { return IsEven(n); }
   1980 };
   1981 
   1982 // A predicate-formatter function that asserts the argument is an even
   1983 // number.
   1984 AssertionResult AssertIsEven(const char* expr, int n) {
   1985   if (IsEven(n)) {
   1986     return AssertionSuccess();
   1987   }
   1988 
   1989   Message msg;
   1990   msg << expr << " evaluates to " << n << ", which is not even.";
   1991   return AssertionFailure(msg);
   1992 }
   1993 
   1994 // A predicate function that returns AssertionResult for use in
   1995 // EXPECT/ASSERT_TRUE/FALSE.
   1996 AssertionResult ResultIsEven(int n) {
   1997   if (IsEven(n))
   1998     return AssertionSuccess() << n << " is even";
   1999   else
   2000     return AssertionFailure() << n << " is odd";
   2001 }
   2002 
   2003 // A predicate function that returns AssertionResult but gives no
   2004 // explanation why it succeeds. Needed for testing that
   2005 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2006 AssertionResult ResultIsEvenNoExplanation(int n) {
   2007   if (IsEven(n))
   2008     return AssertionSuccess();
   2009   else
   2010     return AssertionFailure() << n << " is odd";
   2011 }
   2012 
   2013 // A predicate-formatter functor that asserts the argument is an even
   2014 // number.
   2015 struct AssertIsEvenFunctor {
   2016   AssertionResult operator()(const char* expr, int n) {
   2017     return AssertIsEven(expr, n);
   2018   }
   2019 };
   2020 
   2021 // Returns true iff the sum of the arguments is an even number.
   2022 bool SumIsEven2(int n1, int n2) {
   2023   return IsEven(n1 + n2);
   2024 }
   2025 
   2026 // A functor that returns true iff the sum of the arguments is an even
   2027 // number.
   2028 struct SumIsEven3Functor {
   2029   bool operator()(int n1, int n2, int n3) {
   2030     return IsEven(n1 + n2 + n3);
   2031   }
   2032 };
   2033 
   2034 // A predicate-formatter function that asserts the sum of the
   2035 // arguments is an even number.
   2036 AssertionResult AssertSumIsEven4(
   2037     const char* e1, const char* e2, const char* e3, const char* e4,
   2038     int n1, int n2, int n3, int n4) {
   2039   const int sum = n1 + n2 + n3 + n4;
   2040   if (IsEven(sum)) {
   2041     return AssertionSuccess();
   2042   }
   2043 
   2044   Message msg;
   2045   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2046       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2047       << ") evaluates to " << sum << ", which is not even.";
   2048   return AssertionFailure(msg);
   2049 }
   2050 
   2051 // A predicate-formatter functor that asserts the sum of the arguments
   2052 // is an even number.
   2053 struct AssertSumIsEven5Functor {
   2054   AssertionResult operator()(
   2055       const char* e1, const char* e2, const char* e3, const char* e4,
   2056       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2057     const int sum = n1 + n2 + n3 + n4 + n5;
   2058     if (IsEven(sum)) {
   2059       return AssertionSuccess();
   2060     }
   2061 
   2062     Message msg;
   2063     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2064         << " ("
   2065         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2066         << ") evaluates to " << sum << ", which is not even.";
   2067     return AssertionFailure(msg);
   2068   }
   2069 };
   2070 
   2071 
   2072 // Tests unary predicate assertions.
   2073 
   2074 // Tests unary predicate assertions that don't use a custom formatter.
   2075 TEST(Pred1Test, WithoutFormat) {
   2076   // Success cases.
   2077   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2078   ASSERT_PRED1(IsEven, 4);
   2079 
   2080   // Failure cases.
   2081   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2082     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2083   }, "This failure is expected.");
   2084   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2085                        "evaluates to false");
   2086 }
   2087 
   2088 // Tests unary predicate assertions that use a custom formatter.
   2089 TEST(Pred1Test, WithFormat) {
   2090   // Success cases.
   2091   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2092   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2093     << "This failure is UNEXPECTED!";
   2094 
   2095   // Failure cases.
   2096   const int n = 5;
   2097   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2098                           "n evaluates to 5, which is not even.");
   2099   EXPECT_FATAL_FAILURE({  // NOLINT
   2100     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2101   }, "This failure is expected.");
   2102 }
   2103 
   2104 // Tests that unary predicate assertions evaluates their arguments
   2105 // exactly once.
   2106 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2107   // A success case.
   2108   static int n = 0;
   2109   EXPECT_PRED1(IsEven, n++);
   2110   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2111 
   2112   // A failure case.
   2113   EXPECT_FATAL_FAILURE({  // NOLINT
   2114     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2115         << "This failure is expected.";
   2116   }, "This failure is expected.");
   2117   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2118 }
   2119 
   2120 
   2121 // Tests predicate assertions whose arity is >= 2.
   2122 
   2123 // Tests predicate assertions that don't use a custom formatter.
   2124 TEST(PredTest, WithoutFormat) {
   2125   // Success cases.
   2126   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2127   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2128 
   2129   // Failure cases.
   2130   const int n1 = 1;
   2131   const int n2 = 2;
   2132   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2133     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2134   }, "This failure is expected.");
   2135   EXPECT_FATAL_FAILURE({  // NOLINT
   2136     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2137   }, "evaluates to false");
   2138 }
   2139 
   2140 // Tests predicate assertions that use a custom formatter.
   2141 TEST(PredTest, WithFormat) {
   2142   // Success cases.
   2143   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2144     "This failure is UNEXPECTED!";
   2145   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2146 
   2147   // Failure cases.
   2148   const int n1 = 1;
   2149   const int n2 = 2;
   2150   const int n3 = 4;
   2151   const int n4 = 6;
   2152   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2153     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2154   }, "evaluates to 13, which is not even.");
   2155   EXPECT_FATAL_FAILURE({  // NOLINT
   2156     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2157         << "This failure is expected.";
   2158   }, "This failure is expected.");
   2159 }
   2160 
   2161 // Tests that predicate assertions evaluates their arguments
   2162 // exactly once.
   2163 TEST(PredTest, SingleEvaluationOnFailure) {
   2164   // A success case.
   2165   int n1 = 0;
   2166   int n2 = 0;
   2167   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2168   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2169   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2170 
   2171   // Another success case.
   2172   n1 = n2 = 0;
   2173   int n3 = 0;
   2174   int n4 = 0;
   2175   int n5 = 0;
   2176   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2177                       n1++, n2++, n3++, n4++, n5++)
   2178                         << "This failure is UNEXPECTED!";
   2179   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2180   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2181   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2182   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2183   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2184 
   2185   // A failure case.
   2186   n1 = n2 = n3 = 0;
   2187   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2188     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2189         << "This failure is expected.";
   2190   }, "This failure is expected.");
   2191   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2192   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2193   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2194 
   2195   // Another failure case.
   2196   n1 = n2 = n3 = n4 = 0;
   2197   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2198     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2199   }, "evaluates to 1, which is not even.");
   2200   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2201   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2202   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2203   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2204 }
   2205 
   2206 
   2207 // Some helper functions for testing using overloaded/template
   2208 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2209 
   2210 bool IsPositive(double x) {
   2211   return x > 0;
   2212 }
   2213 
   2214 template <typename T>
   2215 bool IsNegative(T x) {
   2216   return x < 0;
   2217 }
   2218 
   2219 template <typename T1, typename T2>
   2220 bool GreaterThan(T1 x1, T2 x2) {
   2221   return x1 > x2;
   2222 }
   2223 
   2224 // Tests that overloaded functions can be used in *_PRED* as long as
   2225 // their types are explicitly specified.
   2226 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2227   // C++Builder requires C-style casts rather than static_cast.
   2228   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2229   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2230 }
   2231 
   2232 // Tests that template functions can be used in *_PRED* as long as
   2233 // their types are explicitly specified.
   2234 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2235   EXPECT_PRED1(IsNegative<int>, -5);
   2236   // Makes sure that we can handle templates with more than one
   2237   // parameter.
   2238   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2239 }
   2240 
   2241 
   2242 // Some helper functions for testing using overloaded/template
   2243 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2244 
   2245 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2246   return n > 0 ? AssertionSuccess() :
   2247       AssertionFailure(Message() << "Failure");
   2248 }
   2249 
   2250 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2251   return x > 0 ? AssertionSuccess() :
   2252       AssertionFailure(Message() << "Failure");
   2253 }
   2254 
   2255 template <typename T>
   2256 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2257   return x < 0 ? AssertionSuccess() :
   2258       AssertionFailure(Message() << "Failure");
   2259 }
   2260 
   2261 template <typename T1, typename T2>
   2262 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2263                              const T1& x1, const T2& x2) {
   2264   return x1 == x2 ? AssertionSuccess() :
   2265       AssertionFailure(Message() << "Failure");
   2266 }
   2267 
   2268 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2269 // without explicitly specifying their types.
   2270 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2271   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2272   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2273 }
   2274 
   2275 // Tests that template functions can be used in *_PRED_FORMAT* without
   2276 // explicitly specifying their types.
   2277 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2278   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2279   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2280 }
   2281 
   2282 
   2283 // Tests string assertions.
   2284 
   2285 // Tests ASSERT_STREQ with non-NULL arguments.
   2286 TEST(StringAssertionTest, ASSERT_STREQ) {
   2287   const char * const p1 = "good";
   2288   ASSERT_STREQ(p1, p1);
   2289 
   2290   // Let p2 have the same content as p1, but be at a different address.
   2291   const char p2[] = "good";
   2292   ASSERT_STREQ(p1, p2);
   2293 
   2294   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2295                        "Expected: \"bad\"");
   2296 }
   2297 
   2298 // Tests ASSERT_STREQ with NULL arguments.
   2299 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2300   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2301   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2302                        "non-null");
   2303 }
   2304 
   2305 // Tests ASSERT_STREQ with NULL arguments.
   2306 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2307   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2308                        "non-null");
   2309 }
   2310 
   2311 // Tests ASSERT_STRNE.
   2312 TEST(StringAssertionTest, ASSERT_STRNE) {
   2313   ASSERT_STRNE("hi", "Hi");
   2314   ASSERT_STRNE("Hi", NULL);
   2315   ASSERT_STRNE(NULL, "Hi");
   2316   ASSERT_STRNE("", NULL);
   2317   ASSERT_STRNE(NULL, "");
   2318   ASSERT_STRNE("", "Hi");
   2319   ASSERT_STRNE("Hi", "");
   2320   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2321                        "\"Hi\" vs \"Hi\"");
   2322 }
   2323 
   2324 // Tests ASSERT_STRCASEEQ.
   2325 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2326   ASSERT_STRCASEEQ("hi", "Hi");
   2327   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2328 
   2329   ASSERT_STRCASEEQ("", "");
   2330   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2331                        "(ignoring case)");
   2332 }
   2333 
   2334 // Tests ASSERT_STRCASENE.
   2335 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2336   ASSERT_STRCASENE("hi1", "Hi2");
   2337   ASSERT_STRCASENE("Hi", NULL);
   2338   ASSERT_STRCASENE(NULL, "Hi");
   2339   ASSERT_STRCASENE("", NULL);
   2340   ASSERT_STRCASENE(NULL, "");
   2341   ASSERT_STRCASENE("", "Hi");
   2342   ASSERT_STRCASENE("Hi", "");
   2343   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2344                        "(ignoring case)");
   2345 }
   2346 
   2347 // Tests *_STREQ on wide strings.
   2348 TEST(StringAssertionTest, STREQ_Wide) {
   2349   // NULL strings.
   2350   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2351 
   2352   // Empty strings.
   2353   ASSERT_STREQ(L"", L"");
   2354 
   2355   // Non-null vs NULL.
   2356   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2357                           "non-null");
   2358 
   2359   // Equal strings.
   2360   EXPECT_STREQ(L"Hi", L"Hi");
   2361 
   2362   // Unequal strings.
   2363   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2364                           "Abc");
   2365 
   2366   // Strings containing wide characters.
   2367   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2368                           "abc");
   2369 
   2370   // The streaming variation.
   2371   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2372     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2373   }, "Expected failure");
   2374 }
   2375 
   2376 // Tests *_STRNE on wide strings.
   2377 TEST(StringAssertionTest, STRNE_Wide) {
   2378   // NULL strings.
   2379   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2380     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2381   }, "");
   2382 
   2383   // Empty strings.
   2384   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2385                           "L\"\"");
   2386 
   2387   // Non-null vs NULL.
   2388   ASSERT_STRNE(L"non-null", NULL);
   2389 
   2390   // Equal strings.
   2391   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2392                           "L\"Hi\"");
   2393 
   2394   // Unequal strings.
   2395   EXPECT_STRNE(L"abc", L"Abc");
   2396 
   2397   // Strings containing wide characters.
   2398   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2399                           "abc");
   2400 
   2401   // The streaming variation.
   2402   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2403 }
   2404 
   2405 // Tests for ::testing::IsSubstring().
   2406 
   2407 // Tests that IsSubstring() returns the correct result when the input
   2408 // argument type is const char*.
   2409 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2410   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2411   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2412   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2413 
   2414   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2415   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2416 }
   2417 
   2418 // Tests that IsSubstring() returns the correct result when the input
   2419 // argument type is const wchar_t*.
   2420 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2421   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2422   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2423   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2424 
   2425   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2426   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2427 }
   2428 
   2429 // Tests that IsSubstring() generates the correct message when the input
   2430 // argument type is const char*.
   2431 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2432   EXPECT_STREQ("Value of: needle_expr\n"
   2433                "  Actual: \"needle\"\n"
   2434                "Expected: a substring of haystack_expr\n"
   2435                "Which is: \"haystack\"",
   2436                IsSubstring("needle_expr", "haystack_expr",
   2437                            "needle", "haystack").failure_message());
   2438 }
   2439 
   2440 // Tests that IsSubstring returns the correct result when the input
   2441 // argument type is ::std::string.
   2442 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2443   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2444   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2445 }
   2446 
   2447 #if GTEST_HAS_STD_WSTRING
   2448 // Tests that IsSubstring returns the correct result when the input
   2449 // argument type is ::std::wstring.
   2450 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2451   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2452   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2453 }
   2454 
   2455 // Tests that IsSubstring() generates the correct message when the input
   2456 // argument type is ::std::wstring.
   2457 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2458   EXPECT_STREQ("Value of: needle_expr\n"
   2459                "  Actual: L\"needle\"\n"
   2460                "Expected: a substring of haystack_expr\n"
   2461                "Which is: L\"haystack\"",
   2462                IsSubstring(
   2463                    "needle_expr", "haystack_expr",
   2464                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2465 }
   2466 
   2467 #endif  // GTEST_HAS_STD_WSTRING
   2468 
   2469 // Tests for ::testing::IsNotSubstring().
   2470 
   2471 // Tests that IsNotSubstring() returns the correct result when the input
   2472 // argument type is const char*.
   2473 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2474   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2475   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2476 }
   2477 
   2478 // Tests that IsNotSubstring() returns the correct result when the input
   2479 // argument type is const wchar_t*.
   2480 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2481   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2482   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2483 }
   2484 
   2485 // Tests that IsNotSubstring() generates the correct message when the input
   2486 // argument type is const wchar_t*.
   2487 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2488   EXPECT_STREQ("Value of: needle_expr\n"
   2489                "  Actual: L\"needle\"\n"
   2490                "Expected: not a substring of haystack_expr\n"
   2491                "Which is: L\"two needles\"",
   2492                IsNotSubstring(
   2493                    "needle_expr", "haystack_expr",
   2494                    L"needle", L"two needles").failure_message());
   2495 }
   2496 
   2497 // Tests that IsNotSubstring returns the correct result when the input
   2498 // argument type is ::std::string.
   2499 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2500   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2501   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2502 }
   2503 
   2504 // Tests that IsNotSubstring() generates the correct message when the input
   2505 // argument type is ::std::string.
   2506 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2507   EXPECT_STREQ("Value of: needle_expr\n"
   2508                "  Actual: \"needle\"\n"
   2509                "Expected: not a substring of haystack_expr\n"
   2510                "Which is: \"two needles\"",
   2511                IsNotSubstring(
   2512                    "needle_expr", "haystack_expr",
   2513                    ::std::string("needle"), "two needles").failure_message());
   2514 }
   2515 
   2516 #if GTEST_HAS_STD_WSTRING
   2517 
   2518 // Tests that IsNotSubstring returns the correct result when the input
   2519 // argument type is ::std::wstring.
   2520 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2521   EXPECT_FALSE(
   2522       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2523   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2524 }
   2525 
   2526 #endif  // GTEST_HAS_STD_WSTRING
   2527 
   2528 // Tests floating-point assertions.
   2529 
   2530 template <typename RawType>
   2531 class FloatingPointTest : public Test {
   2532  protected:
   2533   // Pre-calculated numbers to be used by the tests.
   2534   struct TestValues {
   2535     RawType close_to_positive_zero;
   2536     RawType close_to_negative_zero;
   2537     RawType further_from_negative_zero;
   2538 
   2539     RawType close_to_one;
   2540     RawType further_from_one;
   2541 
   2542     RawType infinity;
   2543     RawType close_to_infinity;
   2544     RawType further_from_infinity;
   2545 
   2546     RawType nan1;
   2547     RawType nan2;
   2548   };
   2549 
   2550   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2551   typedef typename Floating::Bits Bits;
   2552 
   2553   virtual void SetUp() {
   2554     const size_t max_ulps = Floating::kMaxUlps;
   2555 
   2556     // The bits that represent 0.0.
   2557     const Bits zero_bits = Floating(0).bits();
   2558 
   2559     // Makes some numbers close to 0.0.
   2560     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2561         zero_bits + max_ulps/2);
   2562     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2563         zero_bits + max_ulps - max_ulps/2);
   2564     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2565         zero_bits + max_ulps + 1 - max_ulps/2);
   2566 
   2567     // The bits that represent 1.0.
   2568     const Bits one_bits = Floating(1).bits();
   2569 
   2570     // Makes some numbers close to 1.0.
   2571     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2572     values_.further_from_one = Floating::ReinterpretBits(
   2573         one_bits + max_ulps + 1);
   2574 
   2575     // +infinity.
   2576     values_.infinity = Floating::Infinity();
   2577 
   2578     // The bits that represent +infinity.
   2579     const Bits infinity_bits = Floating(values_.infinity).bits();
   2580 
   2581     // Makes some numbers close to infinity.
   2582     values_.close_to_infinity = Floating::ReinterpretBits(
   2583         infinity_bits - max_ulps);
   2584     values_.further_from_infinity = Floating::ReinterpretBits(
   2585         infinity_bits - max_ulps - 1);
   2586 
   2587     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2588     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2589     // exception if our environment enables floating point exceptions.
   2590     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2591         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2592     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2593         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2594   }
   2595 
   2596   void TestSize() {
   2597     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2598   }
   2599 
   2600   static TestValues values_;
   2601 };
   2602 
   2603 template <typename RawType>
   2604 typename FloatingPointTest<RawType>::TestValues
   2605     FloatingPointTest<RawType>::values_;
   2606 
   2607 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2608 typedef FloatingPointTest<float> FloatTest;
   2609 
   2610 // Tests that the size of Float::Bits matches the size of float.
   2611 TEST_F(FloatTest, Size) {
   2612   TestSize();
   2613 }
   2614 
   2615 // Tests comparing with +0 and -0.
   2616 TEST_F(FloatTest, Zeros) {
   2617   EXPECT_FLOAT_EQ(0.0, -0.0);
   2618   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2619                           "1.0");
   2620   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2621                        "1.5");
   2622 }
   2623 
   2624 // Tests comparing numbers close to 0.
   2625 //
   2626 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2627 // overflow occurs when comparing numbers whose absolute value is very
   2628 // small.
   2629 TEST_F(FloatTest, AlmostZeros) {
   2630   // In C++Builder, names within local classes (such as used by
   2631   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2632   // scoping class.  Use a static local alias as a workaround.
   2633   // We use the assignment syntax since some compilers, like Sun Studio,
   2634   // don't allow initializing references using construction syntax
   2635   // (parentheses).
   2636   static const FloatTest::TestValues& v = this->values_;
   2637 
   2638   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2639   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2640   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2641 
   2642   EXPECT_FATAL_FAILURE({  // NOLINT
   2643     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2644                     v.further_from_negative_zero);
   2645   }, "v.further_from_negative_zero");
   2646 }
   2647 
   2648 // Tests comparing numbers close to each other.
   2649 TEST_F(FloatTest, SmallDiff) {
   2650   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2651   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2652                           "values_.further_from_one");
   2653 }
   2654 
   2655 // Tests comparing numbers far apart.
   2656 TEST_F(FloatTest, LargeDiff) {
   2657   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2658                           "3.0");
   2659 }
   2660 
   2661 // Tests comparing with infinity.
   2662 //
   2663 // This ensures that no overflow occurs when comparing numbers whose
   2664 // absolute value is very large.
   2665 TEST_F(FloatTest, Infinity) {
   2666   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2667   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2668 #if !GTEST_OS_SYMBIAN
   2669   // Nokia's STLport crashes if we try to output infinity or NaN.
   2670   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2671                           "-values_.infinity");
   2672 
   2673   // This is interesting as the representations of infinity and nan1
   2674   // are only 1 DLP apart.
   2675   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2676                           "values_.nan1");
   2677 #endif  // !GTEST_OS_SYMBIAN
   2678 }
   2679 
   2680 // Tests that comparing with NAN always returns false.
   2681 TEST_F(FloatTest, NaN) {
   2682 #if !GTEST_OS_SYMBIAN
   2683 // Nokia's STLport crashes if we try to output infinity or NaN.
   2684 
   2685   // In C++Builder, names within local classes (such as used by
   2686   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2687   // scoping class.  Use a static local alias as a workaround.
   2688   // We use the assignment syntax since some compilers, like Sun Studio,
   2689   // don't allow initializing references using construction syntax
   2690   // (parentheses).
   2691   static const FloatTest::TestValues& v = this->values_;
   2692 
   2693   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2694                           "v.nan1");
   2695   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2696                           "v.nan2");
   2697   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2698                           "v.nan1");
   2699 
   2700   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2701                        "v.infinity");
   2702 #endif  // !GTEST_OS_SYMBIAN
   2703 }
   2704 
   2705 // Tests that *_FLOAT_EQ are reflexive.
   2706 TEST_F(FloatTest, Reflexive) {
   2707   EXPECT_FLOAT_EQ(0.0, 0.0);
   2708   EXPECT_FLOAT_EQ(1.0, 1.0);
   2709   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2710 }
   2711 
   2712 // Tests that *_FLOAT_EQ are commutative.
   2713 TEST_F(FloatTest, Commutative) {
   2714   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2715   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2716 
   2717   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2718   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2719                           "1.0");
   2720 }
   2721 
   2722 // Tests EXPECT_NEAR.
   2723 TEST_F(FloatTest, EXPECT_NEAR) {
   2724   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2725   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2726   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2727                           "The difference between 1.0f and 1.5f is 0.5, "
   2728                           "which exceeds 0.25f");
   2729   // To work around a bug in gcc 2.95.0, there is intentionally no
   2730   // space after the first comma in the previous line.
   2731 }
   2732 
   2733 // Tests ASSERT_NEAR.
   2734 TEST_F(FloatTest, ASSERT_NEAR) {
   2735   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2736   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2737   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2738                        "The difference between 1.0f and 1.5f is 0.5, "
   2739                        "which exceeds 0.25f");
   2740   // To work around a bug in gcc 2.95.0, there is intentionally no
   2741   // space after the first comma in the previous line.
   2742 }
   2743 
   2744 // Tests the cases where FloatLE() should succeed.
   2745 TEST_F(FloatTest, FloatLESucceeds) {
   2746   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2747   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2748 
   2749   // or when val1 is greater than, but almost equals to, val2.
   2750   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2751 }
   2752 
   2753 // Tests the cases where FloatLE() should fail.
   2754 TEST_F(FloatTest, FloatLEFails) {
   2755   // When val1 is greater than val2 by a large margin,
   2756   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2757                           "(2.0f) <= (1.0f)");
   2758 
   2759   // or by a small yet non-negligible margin,
   2760   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2761     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2762   }, "(values_.further_from_one) <= (1.0f)");
   2763 
   2764 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2765   // Nokia's STLport crashes if we try to output infinity or NaN.
   2766   // C++Builder gives bad results for ordered comparisons involving NaNs
   2767   // due to compiler bugs.
   2768   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2769     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2770   }, "(values_.nan1) <= (values_.infinity)");
   2771   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2772     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2773   }, "(-values_.infinity) <= (values_.nan1)");
   2774   EXPECT_FATAL_FAILURE({  // NOLINT
   2775     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2776   }, "(values_.nan1) <= (values_.nan1)");
   2777 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2778 }
   2779 
   2780 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2781 typedef FloatingPointTest<double> DoubleTest;
   2782 
   2783 // Tests that the size of Double::Bits matches the size of double.
   2784 TEST_F(DoubleTest, Size) {
   2785   TestSize();
   2786 }
   2787 
   2788 // Tests comparing with +0 and -0.
   2789 TEST_F(DoubleTest, Zeros) {
   2790   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2791   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2792                           "1.0");
   2793   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2794                        "1.0");
   2795 }
   2796 
   2797 // Tests comparing numbers close to 0.
   2798 //
   2799 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2800 // overflow occurs when comparing numbers whose absolute value is very
   2801 // small.
   2802 TEST_F(DoubleTest, AlmostZeros) {
   2803   // In C++Builder, names within local classes (such as used by
   2804   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2805   // scoping class.  Use a static local alias as a workaround.
   2806   // We use the assignment syntax since some compilers, like Sun Studio,
   2807   // don't allow initializing references using construction syntax
   2808   // (parentheses).
   2809   static const DoubleTest::TestValues& v = this->values_;
   2810 
   2811   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2812   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2813   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2814 
   2815   EXPECT_FATAL_FAILURE({  // NOLINT
   2816     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2817                      v.further_from_negative_zero);
   2818   }, "v.further_from_negative_zero");
   2819 }
   2820 
   2821 // Tests comparing numbers close to each other.
   2822 TEST_F(DoubleTest, SmallDiff) {
   2823   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2824   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2825                           "values_.further_from_one");
   2826 }
   2827 
   2828 // Tests comparing numbers far apart.
   2829 TEST_F(DoubleTest, LargeDiff) {
   2830   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2831                           "3.0");
   2832 }
   2833 
   2834 // Tests comparing with infinity.
   2835 //
   2836 // This ensures that no overflow occurs when comparing numbers whose
   2837 // absolute value is very large.
   2838 TEST_F(DoubleTest, Infinity) {
   2839   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   2840   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   2841 #if !GTEST_OS_SYMBIAN
   2842   // Nokia's STLport crashes if we try to output infinity or NaN.
   2843   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   2844                           "-values_.infinity");
   2845 
   2846   // This is interesting as the representations of infinity_ and nan1_
   2847   // are only 1 DLP apart.
   2848   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   2849                           "values_.nan1");
   2850 #endif  // !GTEST_OS_SYMBIAN
   2851 }
   2852 
   2853 // Tests that comparing with NAN always returns false.
   2854 TEST_F(DoubleTest, NaN) {
   2855 #if !GTEST_OS_SYMBIAN
   2856   // In C++Builder, names within local classes (such as used by
   2857   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2858   // scoping class.  Use a static local alias as a workaround.
   2859   // We use the assignment syntax since some compilers, like Sun Studio,
   2860   // don't allow initializing references using construction syntax
   2861   // (parentheses).
   2862   static const DoubleTest::TestValues& v = this->values_;
   2863 
   2864   // Nokia's STLport crashes if we try to output infinity or NaN.
   2865   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   2866                           "v.nan1");
   2867   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   2868   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   2869   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   2870                        "v.infinity");
   2871 #endif  // !GTEST_OS_SYMBIAN
   2872 }
   2873 
   2874 // Tests that *_DOUBLE_EQ are reflexive.
   2875 TEST_F(DoubleTest, Reflexive) {
   2876   EXPECT_DOUBLE_EQ(0.0, 0.0);
   2877   EXPECT_DOUBLE_EQ(1.0, 1.0);
   2878 #if !GTEST_OS_SYMBIAN
   2879   // Nokia's STLport crashes if we try to output infinity or NaN.
   2880   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   2881 #endif  // !GTEST_OS_SYMBIAN
   2882 }
   2883 
   2884 // Tests that *_DOUBLE_EQ are commutative.
   2885 TEST_F(DoubleTest, Commutative) {
   2886   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   2887   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   2888 
   2889   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   2890   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   2891                           "1.0");
   2892 }
   2893 
   2894 // Tests EXPECT_NEAR.
   2895 TEST_F(DoubleTest, EXPECT_NEAR) {
   2896   EXPECT_NEAR(-1.0, -1.1, 0.2);
   2897   EXPECT_NEAR(2.0, 3.0, 1.0);
   2898   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   2899                           "The difference between 1.0 and 1.5 is 0.5, "
   2900                           "which exceeds 0.25");
   2901   // To work around a bug in gcc 2.95.0, there is intentionally no
   2902   // space after the first comma in the previous statement.
   2903 }
   2904 
   2905 // Tests ASSERT_NEAR.
   2906 TEST_F(DoubleTest, ASSERT_NEAR) {
   2907   ASSERT_NEAR(-1.0, -1.1, 0.2);
   2908   ASSERT_NEAR(2.0, 3.0, 1.0);
   2909   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   2910                        "The difference between 1.0 and 1.5 is 0.5, "
   2911                        "which exceeds 0.25");
   2912   // To work around a bug in gcc 2.95.0, there is intentionally no
   2913   // space after the first comma in the previous statement.
   2914 }
   2915 
   2916 // Tests the cases where DoubleLE() should succeed.
   2917 TEST_F(DoubleTest, DoubleLESucceeds) {
   2918   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   2919   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   2920 
   2921   // or when val1 is greater than, but almost equals to, val2.
   2922   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   2923 }
   2924 
   2925 // Tests the cases where DoubleLE() should fail.
   2926 TEST_F(DoubleTest, DoubleLEFails) {
   2927   // When val1 is greater than val2 by a large margin,
   2928   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   2929                           "(2.0) <= (1.0)");
   2930 
   2931   // or by a small yet non-negligible margin,
   2932   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2933     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   2934   }, "(values_.further_from_one) <= (1.0)");
   2935 
   2936 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2937   // Nokia's STLport crashes if we try to output infinity or NaN.
   2938   // C++Builder gives bad results for ordered comparisons involving NaNs
   2939   // due to compiler bugs.
   2940   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2941     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   2942   }, "(values_.nan1) <= (values_.infinity)");
   2943   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2944     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   2945   }, " (-values_.infinity) <= (values_.nan1)");
   2946   EXPECT_FATAL_FAILURE({  // NOLINT
   2947     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   2948   }, "(values_.nan1) <= (values_.nan1)");
   2949 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2950 }
   2951 
   2952 
   2953 // Verifies that a test or test case whose name starts with DISABLED_ is
   2954 // not run.
   2955 
   2956 // A test whose name starts with DISABLED_.
   2957 // Should not run.
   2958 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   2959   FAIL() << "Unexpected failure: Disabled test should not be run.";
   2960 }
   2961 
   2962 // A test whose name does not start with DISABLED_.
   2963 // Should run.
   2964 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   2965   EXPECT_EQ(1, 1);
   2966 }
   2967 
   2968 // A test case whose name starts with DISABLED_.
   2969 // Should not run.
   2970 TEST(DISABLED_TestCase, TestShouldNotRun) {
   2971   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   2972 }
   2973 
   2974 // A test case and test whose names start with DISABLED_.
   2975 // Should not run.
   2976 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   2977   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   2978 }
   2979 
   2980 // Check that when all tests in a test case are disabled, SetupTestCase() and
   2981 // TearDownTestCase() are not called.
   2982 class DisabledTestsTest : public Test {
   2983  protected:
   2984   static void SetUpTestCase() {
   2985     FAIL() << "Unexpected failure: All tests disabled in test case. "
   2986               "SetupTestCase() should not be called.";
   2987   }
   2988 
   2989   static void TearDownTestCase() {
   2990     FAIL() << "Unexpected failure: All tests disabled in test case. "
   2991               "TearDownTestCase() should not be called.";
   2992   }
   2993 };
   2994 
   2995 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   2996   FAIL() << "Unexpected failure: Disabled test should not be run.";
   2997 }
   2998 
   2999 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3000   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3001 }
   3002 
   3003 // Tests that disabled typed tests aren't run.
   3004 
   3005 #if GTEST_HAS_TYPED_TEST
   3006 
   3007 template <typename T>
   3008 class TypedTest : public Test {
   3009 };
   3010 
   3011 typedef testing::Types<int, double> NumericTypes;
   3012 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3013 
   3014 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3015   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3016 }
   3017 
   3018 template <typename T>
   3019 class DISABLED_TypedTest : public Test {
   3020 };
   3021 
   3022 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3023 
   3024 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3025   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3026 }
   3027 
   3028 #endif  // GTEST_HAS_TYPED_TEST
   3029 
   3030 // Tests that disabled type-parameterized tests aren't run.
   3031 
   3032 #if GTEST_HAS_TYPED_TEST_P
   3033 
   3034 template <typename T>
   3035 class TypedTestP : public Test {
   3036 };
   3037 
   3038 TYPED_TEST_CASE_P(TypedTestP);
   3039 
   3040 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3041   FAIL() << "Unexpected failure: "
   3042          << "Disabled type-parameterized test should not run.";
   3043 }
   3044 
   3045 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3046 
   3047 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3048 
   3049 template <typename T>
   3050 class DISABLED_TypedTestP : public Test {
   3051 };
   3052 
   3053 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3054 
   3055 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3056   FAIL() << "Unexpected failure: "
   3057          << "Disabled type-parameterized test should not run.";
   3058 }
   3059 
   3060 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3061 
   3062 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3063 
   3064 #endif  // GTEST_HAS_TYPED_TEST_P
   3065 
   3066 // Tests that assertion macros evaluate their arguments exactly once.
   3067 
   3068 class SingleEvaluationTest : public Test {
   3069  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3070   // This helper function is needed by the FailedASSERT_STREQ test
   3071   // below.  It's public to work around C++Builder's bug with scoping local
   3072   // classes.
   3073   static void CompareAndIncrementCharPtrs() {
   3074     ASSERT_STREQ(p1_++, p2_++);
   3075   }
   3076 
   3077   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3078   // public to work around C++Builder's bug with scoping local classes.
   3079   static void CompareAndIncrementInts() {
   3080     ASSERT_NE(a_++, b_++);
   3081   }
   3082 
   3083  protected:
   3084   SingleEvaluationTest() {
   3085     p1_ = s1_;
   3086     p2_ = s2_;
   3087     a_ = 0;
   3088     b_ = 0;
   3089   }
   3090 
   3091   static const char* const s1_;
   3092   static const char* const s2_;
   3093   static const char* p1_;
   3094   static const char* p2_;
   3095 
   3096   static int a_;
   3097   static int b_;
   3098 };
   3099 
   3100 const char* const SingleEvaluationTest::s1_ = "01234";
   3101 const char* const SingleEvaluationTest::s2_ = "abcde";
   3102 const char* SingleEvaluationTest::p1_;
   3103 const char* SingleEvaluationTest::p2_;
   3104 int SingleEvaluationTest::a_;
   3105 int SingleEvaluationTest::b_;
   3106 
   3107 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3108 // exactly once.
   3109 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3110   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3111                        "p2_++");
   3112   EXPECT_EQ(s1_ + 1, p1_);
   3113   EXPECT_EQ(s2_ + 1, p2_);
   3114 }
   3115 
   3116 // Tests that string assertion arguments are evaluated exactly once.
   3117 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3118   // successful EXPECT_STRNE
   3119   EXPECT_STRNE(p1_++, p2_++);
   3120   EXPECT_EQ(s1_ + 1, p1_);
   3121   EXPECT_EQ(s2_ + 1, p2_);
   3122 
   3123   // failed EXPECT_STRCASEEQ
   3124   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3125                           "ignoring case");
   3126   EXPECT_EQ(s1_ + 2, p1_);
   3127   EXPECT_EQ(s2_ + 2, p2_);
   3128 }
   3129 
   3130 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3131 // once.
   3132 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3133   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3134                        "(a_++) != (b_++)");
   3135   EXPECT_EQ(1, a_);
   3136   EXPECT_EQ(1, b_);
   3137 }
   3138 
   3139 // Tests that assertion arguments are evaluated exactly once.
   3140 TEST_F(SingleEvaluationTest, OtherCases) {
   3141   // successful EXPECT_TRUE
   3142   EXPECT_TRUE(0 == a_++);  // NOLINT
   3143   EXPECT_EQ(1, a_);
   3144 
   3145   // failed EXPECT_TRUE
   3146   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3147   EXPECT_EQ(2, a_);
   3148 
   3149   // successful EXPECT_GT
   3150   EXPECT_GT(a_++, b_++);
   3151   EXPECT_EQ(3, a_);
   3152   EXPECT_EQ(1, b_);
   3153 
   3154   // failed EXPECT_LT
   3155   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3156   EXPECT_EQ(4, a_);
   3157   EXPECT_EQ(2, b_);
   3158 
   3159   // successful ASSERT_TRUE
   3160   ASSERT_TRUE(0 < a_++);  // NOLINT
   3161   EXPECT_EQ(5, a_);
   3162 
   3163   // successful ASSERT_GT
   3164   ASSERT_GT(a_++, b_++);
   3165   EXPECT_EQ(6, a_);
   3166   EXPECT_EQ(3, b_);
   3167 }
   3168 
   3169 #if GTEST_HAS_EXCEPTIONS
   3170 
   3171 void ThrowAnInteger() {
   3172   throw 1;
   3173 }
   3174 
   3175 // Tests that assertion arguments are evaluated exactly once.
   3176 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3177   // successful EXPECT_THROW
   3178   EXPECT_THROW({  // NOLINT
   3179     a_++;
   3180     ThrowAnInteger();
   3181   }, int);
   3182   EXPECT_EQ(1, a_);
   3183 
   3184   // failed EXPECT_THROW, throws different
   3185   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3186     a_++;
   3187     ThrowAnInteger();
   3188   }, bool), "throws a different type");
   3189   EXPECT_EQ(2, a_);
   3190 
   3191   // failed EXPECT_THROW, throws nothing
   3192   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3193   EXPECT_EQ(3, a_);
   3194 
   3195   // successful EXPECT_NO_THROW
   3196   EXPECT_NO_THROW(a_++);
   3197   EXPECT_EQ(4, a_);
   3198 
   3199   // failed EXPECT_NO_THROW
   3200   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3201     a_++;
   3202     ThrowAnInteger();
   3203   }), "it throws");
   3204   EXPECT_EQ(5, a_);
   3205 
   3206   // successful EXPECT_ANY_THROW
   3207   EXPECT_ANY_THROW({  // NOLINT
   3208     a_++;
   3209     ThrowAnInteger();
   3210   });
   3211   EXPECT_EQ(6, a_);
   3212 
   3213   // failed EXPECT_ANY_THROW
   3214   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3215   EXPECT_EQ(7, a_);
   3216 }
   3217 
   3218 #endif  // GTEST_HAS_EXCEPTIONS
   3219 
   3220 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3221 class NoFatalFailureTest : public Test {
   3222  protected:
   3223   void Succeeds() {}
   3224   void FailsNonFatal() {
   3225     ADD_FAILURE() << "some non-fatal failure";
   3226   }
   3227   void Fails() {
   3228     FAIL() << "some fatal failure";
   3229   }
   3230 
   3231   void DoAssertNoFatalFailureOnFails() {
   3232     ASSERT_NO_FATAL_FAILURE(Fails());
   3233     ADD_FAILURE() << "shold not reach here.";
   3234   }
   3235 
   3236   void DoExpectNoFatalFailureOnFails() {
   3237     EXPECT_NO_FATAL_FAILURE(Fails());
   3238     ADD_FAILURE() << "other failure";
   3239   }
   3240 };
   3241 
   3242 TEST_F(NoFatalFailureTest, NoFailure) {
   3243   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3244   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3245 }
   3246 
   3247 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3248   EXPECT_NONFATAL_FAILURE(
   3249       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3250       "some non-fatal failure");
   3251   EXPECT_NONFATAL_FAILURE(
   3252       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3253       "some non-fatal failure");
   3254 }
   3255 
   3256 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3257   TestPartResultArray gtest_failures;
   3258   {
   3259     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3260     DoAssertNoFatalFailureOnFails();
   3261   }
   3262   ASSERT_EQ(2, gtest_failures.size());
   3263   EXPECT_EQ(TestPartResult::kFatalFailure,
   3264             gtest_failures.GetTestPartResult(0).type());
   3265   EXPECT_EQ(TestPartResult::kFatalFailure,
   3266             gtest_failures.GetTestPartResult(1).type());
   3267   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3268                       gtest_failures.GetTestPartResult(0).message());
   3269   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3270                       gtest_failures.GetTestPartResult(1).message());
   3271 }
   3272 
   3273 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3274   TestPartResultArray gtest_failures;
   3275   {
   3276     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3277     DoExpectNoFatalFailureOnFails();
   3278   }
   3279   ASSERT_EQ(3, gtest_failures.size());
   3280   EXPECT_EQ(TestPartResult::kFatalFailure,
   3281             gtest_failures.GetTestPartResult(0).type());
   3282   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3283             gtest_failures.GetTestPartResult(1).type());
   3284   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3285             gtest_failures.GetTestPartResult(2).type());
   3286   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3287                       gtest_failures.GetTestPartResult(0).message());
   3288   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3289                       gtest_failures.GetTestPartResult(1).message());
   3290   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3291                       gtest_failures.GetTestPartResult(2).message());
   3292 }
   3293 
   3294 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3295   TestPartResultArray gtest_failures;
   3296   {
   3297     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3298     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3299   }
   3300   ASSERT_EQ(2, gtest_failures.size());
   3301   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3302             gtest_failures.GetTestPartResult(0).type());
   3303   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3304             gtest_failures.GetTestPartResult(1).type());
   3305   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3306                       gtest_failures.GetTestPartResult(0).message());
   3307   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3308                       gtest_failures.GetTestPartResult(1).message());
   3309 }
   3310 
   3311 // Tests non-string assertions.
   3312 
   3313 // Tests EqFailure(), used for implementing *EQ* assertions.
   3314 TEST(AssertionTest, EqFailure) {
   3315   const std::string foo_val("5"), bar_val("6");
   3316   const std::string msg1(
   3317       EqFailure("foo", "bar", foo_val, bar_val, false)
   3318       .failure_message());
   3319   EXPECT_STREQ(
   3320       "Value of: bar\n"
   3321       "  Actual: 6\n"
   3322       "Expected: foo\n"
   3323       "Which is: 5",
   3324       msg1.c_str());
   3325 
   3326   const std::string msg2(
   3327       EqFailure("foo", "6", foo_val, bar_val, false)
   3328       .failure_message());
   3329   EXPECT_STREQ(
   3330       "Value of: 6\n"
   3331       "Expected: foo\n"
   3332       "Which is: 5",
   3333       msg2.c_str());
   3334 
   3335   const std::string msg3(
   3336       EqFailure("5", "bar", foo_val, bar_val, false)
   3337       .failure_message());
   3338   EXPECT_STREQ(
   3339       "Value of: bar\n"
   3340       "  Actual: 6\n"
   3341       "Expected: 5",
   3342       msg3.c_str());
   3343 
   3344   const std::string msg4(
   3345       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3346   EXPECT_STREQ(
   3347       "Value of: 6\n"
   3348       "Expected: 5",
   3349       msg4.c_str());
   3350 
   3351   const std::string msg5(
   3352       EqFailure("foo", "bar",
   3353                 std::string("\"x\""), std::string("\"y\""),
   3354                 true).failure_message());
   3355   EXPECT_STREQ(
   3356       "Value of: bar\n"
   3357       "  Actual: \"y\"\n"
   3358       "Expected: foo (ignoring case)\n"
   3359       "Which is: \"x\"",
   3360       msg5.c_str());
   3361 }
   3362 
   3363 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3364 TEST(AssertionTest, AppendUserMessage) {
   3365   const std::string foo("foo");
   3366 
   3367   Message msg;
   3368   EXPECT_STREQ("foo",
   3369                AppendUserMessage(foo, msg).c_str());
   3370 
   3371   msg << "bar";
   3372   EXPECT_STREQ("foo\nbar",
   3373                AppendUserMessage(foo, msg).c_str());
   3374 }
   3375 
   3376 #ifdef __BORLANDC__
   3377 // Silences warnings: "Condition is always true", "Unreachable code"
   3378 # pragma option push -w-ccc -w-rch
   3379 #endif
   3380 
   3381 // Tests ASSERT_TRUE.
   3382 TEST(AssertionTest, ASSERT_TRUE) {
   3383   ASSERT_TRUE(2 > 1);  // NOLINT
   3384   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3385                        "2 < 1");
   3386 }
   3387 
   3388 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3389 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3390   ASSERT_TRUE(ResultIsEven(2));
   3391 #ifndef __BORLANDC__
   3392   // ICE's in C++Builder.
   3393   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3394                        "Value of: ResultIsEven(3)\n"
   3395                        "  Actual: false (3 is odd)\n"
   3396                        "Expected: true");
   3397 #endif
   3398   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3399   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3400                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3401                        "  Actual: false (3 is odd)\n"
   3402                        "Expected: true");
   3403 }
   3404 
   3405 // Tests ASSERT_FALSE.
   3406 TEST(AssertionTest, ASSERT_FALSE) {
   3407   ASSERT_FALSE(2 < 1);  // NOLINT
   3408   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3409                        "Value of: 2 > 1\n"
   3410                        "  Actual: true\n"
   3411                        "Expected: false");
   3412 }
   3413 
   3414 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3415 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3416   ASSERT_FALSE(ResultIsEven(3));
   3417 #ifndef __BORLANDC__
   3418   // ICE's in C++Builder.
   3419   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3420                        "Value of: ResultIsEven(2)\n"
   3421                        "  Actual: true (2 is even)\n"
   3422                        "Expected: false");
   3423 #endif
   3424   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3425   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3426                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3427                        "  Actual: true\n"
   3428                        "Expected: false");
   3429 }
   3430 
   3431 #ifdef __BORLANDC__
   3432 // Restores warnings after previous "#pragma option push" supressed them
   3433 # pragma option pop
   3434 #endif
   3435 
   3436 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3437 // sure that the specialization we did for integer and anonymous enums
   3438 // isn't used for double arguments.
   3439 TEST(ExpectTest, ASSERT_EQ_Double) {
   3440   // A success.
   3441   ASSERT_EQ(5.6, 5.6);
   3442 
   3443   // A failure.
   3444   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3445                        "5.1");
   3446 }
   3447 
   3448 // Tests ASSERT_EQ.
   3449 TEST(AssertionTest, ASSERT_EQ) {
   3450   ASSERT_EQ(5, 2 + 3);
   3451   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3452                        "Value of: 2*3\n"
   3453                        "  Actual: 6\n"
   3454                        "Expected: 5");
   3455 }
   3456 
   3457 // Tests ASSERT_EQ(NULL, pointer).
   3458 #if GTEST_CAN_COMPARE_NULL
   3459 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3460   // A success.
   3461   const char* p = NULL;
   3462   // Some older GCC versions may issue a spurious waring in this or the next
   3463   // assertion statement. This warning should not be suppressed with
   3464   // static_cast since the test verifies the ability to use bare NULL as the
   3465   // expected parameter to the macro.
   3466   ASSERT_EQ(NULL, p);
   3467 
   3468   // A failure.
   3469   static int n = 0;
   3470   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3471                        "Value of: &n\n");
   3472 }
   3473 #endif  // GTEST_CAN_COMPARE_NULL
   3474 
   3475 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3476 // treated as a null pointer by the compiler, we need to make sure
   3477 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3478 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3479 TEST(ExpectTest, ASSERT_EQ_0) {
   3480   int n = 0;
   3481 
   3482   // A success.
   3483   ASSERT_EQ(0, n);
   3484 
   3485   // A failure.
   3486   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3487                        "Expected: 0");
   3488 }
   3489 
   3490 // Tests ASSERT_NE.
   3491 TEST(AssertionTest, ASSERT_NE) {
   3492   ASSERT_NE(6, 7);
   3493   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3494                        "Expected: ('a') != ('a'), "
   3495                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3496 }
   3497 
   3498 // Tests ASSERT_LE.
   3499 TEST(AssertionTest, ASSERT_LE) {
   3500   ASSERT_LE(2, 3);
   3501   ASSERT_LE(2, 2);
   3502   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3503                        "Expected: (2) <= (0), actual: 2 vs 0");
   3504 }
   3505 
   3506 // Tests ASSERT_LT.
   3507 TEST(AssertionTest, ASSERT_LT) {
   3508   ASSERT_LT(2, 3);
   3509   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3510                        "Expected: (2) < (2), actual: 2 vs 2");
   3511 }
   3512 
   3513 // Tests ASSERT_GE.
   3514 TEST(AssertionTest, ASSERT_GE) {
   3515   ASSERT_GE(2, 1);
   3516   ASSERT_GE(2, 2);
   3517   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3518                        "Expected: (2) >= (3), actual: 2 vs 3");
   3519 }
   3520 
   3521 // Tests ASSERT_GT.
   3522 TEST(AssertionTest, ASSERT_GT) {
   3523   ASSERT_GT(2, 1);
   3524   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3525                        "Expected: (2) > (2), actual: 2 vs 2");
   3526 }
   3527 
   3528 #if GTEST_HAS_EXCEPTIONS
   3529 
   3530 void ThrowNothing() {}
   3531 
   3532 // Tests ASSERT_THROW.
   3533 TEST(AssertionTest, ASSERT_THROW) {
   3534   ASSERT_THROW(ThrowAnInteger(), int);
   3535 
   3536 # ifndef __BORLANDC__
   3537 
   3538   // ICE's in C++Builder 2007 and 2009.
   3539   EXPECT_FATAL_FAILURE(
   3540       ASSERT_THROW(ThrowAnInteger(), bool),
   3541       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3542       "  Actual: it throws a different type.");
   3543 # endif
   3544 
   3545   EXPECT_FATAL_FAILURE(
   3546       ASSERT_THROW(ThrowNothing(), bool),
   3547       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3548       "  Actual: it throws nothing.");
   3549 }
   3550 
   3551 // Tests ASSERT_NO_THROW.
   3552 TEST(AssertionTest, ASSERT_NO_THROW) {
   3553   ASSERT_NO_THROW(ThrowNothing());
   3554   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3555                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3556                        "\n  Actual: it throws.");
   3557 }
   3558 
   3559 // Tests ASSERT_ANY_THROW.
   3560 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3561   ASSERT_ANY_THROW(ThrowAnInteger());
   3562   EXPECT_FATAL_FAILURE(
   3563       ASSERT_ANY_THROW(ThrowNothing()),
   3564       "Expected: ThrowNothing() throws an exception.\n"
   3565       "  Actual: it doesn't.");
   3566 }
   3567 
   3568 #endif  // GTEST_HAS_EXCEPTIONS
   3569 
   3570 // Makes sure we deal with the precedence of <<.  This test should
   3571 // compile.
   3572 TEST(AssertionTest, AssertPrecedence) {
   3573   ASSERT_EQ(1 < 2, true);
   3574   bool false_value = false;
   3575   ASSERT_EQ(true && false_value, false);
   3576 }
   3577 
   3578 // A subroutine used by the following test.
   3579 void TestEq1(int x) {
   3580   ASSERT_EQ(1, x);
   3581 }
   3582 
   3583 // Tests calling a test subroutine that's not part of a fixture.
   3584 TEST(AssertionTest, NonFixtureSubroutine) {
   3585   EXPECT_FATAL_FAILURE(TestEq1(2),
   3586                        "Value of: x");
   3587 }
   3588 
   3589 // An uncopyable class.
   3590 class Uncopyable {
   3591  public:
   3592   explicit Uncopyable(int a_value) : value_(a_value) {}
   3593 
   3594   int value() const { return value_; }
   3595   bool operator==(const Uncopyable& rhs) const {
   3596     return value() == rhs.value();
   3597   }
   3598  private:
   3599   // This constructor deliberately has no implementation, as we don't
   3600   // want this class to be copyable.
   3601   Uncopyable(const Uncopyable&);  // NOLINT
   3602 
   3603   int value_;
   3604 };
   3605 
   3606 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3607   return os << value.value();
   3608 }
   3609 
   3610 
   3611 bool IsPositiveUncopyable(const Uncopyable& x) {
   3612   return x.value() > 0;
   3613 }
   3614 
   3615 // A subroutine used by the following test.
   3616 void TestAssertNonPositive() {
   3617   Uncopyable y(-1);
   3618   ASSERT_PRED1(IsPositiveUncopyable, y);
   3619 }
   3620 // A subroutine used by the following test.
   3621 void TestAssertEqualsUncopyable() {
   3622   Uncopyable x(5);
   3623   Uncopyable y(-1);
   3624   ASSERT_EQ(x, y);
   3625 }
   3626 
   3627 // Tests that uncopyable objects can be used in assertions.
   3628 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3629   Uncopyable x(5);
   3630   ASSERT_PRED1(IsPositiveUncopyable, x);
   3631   ASSERT_EQ(x, x);
   3632   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3633     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3634   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3635     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3636 }
   3637 
   3638 // Tests that uncopyable objects can be used in expects.
   3639 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3640   Uncopyable x(5);
   3641   EXPECT_PRED1(IsPositiveUncopyable, x);
   3642   Uncopyable y(-1);
   3643   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3644     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3645   EXPECT_EQ(x, x);
   3646   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3647     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3648 }
   3649 
   3650 enum NamedEnum {
   3651   kE1 = 0,
   3652   kE2 = 1
   3653 };
   3654 
   3655 TEST(AssertionTest, NamedEnum) {
   3656   EXPECT_EQ(kE1, kE1);
   3657   EXPECT_LT(kE1, kE2);
   3658   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3659   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3660 }
   3661 
   3662 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3663 // anonymous enums in assertions.  Therefore the following test is not
   3664 // done on Mac.
   3665 // Sun Studio and HP aCC also reject this code.
   3666 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3667 
   3668 // Tests using assertions with anonymous enums.
   3669 enum {
   3670   kCaseA = -1,
   3671 
   3672 # if GTEST_OS_LINUX
   3673 
   3674   // We want to test the case where the size of the anonymous enum is
   3675   // larger than sizeof(int), to make sure our implementation of the
   3676   // assertions doesn't truncate the enums.  However, MSVC
   3677   // (incorrectly) doesn't allow an enum value to exceed the range of
   3678   // an int, so this has to be conditionally compiled.
   3679   //
   3680   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3681   // int size.  We want to test whether this will confuse the
   3682   // assertions.
   3683   kCaseB = testing::internal::kMaxBiggestInt,
   3684 
   3685 # else
   3686 
   3687   kCaseB = INT_MAX,
   3688 
   3689 # endif  // GTEST_OS_LINUX
   3690 
   3691   kCaseC = 42
   3692 };
   3693 
   3694 TEST(AssertionTest, AnonymousEnum) {
   3695 # if GTEST_OS_LINUX
   3696 
   3697   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3698 
   3699 # endif  // GTEST_OS_LINUX
   3700 
   3701   EXPECT_EQ(kCaseA, kCaseA);
   3702   EXPECT_NE(kCaseA, kCaseB);
   3703   EXPECT_LT(kCaseA, kCaseB);
   3704   EXPECT_LE(kCaseA, kCaseB);
   3705   EXPECT_GT(kCaseB, kCaseA);
   3706   EXPECT_GE(kCaseA, kCaseA);
   3707   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3708                           "(kCaseA) >= (kCaseB)");
   3709   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3710                           "-1 vs 42");
   3711 
   3712   ASSERT_EQ(kCaseA, kCaseA);
   3713   ASSERT_NE(kCaseA, kCaseB);
   3714   ASSERT_LT(kCaseA, kCaseB);
   3715   ASSERT_LE(kCaseA, kCaseB);
   3716   ASSERT_GT(kCaseB, kCaseA);
   3717   ASSERT_GE(kCaseA, kCaseA);
   3718 
   3719 # ifndef __BORLANDC__
   3720 
   3721   // ICE's in C++Builder.
   3722   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3723                        "Value of: kCaseB");
   3724   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3725                        "Actual: 42");
   3726 # endif
   3727 
   3728   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3729                        "Which is: -1");
   3730 }
   3731 
   3732 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3733 
   3734 #if GTEST_OS_WINDOWS
   3735 
   3736 static HRESULT UnexpectedHRESULTFailure() {
   3737   return E_UNEXPECTED;
   3738 }
   3739 
   3740 static HRESULT OkHRESULTSuccess() {
   3741   return S_OK;
   3742 }
   3743 
   3744 static HRESULT FalseHRESULTSuccess() {
   3745   return S_FALSE;
   3746 }
   3747 
   3748 // HRESULT assertion tests test both zero and non-zero
   3749 // success codes as well as failure message for each.
   3750 //
   3751 // Windows CE doesn't support message texts.
   3752 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3753   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3754   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3755 
   3756   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3757     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3758     "  Actual: 0x8000FFFF");
   3759 }
   3760 
   3761 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   3762   ASSERT_HRESULT_SUCCEEDED(S_OK);
   3763   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   3764 
   3765   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3766     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3767     "  Actual: 0x8000FFFF");
   3768 }
   3769 
   3770 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   3771   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   3772 
   3773   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   3774     "Expected: (OkHRESULTSuccess()) fails.\n"
   3775     "  Actual: 0x0");
   3776   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3777     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3778     "  Actual: 0x1");
   3779 }
   3780 
   3781 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   3782   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   3783 
   3784 # ifndef __BORLANDC__
   3785 
   3786   // ICE's in C++Builder 2007 and 2009.
   3787   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   3788     "Expected: (OkHRESULTSuccess()) fails.\n"
   3789     "  Actual: 0x0");
   3790 # endif
   3791 
   3792   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3793     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3794     "  Actual: 0x1");
   3795 }
   3796 
   3797 // Tests that streaming to the HRESULT macros works.
   3798 TEST(HRESULTAssertionTest, Streaming) {
   3799   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3800   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3801   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3802   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3803 
   3804   EXPECT_NONFATAL_FAILURE(
   3805       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3806       "expected failure");
   3807 
   3808 # ifndef __BORLANDC__
   3809 
   3810   // ICE's in C++Builder 2007 and 2009.
   3811   EXPECT_FATAL_FAILURE(
   3812       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3813       "expected failure");
   3814 # endif
   3815 
   3816   EXPECT_NONFATAL_FAILURE(
   3817       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   3818       "expected failure");
   3819 
   3820   EXPECT_FATAL_FAILURE(
   3821       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   3822       "expected failure");
   3823 }
   3824 
   3825 #endif  // GTEST_OS_WINDOWS
   3826 
   3827 #ifdef __BORLANDC__
   3828 // Silences warnings: "Condition is always true", "Unreachable code"
   3829 # pragma option push -w-ccc -w-rch
   3830 #endif
   3831 
   3832 // Tests that the assertion macros behave like single statements.
   3833 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   3834   if (AlwaysFalse())
   3835     ASSERT_TRUE(false) << "This should never be executed; "
   3836                           "It's a compilation test only.";
   3837 
   3838   if (AlwaysTrue())
   3839     EXPECT_FALSE(false);
   3840   else
   3841     ;  // NOLINT
   3842 
   3843   if (AlwaysFalse())
   3844     ASSERT_LT(1, 3);
   3845 
   3846   if (AlwaysFalse())
   3847     ;  // NOLINT
   3848   else
   3849     EXPECT_GT(3, 2) << "";
   3850 }
   3851 
   3852 #if GTEST_HAS_EXCEPTIONS
   3853 // Tests that the compiler will not complain about unreachable code in the
   3854 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   3855 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   3856   int n = 0;
   3857 
   3858   EXPECT_THROW(throw 1, int);
   3859   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   3860   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   3861   EXPECT_NO_THROW(n++);
   3862   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   3863   EXPECT_ANY_THROW(throw 1);
   3864   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   3865 }
   3866 
   3867 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   3868   if (AlwaysFalse())
   3869     EXPECT_THROW(ThrowNothing(), bool);
   3870 
   3871   if (AlwaysTrue())
   3872     EXPECT_THROW(ThrowAnInteger(), int);
   3873   else
   3874     ;  // NOLINT
   3875 
   3876   if (AlwaysFalse())
   3877     EXPECT_NO_THROW(ThrowAnInteger());
   3878 
   3879   if (AlwaysTrue())
   3880     EXPECT_NO_THROW(ThrowNothing());
   3881   else
   3882     ;  // NOLINT
   3883 
   3884   if (AlwaysFalse())
   3885     EXPECT_ANY_THROW(ThrowNothing());
   3886 
   3887   if (AlwaysTrue())
   3888     EXPECT_ANY_THROW(ThrowAnInteger());
   3889   else
   3890     ;  // NOLINT
   3891 }
   3892 #endif  // GTEST_HAS_EXCEPTIONS
   3893 
   3894 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   3895   if (AlwaysFalse())
   3896     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   3897                                     << "It's a compilation test only.";
   3898   else
   3899     ;  // NOLINT
   3900 
   3901   if (AlwaysFalse())
   3902     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   3903   else
   3904     ;  // NOLINT
   3905 
   3906   if (AlwaysTrue())
   3907     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   3908   else
   3909     ;  // NOLINT
   3910 
   3911   if (AlwaysFalse())
   3912     ;  // NOLINT
   3913   else
   3914     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   3915 }
   3916 
   3917 // Tests that the assertion macros work well with switch statements.
   3918 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   3919   switch (0) {
   3920     case 1:
   3921       break;
   3922     default:
   3923       ASSERT_TRUE(true);
   3924   }
   3925 
   3926   switch (0)
   3927     case 0:
   3928       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   3929 
   3930   // Binary assertions are implemented using a different code path
   3931   // than the Boolean assertions.  Hence we test them separately.
   3932   switch (0) {
   3933     case 1:
   3934     default:
   3935       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   3936   }
   3937 
   3938   switch (0)
   3939     case 0:
   3940       EXPECT_NE(1, 2);
   3941 }
   3942 
   3943 #if GTEST_HAS_EXCEPTIONS
   3944 
   3945 void ThrowAString() {
   3946     throw "std::string";
   3947 }
   3948 
   3949 // Test that the exception assertion macros compile and work with const
   3950 // type qualifier.
   3951 TEST(AssertionSyntaxTest, WorksWithConst) {
   3952     ASSERT_THROW(ThrowAString(), const char*);
   3953 
   3954     EXPECT_THROW(ThrowAString(), const char*);
   3955 }
   3956 
   3957 #endif  // GTEST_HAS_EXCEPTIONS
   3958 
   3959 }  // namespace
   3960 
   3961 namespace testing {
   3962 
   3963 // Tests that Google Test tracks SUCCEED*.
   3964 TEST(SuccessfulAssertionTest, SUCCEED) {
   3965   SUCCEED();
   3966   SUCCEED() << "OK";
   3967   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   3968 }
   3969 
   3970 // Tests that Google Test doesn't track successful EXPECT_*.
   3971 TEST(SuccessfulAssertionTest, EXPECT) {
   3972   EXPECT_TRUE(true);
   3973   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   3974 }
   3975 
   3976 // Tests that Google Test doesn't track successful EXPECT_STR*.
   3977 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   3978   EXPECT_STREQ("", "");
   3979   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   3980 }
   3981 
   3982 // Tests that Google Test doesn't track successful ASSERT_*.
   3983 TEST(SuccessfulAssertionTest, ASSERT) {
   3984   ASSERT_TRUE(true);
   3985   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   3986 }
   3987 
   3988 // Tests that Google Test doesn't track successful ASSERT_STR*.
   3989 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   3990   ASSERT_STREQ("", "");
   3991   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   3992 }
   3993 
   3994 }  // namespace testing
   3995 
   3996 namespace {
   3997 
   3998 // Tests the message streaming variation of assertions.
   3999 
   4000 TEST(AssertionWithMessageTest, EXPECT) {
   4001   EXPECT_EQ(1, 1) << "This should succeed.";
   4002   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4003                           "Expected failure #1");
   4004   EXPECT_LE(1, 2) << "This should succeed.";
   4005   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4006                           "Expected failure #2.");
   4007   EXPECT_GE(1, 0) << "This should succeed.";
   4008   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4009                           "Expected failure #3.");
   4010 
   4011   EXPECT_STREQ("1", "1") << "This should succeed.";
   4012   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4013                           "Expected failure #4.");
   4014   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4015   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4016                           "Expected failure #5.");
   4017 
   4018   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4019   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4020                           "Expected failure #6.");
   4021   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4022 }
   4023 
   4024 TEST(AssertionWithMessageTest, ASSERT) {
   4025   ASSERT_EQ(1, 1) << "This should succeed.";
   4026   ASSERT_NE(1, 2) << "This should succeed.";
   4027   ASSERT_LE(1, 2) << "This should succeed.";
   4028   ASSERT_LT(1, 2) << "This should succeed.";
   4029   ASSERT_GE(1, 0) << "This should succeed.";
   4030   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4031                        "Expected failure.");
   4032 }
   4033 
   4034 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4035   ASSERT_STREQ("1", "1") << "This should succeed.";
   4036   ASSERT_STRNE("1", "2") << "This should succeed.";
   4037   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4038   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4039                        "Expected failure.");
   4040 }
   4041 
   4042 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4043   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4044   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4045   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4046                        "Expect failure.");
   4047   // To work around a bug in gcc 2.95.0, there is intentionally no
   4048   // space after the first comma in the previous statement.
   4049 }
   4050 
   4051 // Tests using ASSERT_FALSE with a streamed message.
   4052 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4053   ASSERT_FALSE(false) << "This shouldn't fail.";
   4054   EXPECT_FATAL_FAILURE({  // NOLINT
   4055     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4056                        << " evaluates to " << true;
   4057   }, "Expected failure");
   4058 }
   4059 
   4060 // Tests using FAIL with a streamed message.
   4061 TEST(AssertionWithMessageTest, FAIL) {
   4062   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4063                        "0");
   4064 }
   4065 
   4066 // Tests using SUCCEED with a streamed message.
   4067 TEST(AssertionWithMessageTest, SUCCEED) {
   4068   SUCCEED() << "Success == " << 1;
   4069 }
   4070 
   4071 // Tests using ASSERT_TRUE with a streamed message.
   4072 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4073   ASSERT_TRUE(true) << "This should succeed.";
   4074   ASSERT_TRUE(true) << true;
   4075   EXPECT_FATAL_FAILURE({  // NOLINT
   4076     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4077                        << static_cast<char *>(NULL);
   4078   }, "(null)(null)");
   4079 }
   4080 
   4081 #if GTEST_OS_WINDOWS
   4082 // Tests using wide strings in assertion messages.
   4083 TEST(AssertionWithMessageTest, WideStringMessage) {
   4084   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4085     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4086   }, "This failure is expected.");
   4087   EXPECT_FATAL_FAILURE({  // NOLINT
   4088     ASSERT_EQ(1, 2) << "This failure is "
   4089                     << L"expected too.\x8120";
   4090   }, "This failure is expected too.");
   4091 }
   4092 #endif  // GTEST_OS_WINDOWS
   4093 
   4094 // Tests EXPECT_TRUE.
   4095 TEST(ExpectTest, EXPECT_TRUE) {
   4096   EXPECT_TRUE(true) << "Intentional success";
   4097   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4098                           "Intentional failure #1.");
   4099   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4100                           "Intentional failure #2.");
   4101   EXPECT_TRUE(2 > 1);  // NOLINT
   4102   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4103                           "Value of: 2 < 1\n"
   4104                           "  Actual: false\n"
   4105                           "Expected: true");
   4106   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4107                           "2 > 3");
   4108 }
   4109 
   4110 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4111 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4112   EXPECT_TRUE(ResultIsEven(2));
   4113   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4114                           "Value of: ResultIsEven(3)\n"
   4115                           "  Actual: false (3 is odd)\n"
   4116                           "Expected: true");
   4117   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4118   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4119                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4120                           "  Actual: false (3 is odd)\n"
   4121                           "Expected: true");
   4122 }
   4123 
   4124 // Tests EXPECT_FALSE with a streamed message.
   4125 TEST(ExpectTest, EXPECT_FALSE) {
   4126   EXPECT_FALSE(2 < 1);  // NOLINT
   4127   EXPECT_FALSE(false) << "Intentional success";
   4128   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4129                           "Intentional failure #1.");
   4130   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4131                           "Intentional failure #2.");
   4132   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4133                           "Value of: 2 > 1\n"
   4134                           "  Actual: true\n"
   4135                           "Expected: false");
   4136   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4137                           "2 < 3");
   4138 }
   4139 
   4140 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4141 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4142   EXPECT_FALSE(ResultIsEven(3));
   4143   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4144                           "Value of: ResultIsEven(2)\n"
   4145                           "  Actual: true (2 is even)\n"
   4146                           "Expected: false");
   4147   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4148   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4149                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4150                           "  Actual: true\n"
   4151                           "Expected: false");
   4152 }
   4153 
   4154 #ifdef __BORLANDC__
   4155 // Restores warnings after previous "#pragma option push" supressed them
   4156 # pragma option pop
   4157 #endif
   4158 
   4159 // Tests EXPECT_EQ.
   4160 TEST(ExpectTest, EXPECT_EQ) {
   4161   EXPECT_EQ(5, 2 + 3);
   4162   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4163                           "Value of: 2*3\n"
   4164                           "  Actual: 6\n"
   4165                           "Expected: 5");
   4166   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4167                           "2 - 3");
   4168 }
   4169 
   4170 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4171 // sure that the specialization we did for integer and anonymous enums
   4172 // isn't used for double arguments.
   4173 TEST(ExpectTest, EXPECT_EQ_Double) {
   4174   // A success.
   4175   EXPECT_EQ(5.6, 5.6);
   4176 
   4177   // A failure.
   4178   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4179                           "5.1");
   4180 }
   4181 
   4182 #if GTEST_CAN_COMPARE_NULL
   4183 // Tests EXPECT_EQ(NULL, pointer).
   4184 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4185   // A success.
   4186   const char* p = NULL;
   4187   // Some older GCC versions may issue a spurious warning in this or the next
   4188   // assertion statement. This warning should not be suppressed with
   4189   // static_cast since the test verifies the ability to use bare NULL as the
   4190   // expected parameter to the macro.
   4191   EXPECT_EQ(NULL, p);
   4192 
   4193   // A failure.
   4194   int n = 0;
   4195   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4196                           "Value of: &n\n");
   4197 }
   4198 #endif  // GTEST_CAN_COMPARE_NULL
   4199 
   4200 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4201 // treated as a null pointer by the compiler, we need to make sure
   4202 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4203 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4204 TEST(ExpectTest, EXPECT_EQ_0) {
   4205   int n = 0;
   4206 
   4207   // A success.
   4208   EXPECT_EQ(0, n);
   4209 
   4210   // A failure.
   4211   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4212                           "Expected: 0");
   4213 }
   4214 
   4215 // Tests EXPECT_NE.
   4216 TEST(ExpectTest, EXPECT_NE) {
   4217   EXPECT_NE(6, 7);
   4218 
   4219   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4220                           "Expected: ('a') != ('a'), "
   4221                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4222   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4223                           "2");
   4224   char* const p0 = NULL;
   4225   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4226                           "p0");
   4227   // Only way to get the Nokia compiler to compile the cast
   4228   // is to have a separate void* variable first. Putting
   4229   // the two casts on the same line doesn't work, neither does
   4230   // a direct C-style to char*.
   4231   void* pv1 = (void*)0x1234;  // NOLINT
   4232   char* const p1 = reinterpret_cast<char*>(pv1);
   4233   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4234                           "p1");
   4235 }
   4236 
   4237 // Tests EXPECT_LE.
   4238 TEST(ExpectTest, EXPECT_LE) {
   4239   EXPECT_LE(2, 3);
   4240   EXPECT_LE(2, 2);
   4241   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4242                           "Expected: (2) <= (0), actual: 2 vs 0");
   4243   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4244                           "(1.1) <= (0.9)");
   4245 }
   4246 
   4247 // Tests EXPECT_LT.
   4248 TEST(ExpectTest, EXPECT_LT) {
   4249   EXPECT_LT(2, 3);
   4250   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4251                           "Expected: (2) < (2), actual: 2 vs 2");
   4252   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4253                           "(2) < (1)");
   4254 }
   4255 
   4256 // Tests EXPECT_GE.
   4257 TEST(ExpectTest, EXPECT_GE) {
   4258   EXPECT_GE(2, 1);
   4259   EXPECT_GE(2, 2);
   4260   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4261                           "Expected: (2) >= (3), actual: 2 vs 3");
   4262   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4263                           "(0.9) >= (1.1)");
   4264 }
   4265 
   4266 // Tests EXPECT_GT.
   4267 TEST(ExpectTest, EXPECT_GT) {
   4268   EXPECT_GT(2, 1);
   4269   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4270                           "Expected: (2) > (2), actual: 2 vs 2");
   4271   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4272                           "(2) > (3)");
   4273 }
   4274 
   4275 #if GTEST_HAS_EXCEPTIONS
   4276 
   4277 // Tests EXPECT_THROW.
   4278 TEST(ExpectTest, EXPECT_THROW) {
   4279   EXPECT_THROW(ThrowAnInteger(), int);
   4280   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4281                           "Expected: ThrowAnInteger() throws an exception of "
   4282                           "type bool.\n  Actual: it throws a different type.");
   4283   EXPECT_NONFATAL_FAILURE(
   4284       EXPECT_THROW(ThrowNothing(), bool),
   4285       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4286       "  Actual: it throws nothing.");
   4287 }
   4288 
   4289 // Tests EXPECT_NO_THROW.
   4290 TEST(ExpectTest, EXPECT_NO_THROW) {
   4291   EXPECT_NO_THROW(ThrowNothing());
   4292   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4293                           "Expected: ThrowAnInteger() doesn't throw an "
   4294                           "exception.\n  Actual: it throws.");
   4295 }
   4296 
   4297 // Tests EXPECT_ANY_THROW.
   4298 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4299   EXPECT_ANY_THROW(ThrowAnInteger());
   4300   EXPECT_NONFATAL_FAILURE(
   4301       EXPECT_ANY_THROW(ThrowNothing()),
   4302       "Expected: ThrowNothing() throws an exception.\n"
   4303       "  Actual: it doesn't.");
   4304 }
   4305 
   4306 #endif  // GTEST_HAS_EXCEPTIONS
   4307 
   4308 // Make sure we deal with the precedence of <<.
   4309 TEST(ExpectTest, ExpectPrecedence) {
   4310   EXPECT_EQ(1 < 2, true);
   4311   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4312                           "Value of: true && false");
   4313 }
   4314 
   4315 
   4316 // Tests the StreamableToString() function.
   4317 
   4318 // Tests using StreamableToString() on a scalar.
   4319 TEST(StreamableToStringTest, Scalar) {
   4320   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4321 }
   4322 
   4323 // Tests using StreamableToString() on a non-char pointer.
   4324 TEST(StreamableToStringTest, Pointer) {
   4325   int n = 0;
   4326   int* p = &n;
   4327   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4328 }
   4329 
   4330 // Tests using StreamableToString() on a NULL non-char pointer.
   4331 TEST(StreamableToStringTest, NullPointer) {
   4332   int* p = NULL;
   4333   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4334 }
   4335 
   4336 // Tests using StreamableToString() on a C string.
   4337 TEST(StreamableToStringTest, CString) {
   4338   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4339 }
   4340 
   4341 // Tests using StreamableToString() on a NULL C string.
   4342 TEST(StreamableToStringTest, NullCString) {
   4343   char* p = NULL;
   4344   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4345 }
   4346 
   4347 // Tests using streamable values as assertion messages.
   4348 
   4349 // Tests using std::string as an assertion message.
   4350 TEST(StreamableTest, string) {
   4351   static const std::string str(
   4352       "This failure message is a std::string, and is expected.");
   4353   EXPECT_FATAL_FAILURE(FAIL() << str,
   4354                        str.c_str());
   4355 }
   4356 
   4357 // Tests that we can output strings containing embedded NULs.
   4358 // Limited to Linux because we can only do this with std::string's.
   4359 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4360   static const char char_array_with_nul[] =
   4361       "Here's a NUL\0 and some more string";
   4362   static const std::string string_with_nul(char_array_with_nul,
   4363                                            sizeof(char_array_with_nul)
   4364                                            - 1);  // drops the trailing NUL
   4365   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4366                        "Here's a NUL\\0 and some more string");
   4367 }
   4368 
   4369 // Tests that we can output a NUL char.
   4370 TEST(StreamableTest, NULChar) {
   4371   EXPECT_FATAL_FAILURE({  // NOLINT
   4372     FAIL() << "A NUL" << '\0' << " and some more string";
   4373   }, "A NUL\\0 and some more string");
   4374 }
   4375 
   4376 // Tests using int as an assertion message.
   4377 TEST(StreamableTest, int) {
   4378   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4379                        "900913");
   4380 }
   4381 
   4382 // Tests using NULL char pointer as an assertion message.
   4383 //
   4384 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4385 // implemented a workaround (substituting "(null)" for NULL).  This
   4386 // tests whether the workaround works.
   4387 TEST(StreamableTest, NullCharPtr) {
   4388   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4389                        "(null)");
   4390 }
   4391 
   4392 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4393 // streamed to testing::Message.
   4394 TEST(StreamableTest, BasicIoManip) {
   4395   EXPECT_FATAL_FAILURE({  // NOLINT
   4396     FAIL() << "Line 1." << std::endl
   4397            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4398   }, "Line 1.\nA NUL char \\0 in line 2.");
   4399 }
   4400 
   4401 // Tests the macros that haven't been covered so far.
   4402 
   4403 void AddFailureHelper(bool* aborted) {
   4404   *aborted = true;
   4405   ADD_FAILURE() << "Intentional failure.";
   4406   *aborted = false;
   4407 }
   4408 
   4409 // Tests ADD_FAILURE.
   4410 TEST(MacroTest, ADD_FAILURE) {
   4411   bool aborted = true;
   4412   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4413                           "Intentional failure.");
   4414   EXPECT_FALSE(aborted);
   4415 }
   4416 
   4417 // Tests ADD_FAILURE_AT.
   4418 TEST(MacroTest, ADD_FAILURE_AT) {
   4419   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4420   // the failure message contains the user-streamed part.
   4421   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4422 
   4423   // Verifies that the user-streamed part is optional.
   4424   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4425 
   4426   // Unfortunately, we cannot verify that the failure message contains
   4427   // the right file path and line number the same way, as
   4428   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4429   // line number.  Instead, we do that in gtest_output_test_.cc.
   4430 }
   4431 
   4432 // Tests FAIL.
   4433 TEST(MacroTest, FAIL) {
   4434   EXPECT_FATAL_FAILURE(FAIL(),
   4435                        "Failed");
   4436   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4437                        "Intentional failure.");
   4438 }
   4439 
   4440 // Tests SUCCEED
   4441 TEST(MacroTest, SUCCEED) {
   4442   SUCCEED();
   4443   SUCCEED() << "Explicit success.";
   4444 }
   4445 
   4446 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4447 //
   4448 // These tests fail *intentionally*, s.t. the failure messages can be
   4449 // generated and tested.
   4450 //
   4451 // We have different tests for different argument types.
   4452 
   4453 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4454 TEST(EqAssertionTest, Bool) {
   4455   EXPECT_EQ(true,  true);
   4456   EXPECT_FATAL_FAILURE({
   4457       bool false_value = false;
   4458       ASSERT_EQ(false_value, true);
   4459     }, "Value of: true");
   4460 }
   4461 
   4462 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4463 TEST(EqAssertionTest, Int) {
   4464   ASSERT_EQ(32, 32);
   4465   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4466                           "33");
   4467 }
   4468 
   4469 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4470 TEST(EqAssertionTest, Time_T) {
   4471   EXPECT_EQ(static_cast<time_t>(0),
   4472             static_cast<time_t>(0));
   4473   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4474                                  static_cast<time_t>(1234)),
   4475                        "1234");
   4476 }
   4477 
   4478 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4479 TEST(EqAssertionTest, Char) {
   4480   ASSERT_EQ('z', 'z');
   4481   const char ch = 'b';
   4482   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4483                           "ch");
   4484   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4485                           "ch");
   4486 }
   4487 
   4488 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4489 TEST(EqAssertionTest, WideChar) {
   4490   EXPECT_EQ(L'b', L'b');
   4491 
   4492   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4493                           "Value of: L'x'\n"
   4494                           "  Actual: L'x' (120, 0x78)\n"
   4495                           "Expected: L'\0'\n"
   4496                           "Which is: L'\0' (0, 0x0)");
   4497 
   4498   static wchar_t wchar;
   4499   wchar = L'b';
   4500   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4501                           "wchar");
   4502   wchar = 0x8119;
   4503   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4504                        "Value of: wchar");
   4505 }
   4506 
   4507 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4508 TEST(EqAssertionTest, StdString) {
   4509   // Compares a const char* to an std::string that has identical
   4510   // content.
   4511   ASSERT_EQ("Test", ::std::string("Test"));
   4512 
   4513   // Compares two identical std::strings.
   4514   static const ::std::string str1("A * in the middle");
   4515   static const ::std::string str2(str1);
   4516   EXPECT_EQ(str1, str2);
   4517 
   4518   // Compares a const char* to an std::string that has different
   4519   // content
   4520   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4521                           "::std::string(\"test\")");
   4522 
   4523   // Compares an std::string to a char* that has different content.
   4524   char* const p1 = const_cast<char*>("foo");
   4525   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4526                           "p1");
   4527 
   4528   // Compares two std::strings that have different contents, one of
   4529   // which having a NUL character in the middle.  This should fail.
   4530   static ::std::string str3(str1);
   4531   str3.at(2) = '\0';
   4532   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4533                        "Value of: str3\n"
   4534                        "  Actual: \"A \\0 in the middle\"");
   4535 }
   4536 
   4537 #if GTEST_HAS_STD_WSTRING
   4538 
   4539 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4540 TEST(EqAssertionTest, StdWideString) {
   4541   // Compares two identical std::wstrings.
   4542   const ::std::wstring wstr1(L"A * in the middle");
   4543   const ::std::wstring wstr2(wstr1);
   4544   ASSERT_EQ(wstr1, wstr2);
   4545 
   4546   // Compares an std::wstring to a const wchar_t* that has identical
   4547   // content.
   4548   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4549   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4550 
   4551   // Compares an std::wstring to a const wchar_t* that has different
   4552   // content.
   4553   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4554   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4555     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4556   }, "kTestX8120");
   4557 
   4558   // Compares two std::wstrings that have different contents, one of
   4559   // which having a NUL character in the middle.
   4560   ::std::wstring wstr3(wstr1);
   4561   wstr3.at(2) = L'\0';
   4562   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4563                           "wstr3");
   4564 
   4565   // Compares a wchar_t* to an std::wstring that has different
   4566   // content.
   4567   EXPECT_FATAL_FAILURE({  // NOLINT
   4568     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4569   }, "");
   4570 }
   4571 
   4572 #endif  // GTEST_HAS_STD_WSTRING
   4573 
   4574 #if GTEST_HAS_GLOBAL_STRING
   4575 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4576 TEST(EqAssertionTest, GlobalString) {
   4577   // Compares a const char* to a ::string that has identical content.
   4578   EXPECT_EQ("Test", ::string("Test"));
   4579 
   4580   // Compares two identical ::strings.
   4581   const ::string str1("A * in the middle");
   4582   const ::string str2(str1);
   4583   ASSERT_EQ(str1, str2);
   4584 
   4585   // Compares a ::string to a const char* that has different content.
   4586   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4587                           "test");
   4588 
   4589   // Compares two ::strings that have different contents, one of which
   4590   // having a NUL character in the middle.
   4591   ::string str3(str1);
   4592   str3.at(2) = '\0';
   4593   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4594                           "str3");
   4595 
   4596   // Compares a ::string to a char* that has different content.
   4597   EXPECT_FATAL_FAILURE({  // NOLINT
   4598     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4599   }, "");
   4600 }
   4601 
   4602 #endif  // GTEST_HAS_GLOBAL_STRING
   4603 
   4604 #if GTEST_HAS_GLOBAL_WSTRING
   4605 
   4606 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4607 TEST(EqAssertionTest, GlobalWideString) {
   4608   // Compares two identical ::wstrings.
   4609   static const ::wstring wstr1(L"A * in the middle");
   4610   static const ::wstring wstr2(wstr1);
   4611   EXPECT_EQ(wstr1, wstr2);
   4612 
   4613   // Compares a const wchar_t* to a ::wstring that has identical content.
   4614   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4615   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4616 
   4617   // Compares a const wchar_t* to a ::wstring that has different
   4618   // content.
   4619   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4620   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4621     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4622   }, "Test\\x8119");
   4623 
   4624   // Compares a wchar_t* to a ::wstring that has different content.
   4625   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4626   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4627                           "bar");
   4628 
   4629   // Compares two ::wstrings that have different contents, one of which
   4630   // having a NUL character in the middle.
   4631   static ::wstring wstr3;
   4632   wstr3 = wstr1;
   4633   wstr3.at(2) = L'\0';
   4634   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4635                        "wstr3");
   4636 }
   4637 
   4638 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4639 
   4640 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4641 TEST(EqAssertionTest, CharPointer) {
   4642   char* const p0 = NULL;
   4643   // Only way to get the Nokia compiler to compile the cast
   4644   // is to have a separate void* variable first. Putting
   4645   // the two casts on the same line doesn't work, neither does
   4646   // a direct C-style to char*.
   4647   void* pv1 = (void*)0x1234;  // NOLINT
   4648   void* pv2 = (void*)0xABC0;  // NOLINT
   4649   char* const p1 = reinterpret_cast<char*>(pv1);
   4650   char* const p2 = reinterpret_cast<char*>(pv2);
   4651   ASSERT_EQ(p1, p1);
   4652 
   4653   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4654                           "Value of: p2");
   4655   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4656                           "p2");
   4657   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4658                                  reinterpret_cast<char*>(0xABC0)),
   4659                        "ABC0");
   4660 }
   4661 
   4662 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4663 TEST(EqAssertionTest, WideCharPointer) {
   4664   wchar_t* const p0 = NULL;
   4665   // Only way to get the Nokia compiler to compile the cast
   4666   // is to have a separate void* variable first. Putting
   4667   // the two casts on the same line doesn't work, neither does
   4668   // a direct C-style to char*.
   4669   void* pv1 = (void*)0x1234;  // NOLINT
   4670   void* pv2 = (void*)0xABC0;  // NOLINT
   4671   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4672   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4673   EXPECT_EQ(p0, p0);
   4674 
   4675   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4676                           "Value of: p2");
   4677   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4678                           "p2");
   4679   void* pv3 = (void*)0x1234;  // NOLINT
   4680   void* pv4 = (void*)0xABC0;  // NOLINT
   4681   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4682   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4683   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4684                           "p4");
   4685 }
   4686 
   4687 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4688 TEST(EqAssertionTest, OtherPointer) {
   4689   ASSERT_EQ(static_cast<const int*>(NULL),
   4690             static_cast<const int*>(NULL));
   4691   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4692                                  reinterpret_cast<const int*>(0x1234)),
   4693                        "0x1234");
   4694 }
   4695 
   4696 // A class that supports binary comparison operators but not streaming.
   4697 class UnprintableChar {
   4698  public:
   4699   explicit UnprintableChar(char ch) : char_(ch) {}
   4700 
   4701   bool operator==(const UnprintableChar& rhs) const {
   4702     return char_ == rhs.char_;
   4703   }
   4704   bool operator!=(const UnprintableChar& rhs) const {
   4705     return char_ != rhs.char_;
   4706   }
   4707   bool operator<(const UnprintableChar& rhs) const {
   4708     return char_ < rhs.char_;
   4709   }
   4710   bool operator<=(const UnprintableChar& rhs) const {
   4711     return char_ <= rhs.char_;
   4712   }
   4713   bool operator>(const UnprintableChar& rhs) const {
   4714     return char_ > rhs.char_;
   4715   }
   4716   bool operator>=(const UnprintableChar& rhs) const {
   4717     return char_ >= rhs.char_;
   4718   }
   4719 
   4720  private:
   4721   char char_;
   4722 };
   4723 
   4724 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4725 // be printable.
   4726 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4727   const UnprintableChar x('x'), y('y');
   4728   ASSERT_EQ(x, x);
   4729   EXPECT_NE(x, y);
   4730   ASSERT_LT(x, y);
   4731   EXPECT_LE(x, y);
   4732   ASSERT_GT(y, x);
   4733   EXPECT_GE(x, x);
   4734 
   4735   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4736   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4737   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4738   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4739   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4740 
   4741   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4742   // variables, so we have to write UnprintableChar('x') instead of x.
   4743 #ifndef __BORLANDC__
   4744   // ICE's in C++Builder.
   4745   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4746                        "1-byte object <78>");
   4747   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4748                        "1-byte object <78>");
   4749 #endif
   4750   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4751                        "1-byte object <79>");
   4752   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4753                        "1-byte object <78>");
   4754   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4755                        "1-byte object <79>");
   4756 }
   4757 
   4758 // Tests the FRIEND_TEST macro.
   4759 
   4760 // This class has a private member we want to test.  We will test it
   4761 // both in a TEST and in a TEST_F.
   4762 class Foo {
   4763  public:
   4764   Foo() {}
   4765 
   4766  private:
   4767   int Bar() const { return 1; }
   4768 
   4769   // Declares the friend tests that can access the private member
   4770   // Bar().
   4771   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4772   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4773 };
   4774 
   4775 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4776 // class's private members.  This should compile.
   4777 TEST(FRIEND_TEST_Test, TEST) {
   4778   ASSERT_EQ(1, Foo().Bar());
   4779 }
   4780 
   4781 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4782 class FRIEND_TEST_Test2 : public Test {
   4783  protected:
   4784   Foo foo;
   4785 };
   4786 
   4787 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   4788 // class's private members.  This should compile.
   4789 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   4790   ASSERT_EQ(1, foo.Bar());
   4791 }
   4792 
   4793 // Tests the life cycle of Test objects.
   4794 
   4795 // The test fixture for testing the life cycle of Test objects.
   4796 //
   4797 // This class counts the number of live test objects that uses this
   4798 // fixture.
   4799 class TestLifeCycleTest : public Test {
   4800  protected:
   4801   // Constructor.  Increments the number of test objects that uses
   4802   // this fixture.
   4803   TestLifeCycleTest() { count_++; }
   4804 
   4805   // Destructor.  Decrements the number of test objects that uses this
   4806   // fixture.
   4807   ~TestLifeCycleTest() { count_--; }
   4808 
   4809   // Returns the number of live test objects that uses this fixture.
   4810   int count() const { return count_; }
   4811 
   4812  private:
   4813   static int count_;
   4814 };
   4815 
   4816 int TestLifeCycleTest::count_ = 0;
   4817 
   4818 // Tests the life cycle of test objects.
   4819 TEST_F(TestLifeCycleTest, Test1) {
   4820   // There should be only one test object in this test case that's
   4821   // currently alive.
   4822   ASSERT_EQ(1, count());
   4823 }
   4824 
   4825 // Tests the life cycle of test objects.
   4826 TEST_F(TestLifeCycleTest, Test2) {
   4827   // After Test1 is done and Test2 is started, there should still be
   4828   // only one live test object, as the object for Test1 should've been
   4829   // deleted.
   4830   ASSERT_EQ(1, count());
   4831 }
   4832 
   4833 }  // namespace
   4834 
   4835 // Tests that the copy constructor works when it is NOT optimized away by
   4836 // the compiler.
   4837 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   4838   // Checks that the copy constructor doesn't try to dereference NULL pointers
   4839   // in the source object.
   4840   AssertionResult r1 = AssertionSuccess();
   4841   AssertionResult r2 = r1;
   4842   // The following line is added to prevent the compiler from optimizing
   4843   // away the constructor call.
   4844   r1 << "abc";
   4845 
   4846   AssertionResult r3 = r1;
   4847   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   4848   EXPECT_STREQ("abc", r1.message());
   4849 }
   4850 
   4851 // Tests that AssertionSuccess and AssertionFailure construct
   4852 // AssertionResult objects as expected.
   4853 TEST(AssertionResultTest, ConstructionWorks) {
   4854   AssertionResult r1 = AssertionSuccess();
   4855   EXPECT_TRUE(r1);
   4856   EXPECT_STREQ("", r1.message());
   4857 
   4858   AssertionResult r2 = AssertionSuccess() << "abc";
   4859   EXPECT_TRUE(r2);
   4860   EXPECT_STREQ("abc", r2.message());
   4861 
   4862   AssertionResult r3 = AssertionFailure();
   4863   EXPECT_FALSE(r3);
   4864   EXPECT_STREQ("", r3.message());
   4865 
   4866   AssertionResult r4 = AssertionFailure() << "def";
   4867   EXPECT_FALSE(r4);
   4868   EXPECT_STREQ("def", r4.message());
   4869 
   4870   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   4871   EXPECT_FALSE(r5);
   4872   EXPECT_STREQ("ghi", r5.message());
   4873 }
   4874 
   4875 // Tests that the negation flips the predicate result but keeps the message.
   4876 TEST(AssertionResultTest, NegationWorks) {
   4877   AssertionResult r1 = AssertionSuccess() << "abc";
   4878   EXPECT_FALSE(!r1);
   4879   EXPECT_STREQ("abc", (!r1).message());
   4880 
   4881   AssertionResult r2 = AssertionFailure() << "def";
   4882   EXPECT_TRUE(!r2);
   4883   EXPECT_STREQ("def", (!r2).message());
   4884 }
   4885 
   4886 TEST(AssertionResultTest, StreamingWorks) {
   4887   AssertionResult r = AssertionSuccess();
   4888   r << "abc" << 'd' << 0 << true;
   4889   EXPECT_STREQ("abcd0true", r.message());
   4890 }
   4891 
   4892 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   4893   AssertionResult r = AssertionSuccess();
   4894   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   4895   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   4896 }
   4897 
   4898 // Tests streaming a user type whose definition and operator << are
   4899 // both in the global namespace.
   4900 class Base {
   4901  public:
   4902   explicit Base(int an_x) : x_(an_x) {}
   4903   int x() const { return x_; }
   4904  private:
   4905   int x_;
   4906 };
   4907 std::ostream& operator<<(std::ostream& os,
   4908                          const Base& val) {
   4909   return os << val.x();
   4910 }
   4911 std::ostream& operator<<(std::ostream& os,
   4912                          const Base* pointer) {
   4913   return os << "(" << pointer->x() << ")";
   4914 }
   4915 
   4916 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   4917   Message msg;
   4918   Base a(1);
   4919 
   4920   msg << a << &a;  // Uses ::operator<<.
   4921   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4922 }
   4923 
   4924 // Tests streaming a user type whose definition and operator<< are
   4925 // both in an unnamed namespace.
   4926 namespace {
   4927 class MyTypeInUnnamedNameSpace : public Base {
   4928  public:
   4929   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   4930 };
   4931 std::ostream& operator<<(std::ostream& os,
   4932                          const MyTypeInUnnamedNameSpace& val) {
   4933   return os << val.x();
   4934 }
   4935 std::ostream& operator<<(std::ostream& os,
   4936                          const MyTypeInUnnamedNameSpace* pointer) {
   4937   return os << "(" << pointer->x() << ")";
   4938 }
   4939 }  // namespace
   4940 
   4941 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   4942   Message msg;
   4943   MyTypeInUnnamedNameSpace a(1);
   4944 
   4945   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   4946   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4947 }
   4948 
   4949 // Tests streaming a user type whose definition and operator<< are
   4950 // both in a user namespace.
   4951 namespace namespace1 {
   4952 class MyTypeInNameSpace1 : public Base {
   4953  public:
   4954   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   4955 };
   4956 std::ostream& operator<<(std::ostream& os,
   4957                          const MyTypeInNameSpace1& val) {
   4958   return os << val.x();
   4959 }
   4960 std::ostream& operator<<(std::ostream& os,
   4961                          const MyTypeInNameSpace1* pointer) {
   4962   return os << "(" << pointer->x() << ")";
   4963 }
   4964 }  // namespace namespace1
   4965 
   4966 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   4967   Message msg;
   4968   namespace1::MyTypeInNameSpace1 a(1);
   4969 
   4970   msg << a << &a;  // Uses namespace1::operator<<.
   4971   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4972 }
   4973 
   4974 // Tests streaming a user type whose definition is in a user namespace
   4975 // but whose operator<< is in the global namespace.
   4976 namespace namespace2 {
   4977 class MyTypeInNameSpace2 : public ::Base {
   4978  public:
   4979   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   4980 };
   4981 }  // namespace namespace2
   4982 std::ostream& operator<<(std::ostream& os,
   4983                          const namespace2::MyTypeInNameSpace2& val) {
   4984   return os << val.x();
   4985 }
   4986 std::ostream& operator<<(std::ostream& os,
   4987                          const namespace2::MyTypeInNameSpace2* pointer) {
   4988   return os << "(" << pointer->x() << ")";
   4989 }
   4990 
   4991 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   4992   Message msg;
   4993   namespace2::MyTypeInNameSpace2 a(1);
   4994 
   4995   msg << a << &a;  // Uses ::operator<<.
   4996   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4997 }
   4998 
   4999 // Tests streaming NULL pointers to testing::Message.
   5000 TEST(MessageTest, NullPointers) {
   5001   Message msg;
   5002   char* const p1 = NULL;
   5003   unsigned char* const p2 = NULL;
   5004   int* p3 = NULL;
   5005   double* p4 = NULL;
   5006   bool* p5 = NULL;
   5007   Message* p6 = NULL;
   5008 
   5009   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5010   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5011                msg.GetString().c_str());
   5012 }
   5013 
   5014 // Tests streaming wide strings to testing::Message.
   5015 TEST(MessageTest, WideStrings) {
   5016   // Streams a NULL of type const wchar_t*.
   5017   const wchar_t* const_wstr = NULL;
   5018   EXPECT_STREQ("(null)",
   5019                (Message() << const_wstr).GetString().c_str());
   5020 
   5021   // Streams a NULL of type wchar_t*.
   5022   wchar_t* wstr = NULL;
   5023   EXPECT_STREQ("(null)",
   5024                (Message() << wstr).GetString().c_str());
   5025 
   5026   // Streams a non-NULL of type const wchar_t*.
   5027   const_wstr = L"abc\x8119";
   5028   EXPECT_STREQ("abc\xe8\x84\x99",
   5029                (Message() << const_wstr).GetString().c_str());
   5030 
   5031   // Streams a non-NULL of type wchar_t*.
   5032   wstr = const_cast<wchar_t*>(const_wstr);
   5033   EXPECT_STREQ("abc\xe8\x84\x99",
   5034                (Message() << wstr).GetString().c_str());
   5035 }
   5036 
   5037 
   5038 // This line tests that we can define tests in the testing namespace.
   5039 namespace testing {
   5040 
   5041 // Tests the TestInfo class.
   5042 
   5043 class TestInfoTest : public Test {
   5044  protected:
   5045   static const TestInfo* GetTestInfo(const char* test_name) {
   5046     const TestCase* const test_case = GetUnitTestImpl()->
   5047         GetTestCase("TestInfoTest", "", NULL, NULL);
   5048 
   5049     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5050       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5051       if (strcmp(test_name, test_info->name()) == 0)
   5052         return test_info;
   5053     }
   5054     return NULL;
   5055   }
   5056 
   5057   static const TestResult* GetTestResult(
   5058       const TestInfo* test_info) {
   5059     return test_info->result();
   5060   }
   5061 };
   5062 
   5063 // Tests TestInfo::test_case_name() and TestInfo::name().
   5064 TEST_F(TestInfoTest, Names) {
   5065   const TestInfo* const test_info = GetTestInfo("Names");
   5066 
   5067   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5068   ASSERT_STREQ("Names", test_info->name());
   5069 }
   5070 
   5071 // Tests TestInfo::result().
   5072 TEST_F(TestInfoTest, result) {
   5073   const TestInfo* const test_info = GetTestInfo("result");
   5074 
   5075   // Initially, there is no TestPartResult for this test.
   5076   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5077 
   5078   // After the previous assertion, there is still none.
   5079   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5080 }
   5081 
   5082 // Tests setting up and tearing down a test case.
   5083 
   5084 class SetUpTestCaseTest : public Test {
   5085  protected:
   5086   // This will be called once before the first test in this test case
   5087   // is run.
   5088   static void SetUpTestCase() {
   5089     printf("Setting up the test case . . .\n");
   5090 
   5091     // Initializes some shared resource.  In this simple example, we
   5092     // just create a C string.  More complex stuff can be done if
   5093     // desired.
   5094     shared_resource_ = "123";
   5095 
   5096     // Increments the number of test cases that have been set up.
   5097     counter_++;
   5098 
   5099     // SetUpTestCase() should be called only once.
   5100     EXPECT_EQ(1, counter_);
   5101   }
   5102 
   5103   // This will be called once after the last test in this test case is
   5104   // run.
   5105   static void TearDownTestCase() {
   5106     printf("Tearing down the test case . . .\n");
   5107 
   5108     // Decrements the number of test cases that have been set up.
   5109     counter_--;
   5110 
   5111     // TearDownTestCase() should be called only once.
   5112     EXPECT_EQ(0, counter_);
   5113 
   5114     // Cleans up the shared resource.
   5115     shared_resource_ = NULL;
   5116   }
   5117 
   5118   // This will be called before each test in this test case.
   5119   virtual void SetUp() {
   5120     // SetUpTestCase() should be called only once, so counter_ should
   5121     // always be 1.
   5122     EXPECT_EQ(1, counter_);
   5123   }
   5124 
   5125   // Number of test cases that have been set up.
   5126   static int counter_;
   5127 
   5128   // Some resource to be shared by all tests in this test case.
   5129   static const char* shared_resource_;
   5130 };
   5131 
   5132 int SetUpTestCaseTest::counter_ = 0;
   5133 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5134 
   5135 // A test that uses the shared resource.
   5136 TEST_F(SetUpTestCaseTest, Test1) {
   5137   EXPECT_STRNE(NULL, shared_resource_);
   5138 }
   5139 
   5140 // Another test that uses the shared resource.
   5141 TEST_F(SetUpTestCaseTest, Test2) {
   5142   EXPECT_STREQ("123", shared_resource_);
   5143 }
   5144 
   5145 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5146 
   5147 // The Flags struct stores a copy of all Google Test flags.
   5148 struct Flags {
   5149   // Constructs a Flags struct where each flag has its default value.
   5150   Flags() : also_run_disabled_tests(false),
   5151             break_on_failure(false),
   5152             catch_exceptions(false),
   5153             death_test_use_fork(false),
   5154             filter(""),
   5155             list_tests(false),
   5156             output(""),
   5157             print_time(true),
   5158             random_seed(0),
   5159             repeat(1),
   5160             shuffle(false),
   5161             stack_trace_depth(kMaxStackTraceDepth),
   5162             stream_result_to(""),
   5163             throw_on_failure(false) {}
   5164 
   5165   // Factory methods.
   5166 
   5167   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5168   // the given value.
   5169   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5170     Flags flags;
   5171     flags.also_run_disabled_tests = also_run_disabled_tests;
   5172     return flags;
   5173   }
   5174 
   5175   // Creates a Flags struct where the gtest_break_on_failure flag has
   5176   // the given value.
   5177   static Flags BreakOnFailure(bool break_on_failure) {
   5178     Flags flags;
   5179     flags.break_on_failure = break_on_failure;
   5180     return flags;
   5181   }
   5182 
   5183   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5184   // the given value.
   5185   static Flags CatchExceptions(bool catch_exceptions) {
   5186     Flags flags;
   5187     flags.catch_exceptions = catch_exceptions;
   5188     return flags;
   5189   }
   5190 
   5191   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5192   // the given value.
   5193   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5194     Flags flags;
   5195     flags.death_test_use_fork = death_test_use_fork;
   5196     return flags;
   5197   }
   5198 
   5199   // Creates a Flags struct where the gtest_filter flag has the given
   5200   // value.
   5201   static Flags Filter(const char* filter) {
   5202     Flags flags;
   5203     flags.filter = filter;
   5204     return flags;
   5205   }
   5206 
   5207   // Creates a Flags struct where the gtest_list_tests flag has the
   5208   // given value.
   5209   static Flags ListTests(bool list_tests) {
   5210     Flags flags;
   5211     flags.list_tests = list_tests;
   5212     return flags;
   5213   }
   5214 
   5215   // Creates a Flags struct where the gtest_output flag has the given
   5216   // value.
   5217   static Flags Output(const char* output) {
   5218     Flags flags;
   5219     flags.output = output;
   5220     return flags;
   5221   }
   5222 
   5223   // Creates a Flags struct where the gtest_print_time flag has the given
   5224   // value.
   5225   static Flags PrintTime(bool print_time) {
   5226     Flags flags;
   5227     flags.print_time = print_time;
   5228     return flags;
   5229   }
   5230 
   5231   // Creates a Flags struct where the gtest_random_seed flag has
   5232   // the given value.
   5233   static Flags RandomSeed(Int32 random_seed) {
   5234     Flags flags;
   5235     flags.random_seed = random_seed;
   5236     return flags;
   5237   }
   5238 
   5239   // Creates a Flags struct where the gtest_repeat flag has the given
   5240   // value.
   5241   static Flags Repeat(Int32 repeat) {
   5242     Flags flags;
   5243     flags.repeat = repeat;
   5244     return flags;
   5245   }
   5246 
   5247   // Creates a Flags struct where the gtest_shuffle flag has
   5248   // the given value.
   5249   static Flags Shuffle(bool shuffle) {
   5250     Flags flags;
   5251     flags.shuffle = shuffle;
   5252     return flags;
   5253   }
   5254 
   5255   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5256   // the given value.
   5257   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5258     Flags flags;
   5259     flags.stack_trace_depth = stack_trace_depth;
   5260     return flags;
   5261   }
   5262 
   5263   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5264   // the given value.
   5265   static Flags StreamResultTo(const char* stream_result_to) {
   5266     Flags flags;
   5267     flags.stream_result_to = stream_result_to;
   5268     return flags;
   5269   }
   5270 
   5271   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5272   // the given value.
   5273   static Flags ThrowOnFailure(bool throw_on_failure) {
   5274     Flags flags;
   5275     flags.throw_on_failure = throw_on_failure;
   5276     return flags;
   5277   }
   5278 
   5279   // These fields store the flag values.
   5280   bool also_run_disabled_tests;
   5281   bool break_on_failure;
   5282   bool catch_exceptions;
   5283   bool death_test_use_fork;
   5284   const char* filter;
   5285   bool list_tests;
   5286   const char* output;
   5287   bool print_time;
   5288   Int32 random_seed;
   5289   Int32 repeat;
   5290   bool shuffle;
   5291   Int32 stack_trace_depth;
   5292   const char* stream_result_to;
   5293   bool throw_on_failure;
   5294 };
   5295 
   5296 // Fixture for testing InitGoogleTest().
   5297 class InitGoogleTestTest : public Test {
   5298  protected:
   5299   // Clears the flags before each test.
   5300   virtual void SetUp() {
   5301     GTEST_FLAG(also_run_disabled_tests) = false;
   5302     GTEST_FLAG(break_on_failure) = false;
   5303     GTEST_FLAG(catch_exceptions) = false;
   5304     GTEST_FLAG(death_test_use_fork) = false;
   5305     GTEST_FLAG(filter) = "";
   5306     GTEST_FLAG(list_tests) = false;
   5307     GTEST_FLAG(output) = "";
   5308     GTEST_FLAG(print_time) = true;
   5309     GTEST_FLAG(random_seed) = 0;
   5310     GTEST_FLAG(repeat) = 1;
   5311     GTEST_FLAG(shuffle) = false;
   5312     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5313     GTEST_FLAG(stream_result_to) = "";
   5314     GTEST_FLAG(throw_on_failure) = false;
   5315   }
   5316 
   5317   // Asserts that two narrow or wide string arrays are equal.
   5318   template <typename CharType>
   5319   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5320                                   size_t size2, CharType** array2) {
   5321     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5322 
   5323     for (size_t i = 0; i != size1; i++) {
   5324       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5325     }
   5326   }
   5327 
   5328   // Verifies that the flag values match the expected values.
   5329   static void CheckFlags(const Flags& expected) {
   5330     EXPECT_EQ(expected.also_run_disabled_tests,
   5331               GTEST_FLAG(also_run_disabled_tests));
   5332     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5333     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5334     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5335     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5336     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5337     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5338     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5339     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5340     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5341     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5342     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5343     EXPECT_STREQ(expected.stream_result_to,
   5344                  GTEST_FLAG(stream_result_to).c_str());
   5345     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5346   }
   5347 
   5348   // Parses a command line (specified by argc1 and argv1), then
   5349   // verifies that the flag values are expected and that the
   5350   // recognized flags are removed from the command line.
   5351   template <typename CharType>
   5352   static void TestParsingFlags(int argc1, const CharType** argv1,
   5353                                int argc2, const CharType** argv2,
   5354                                const Flags& expected, bool should_print_help) {
   5355     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5356     ::testing::internal::g_help_flag = false;
   5357 
   5358 #if GTEST_HAS_STREAM_REDIRECTION
   5359     CaptureStdout();
   5360 #endif
   5361 
   5362     // Parses the command line.
   5363     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5364 
   5365 #if GTEST_HAS_STREAM_REDIRECTION
   5366     const std::string captured_stdout = GetCapturedStdout();
   5367 #endif
   5368 
   5369     // Verifies the flag values.
   5370     CheckFlags(expected);
   5371 
   5372     // Verifies that the recognized flags are removed from the command
   5373     // line.
   5374     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5375 
   5376     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5377     // help message for the flags it recognizes.
   5378     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5379 
   5380 #if GTEST_HAS_STREAM_REDIRECTION
   5381     const char* const expected_help_fragment =
   5382         "This program contains tests written using";
   5383     if (should_print_help) {
   5384       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5385     } else {
   5386       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5387                           expected_help_fragment, captured_stdout);
   5388     }
   5389 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5390 
   5391     ::testing::internal::g_help_flag = saved_help_flag;
   5392   }
   5393 
   5394   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5395   // to specify the array sizes.
   5396 
   5397 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5398   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5399                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5400                    expected, should_print_help)
   5401 };
   5402 
   5403 // Tests parsing an empty command line.
   5404 TEST_F(InitGoogleTestTest, Empty) {
   5405   const char* argv[] = {
   5406     NULL
   5407   };
   5408 
   5409   const char* argv2[] = {
   5410     NULL
   5411   };
   5412 
   5413   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5414 }
   5415 
   5416 // Tests parsing a command line that has no flag.
   5417 TEST_F(InitGoogleTestTest, NoFlag) {
   5418   const char* argv[] = {
   5419     "foo.exe",
   5420     NULL
   5421   };
   5422 
   5423   const char* argv2[] = {
   5424     "foo.exe",
   5425     NULL
   5426   };
   5427 
   5428   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5429 }
   5430 
   5431 // Tests parsing a bad --gtest_filter flag.
   5432 TEST_F(InitGoogleTestTest, FilterBad) {
   5433   const char* argv[] = {
   5434     "foo.exe",
   5435     "--gtest_filter",
   5436     NULL
   5437   };
   5438 
   5439   const char* argv2[] = {
   5440     "foo.exe",
   5441     "--gtest_filter",
   5442     NULL
   5443   };
   5444 
   5445   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5446 }
   5447 
   5448 // Tests parsing an empty --gtest_filter flag.
   5449 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5450   const char* argv[] = {
   5451     "foo.exe",
   5452     "--gtest_filter=",
   5453     NULL
   5454   };
   5455 
   5456   const char* argv2[] = {
   5457     "foo.exe",
   5458     NULL
   5459   };
   5460 
   5461   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5462 }
   5463 
   5464 // Tests parsing a non-empty --gtest_filter flag.
   5465 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5466   const char* argv[] = {
   5467     "foo.exe",
   5468     "--gtest_filter=abc",
   5469     NULL
   5470   };
   5471 
   5472   const char* argv2[] = {
   5473     "foo.exe",
   5474     NULL
   5475   };
   5476 
   5477   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5478 }
   5479 
   5480 // Tests parsing --gtest_break_on_failure.
   5481 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5482   const char* argv[] = {
   5483     "foo.exe",
   5484     "--gtest_break_on_failure",
   5485     NULL
   5486 };
   5487 
   5488   const char* argv2[] = {
   5489     "foo.exe",
   5490     NULL
   5491   };
   5492 
   5493   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5494 }
   5495 
   5496 // Tests parsing --gtest_break_on_failure=0.
   5497 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5498   const char* argv[] = {
   5499     "foo.exe",
   5500     "--gtest_break_on_failure=0",
   5501     NULL
   5502   };
   5503 
   5504   const char* argv2[] = {
   5505     "foo.exe",
   5506     NULL
   5507   };
   5508 
   5509   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5510 }
   5511 
   5512 // Tests parsing --gtest_break_on_failure=f.
   5513 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5514   const char* argv[] = {
   5515     "foo.exe",
   5516     "--gtest_break_on_failure=f",
   5517     NULL
   5518   };
   5519 
   5520   const char* argv2[] = {
   5521     "foo.exe",
   5522     NULL
   5523   };
   5524 
   5525   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5526 }
   5527 
   5528 // Tests parsing --gtest_break_on_failure=F.
   5529 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5530   const char* argv[] = {
   5531     "foo.exe",
   5532     "--gtest_break_on_failure=F",
   5533     NULL
   5534   };
   5535 
   5536   const char* argv2[] = {
   5537     "foo.exe",
   5538     NULL
   5539   };
   5540 
   5541   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5542 }
   5543 
   5544 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5545 // definition.
   5546 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5547   const char* argv[] = {
   5548     "foo.exe",
   5549     "--gtest_break_on_failure=1",
   5550     NULL
   5551   };
   5552 
   5553   const char* argv2[] = {
   5554     "foo.exe",
   5555     NULL
   5556   };
   5557 
   5558   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5559 }
   5560 
   5561 // Tests parsing --gtest_catch_exceptions.
   5562 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5563   const char* argv[] = {
   5564     "foo.exe",
   5565     "--gtest_catch_exceptions",
   5566     NULL
   5567   };
   5568 
   5569   const char* argv2[] = {
   5570     "foo.exe",
   5571     NULL
   5572   };
   5573 
   5574   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5575 }
   5576 
   5577 // Tests parsing --gtest_death_test_use_fork.
   5578 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5579   const char* argv[] = {
   5580     "foo.exe",
   5581     "--gtest_death_test_use_fork",
   5582     NULL
   5583   };
   5584 
   5585   const char* argv2[] = {
   5586     "foo.exe",
   5587     NULL
   5588   };
   5589 
   5590   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5591 }
   5592 
   5593 // Tests having the same flag twice with different values.  The
   5594 // expected behavior is that the one coming last takes precedence.
   5595 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5596   const char* argv[] = {
   5597     "foo.exe",
   5598     "--gtest_filter=a",
   5599     "--gtest_filter=b",
   5600     NULL
   5601   };
   5602 
   5603   const char* argv2[] = {
   5604     "foo.exe",
   5605     NULL
   5606   };
   5607 
   5608   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5609 }
   5610 
   5611 // Tests having an unrecognized flag on the command line.
   5612 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5613   const char* argv[] = {
   5614     "foo.exe",
   5615     "--gtest_break_on_failure",
   5616     "bar",  // Unrecognized by Google Test.
   5617     "--gtest_filter=b",
   5618     NULL
   5619   };
   5620 
   5621   const char* argv2[] = {
   5622     "foo.exe",
   5623     "bar",
   5624     NULL
   5625   };
   5626 
   5627   Flags flags;
   5628   flags.break_on_failure = true;
   5629   flags.filter = "b";
   5630   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5631 }
   5632 
   5633 // Tests having a --gtest_list_tests flag
   5634 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5635     const char* argv[] = {
   5636       "foo.exe",
   5637       "--gtest_list_tests",
   5638       NULL
   5639     };
   5640 
   5641     const char* argv2[] = {
   5642       "foo.exe",
   5643       NULL
   5644     };
   5645 
   5646     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5647 }
   5648 
   5649 // Tests having a --gtest_list_tests flag with a "true" value
   5650 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5651     const char* argv[] = {
   5652       "foo.exe",
   5653       "--gtest_list_tests=1",
   5654       NULL
   5655     };
   5656 
   5657     const char* argv2[] = {
   5658       "foo.exe",
   5659       NULL
   5660     };
   5661 
   5662     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5663 }
   5664 
   5665 // Tests having a --gtest_list_tests flag with a "false" value
   5666 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5667     const char* argv[] = {
   5668       "foo.exe",
   5669       "--gtest_list_tests=0",
   5670       NULL
   5671     };
   5672 
   5673     const char* argv2[] = {
   5674       "foo.exe",
   5675       NULL
   5676     };
   5677 
   5678     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5679 }
   5680 
   5681 // Tests parsing --gtest_list_tests=f.
   5682 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5683   const char* argv[] = {
   5684     "foo.exe",
   5685     "--gtest_list_tests=f",
   5686     NULL
   5687   };
   5688 
   5689   const char* argv2[] = {
   5690     "foo.exe",
   5691     NULL
   5692   };
   5693 
   5694   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5695 }
   5696 
   5697 // Tests parsing --gtest_list_tests=F.
   5698 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5699   const char* argv[] = {
   5700     "foo.exe",
   5701     "--gtest_list_tests=F",
   5702     NULL
   5703   };
   5704 
   5705   const char* argv2[] = {
   5706     "foo.exe",
   5707     NULL
   5708   };
   5709 
   5710   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5711 }
   5712 
   5713 // Tests parsing --gtest_output (invalid).
   5714 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5715   const char* argv[] = {
   5716     "foo.exe",
   5717     "--gtest_output",
   5718     NULL
   5719   };
   5720 
   5721   const char* argv2[] = {
   5722     "foo.exe",
   5723     "--gtest_output",
   5724     NULL
   5725   };
   5726 
   5727   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   5728 }
   5729 
   5730 // Tests parsing --gtest_output=xml
   5731 TEST_F(InitGoogleTestTest, OutputXml) {
   5732   const char* argv[] = {
   5733     "foo.exe",
   5734     "--gtest_output=xml",
   5735     NULL
   5736   };
   5737 
   5738   const char* argv2[] = {
   5739     "foo.exe",
   5740     NULL
   5741   };
   5742 
   5743   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   5744 }
   5745 
   5746 // Tests parsing --gtest_output=xml:file
   5747 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5748   const char* argv[] = {
   5749     "foo.exe",
   5750     "--gtest_output=xml:file",
   5751     NULL
   5752   };
   5753 
   5754   const char* argv2[] = {
   5755     "foo.exe",
   5756     NULL
   5757   };
   5758 
   5759   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   5760 }
   5761 
   5762 // Tests parsing --gtest_output=xml:directory/path/
   5763 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   5764   const char* argv[] = {
   5765     "foo.exe",
   5766     "--gtest_output=xml:directory/path/",
   5767     NULL
   5768   };
   5769 
   5770   const char* argv2[] = {
   5771     "foo.exe",
   5772     NULL
   5773   };
   5774 
   5775   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5776                             Flags::Output("xml:directory/path/"), false);
   5777 }
   5778 
   5779 // Tests having a --gtest_print_time flag
   5780 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   5781     const char* argv[] = {
   5782       "foo.exe",
   5783       "--gtest_print_time",
   5784       NULL
   5785     };
   5786 
   5787     const char* argv2[] = {
   5788       "foo.exe",
   5789       NULL
   5790     };
   5791 
   5792     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5793 }
   5794 
   5795 // Tests having a --gtest_print_time flag with a "true" value
   5796 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   5797     const char* argv[] = {
   5798       "foo.exe",
   5799       "--gtest_print_time=1",
   5800       NULL
   5801     };
   5802 
   5803     const char* argv2[] = {
   5804       "foo.exe",
   5805       NULL
   5806     };
   5807 
   5808     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5809 }
   5810 
   5811 // Tests having a --gtest_print_time flag with a "false" value
   5812 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   5813     const char* argv[] = {
   5814       "foo.exe",
   5815       "--gtest_print_time=0",
   5816       NULL
   5817     };
   5818 
   5819     const char* argv2[] = {
   5820       "foo.exe",
   5821       NULL
   5822     };
   5823 
   5824     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5825 }
   5826 
   5827 // Tests parsing --gtest_print_time=f.
   5828 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   5829   const char* argv[] = {
   5830     "foo.exe",
   5831     "--gtest_print_time=f",
   5832     NULL
   5833   };
   5834 
   5835   const char* argv2[] = {
   5836     "foo.exe",
   5837     NULL
   5838   };
   5839 
   5840   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5841 }
   5842 
   5843 // Tests parsing --gtest_print_time=F.
   5844 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   5845   const char* argv[] = {
   5846     "foo.exe",
   5847     "--gtest_print_time=F",
   5848     NULL
   5849   };
   5850 
   5851   const char* argv2[] = {
   5852     "foo.exe",
   5853     NULL
   5854   };
   5855 
   5856   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5857 }
   5858 
   5859 // Tests parsing --gtest_random_seed=number
   5860 TEST_F(InitGoogleTestTest, RandomSeed) {
   5861   const char* argv[] = {
   5862     "foo.exe",
   5863     "--gtest_random_seed=1000",
   5864     NULL
   5865   };
   5866 
   5867   const char* argv2[] = {
   5868     "foo.exe",
   5869     NULL
   5870   };
   5871 
   5872   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   5873 }
   5874 
   5875 // Tests parsing --gtest_repeat=number
   5876 TEST_F(InitGoogleTestTest, Repeat) {
   5877   const char* argv[] = {
   5878     "foo.exe",
   5879     "--gtest_repeat=1000",
   5880     NULL
   5881   };
   5882 
   5883   const char* argv2[] = {
   5884     "foo.exe",
   5885     NULL
   5886   };
   5887 
   5888   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   5889 }
   5890 
   5891 // Tests having a --gtest_also_run_disabled_tests flag
   5892 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   5893     const char* argv[] = {
   5894       "foo.exe",
   5895       "--gtest_also_run_disabled_tests",
   5896       NULL
   5897     };
   5898 
   5899     const char* argv2[] = {
   5900       "foo.exe",
   5901       NULL
   5902     };
   5903 
   5904     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5905                               Flags::AlsoRunDisabledTests(true), false);
   5906 }
   5907 
   5908 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   5909 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   5910     const char* argv[] = {
   5911       "foo.exe",
   5912       "--gtest_also_run_disabled_tests=1",
   5913       NULL
   5914     };
   5915 
   5916     const char* argv2[] = {
   5917       "foo.exe",
   5918       NULL
   5919     };
   5920 
   5921     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5922                               Flags::AlsoRunDisabledTests(true), false);
   5923 }
   5924 
   5925 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   5926 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   5927     const char* argv[] = {
   5928       "foo.exe",
   5929       "--gtest_also_run_disabled_tests=0",
   5930       NULL
   5931     };
   5932 
   5933     const char* argv2[] = {
   5934       "foo.exe",
   5935       NULL
   5936     };
   5937 
   5938     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5939                               Flags::AlsoRunDisabledTests(false), false);
   5940 }
   5941 
   5942 // Tests parsing --gtest_shuffle.
   5943 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   5944   const char* argv[] = {
   5945     "foo.exe",
   5946     "--gtest_shuffle",
   5947     NULL
   5948 };
   5949 
   5950   const char* argv2[] = {
   5951     "foo.exe",
   5952     NULL
   5953   };
   5954 
   5955   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   5956 }
   5957 
   5958 // Tests parsing --gtest_shuffle=0.
   5959 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   5960   const char* argv[] = {
   5961     "foo.exe",
   5962     "--gtest_shuffle=0",
   5963     NULL
   5964   };
   5965 
   5966   const char* argv2[] = {
   5967     "foo.exe",
   5968     NULL
   5969   };
   5970 
   5971   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   5972 }
   5973 
   5974 // Tests parsing a --gtest_shuffle flag that has a "true"
   5975 // definition.
   5976 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   5977   const char* argv[] = {
   5978     "foo.exe",
   5979     "--gtest_shuffle=1",
   5980     NULL
   5981   };
   5982 
   5983   const char* argv2[] = {
   5984     "foo.exe",
   5985     NULL
   5986   };
   5987 
   5988   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   5989 }
   5990 
   5991 // Tests parsing --gtest_stack_trace_depth=number.
   5992 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   5993   const char* argv[] = {
   5994     "foo.exe",
   5995     "--gtest_stack_trace_depth=5",
   5996     NULL
   5997   };
   5998 
   5999   const char* argv2[] = {
   6000     "foo.exe",
   6001     NULL
   6002   };
   6003 
   6004   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6005 }
   6006 
   6007 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6008   const char* argv[] = {
   6009     "foo.exe",
   6010     "--gtest_stream_result_to=localhost:1234",
   6011     NULL
   6012   };
   6013 
   6014   const char* argv2[] = {
   6015     "foo.exe",
   6016     NULL
   6017   };
   6018 
   6019   GTEST_TEST_PARSING_FLAGS_(
   6020       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6021 }
   6022 
   6023 // Tests parsing --gtest_throw_on_failure.
   6024 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6025   const char* argv[] = {
   6026     "foo.exe",
   6027     "--gtest_throw_on_failure",
   6028     NULL
   6029 };
   6030 
   6031   const char* argv2[] = {
   6032     "foo.exe",
   6033     NULL
   6034   };
   6035 
   6036   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6037 }
   6038 
   6039 // Tests parsing --gtest_throw_on_failure=0.
   6040 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6041   const char* argv[] = {
   6042     "foo.exe",
   6043     "--gtest_throw_on_failure=0",
   6044     NULL
   6045   };
   6046 
   6047   const char* argv2[] = {
   6048     "foo.exe",
   6049     NULL
   6050   };
   6051 
   6052   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6053 }
   6054 
   6055 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6056 // definition.
   6057 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6058   const char* argv[] = {
   6059     "foo.exe",
   6060     "--gtest_throw_on_failure=1",
   6061     NULL
   6062   };
   6063 
   6064   const char* argv2[] = {
   6065     "foo.exe",
   6066     NULL
   6067   };
   6068 
   6069   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6070 }
   6071 
   6072 #if GTEST_OS_WINDOWS
   6073 // Tests parsing wide strings.
   6074 TEST_F(InitGoogleTestTest, WideStrings) {
   6075   const wchar_t* argv[] = {
   6076     L"foo.exe",
   6077     L"--gtest_filter=Foo*",
   6078     L"--gtest_list_tests=1",
   6079     L"--gtest_break_on_failure",
   6080     L"--non_gtest_flag",
   6081     NULL
   6082   };
   6083 
   6084   const wchar_t* argv2[] = {
   6085     L"foo.exe",
   6086     L"--non_gtest_flag",
   6087     NULL
   6088   };
   6089 
   6090   Flags expected_flags;
   6091   expected_flags.break_on_failure = true;
   6092   expected_flags.filter = "Foo*";
   6093   expected_flags.list_tests = true;
   6094 
   6095   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6096 }
   6097 #endif  // GTEST_OS_WINDOWS
   6098 
   6099 // Tests current_test_info() in UnitTest.
   6100 class CurrentTestInfoTest : public Test {
   6101  protected:
   6102   // Tests that current_test_info() returns NULL before the first test in
   6103   // the test case is run.
   6104   static void SetUpTestCase() {
   6105     // There should be no tests running at this point.
   6106     const TestInfo* test_info =
   6107       UnitTest::GetInstance()->current_test_info();
   6108     EXPECT_TRUE(test_info == NULL)
   6109         << "There should be no tests running at this point.";
   6110   }
   6111 
   6112   // Tests that current_test_info() returns NULL after the last test in
   6113   // the test case has run.
   6114   static void TearDownTestCase() {
   6115     const TestInfo* test_info =
   6116       UnitTest::GetInstance()->current_test_info();
   6117     EXPECT_TRUE(test_info == NULL)
   6118         << "There should be no tests running at this point.";
   6119   }
   6120 };
   6121 
   6122 // Tests that current_test_info() returns TestInfo for currently running
   6123 // test by checking the expected test name against the actual one.
   6124 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6125   const TestInfo* test_info =
   6126     UnitTest::GetInstance()->current_test_info();
   6127   ASSERT_TRUE(NULL != test_info)
   6128       << "There is a test running so we should have a valid TestInfo.";
   6129   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6130       << "Expected the name of the currently running test case.";
   6131   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6132       << "Expected the name of the currently running test.";
   6133 }
   6134 
   6135 // Tests that current_test_info() returns TestInfo for currently running
   6136 // test by checking the expected test name against the actual one.  We
   6137 // use this test to see that the TestInfo object actually changed from
   6138 // the previous invocation.
   6139 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6140   const TestInfo* test_info =
   6141     UnitTest::GetInstance()->current_test_info();
   6142   ASSERT_TRUE(NULL != test_info)
   6143       << "There is a test running so we should have a valid TestInfo.";
   6144   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6145       << "Expected the name of the currently running test case.";
   6146   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6147       << "Expected the name of the currently running test.";
   6148 }
   6149 
   6150 }  // namespace testing
   6151 
   6152 // These two lines test that we can define tests in a namespace that
   6153 // has the name "testing" and is nested in another namespace.
   6154 namespace my_namespace {
   6155 namespace testing {
   6156 
   6157 // Makes sure that TEST knows to use ::testing::Test instead of
   6158 // ::my_namespace::testing::Test.
   6159 class Test {};
   6160 
   6161 // Makes sure that an assertion knows to use ::testing::Message instead of
   6162 // ::my_namespace::testing::Message.
   6163 class Message {};
   6164 
   6165 // Makes sure that an assertion knows to use
   6166 // ::testing::AssertionResult instead of
   6167 // ::my_namespace::testing::AssertionResult.
   6168 class AssertionResult {};
   6169 
   6170 // Tests that an assertion that should succeed works as expected.
   6171 TEST(NestedTestingNamespaceTest, Success) {
   6172   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6173 }
   6174 
   6175 // Tests that an assertion that should fail works as expected.
   6176 TEST(NestedTestingNamespaceTest, Failure) {
   6177   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6178                        "This failure is expected.");
   6179 }
   6180 
   6181 }  // namespace testing
   6182 }  // namespace my_namespace
   6183 
   6184 // Tests that one can call superclass SetUp and TearDown methods--
   6185 // that is, that they are not private.
   6186 // No tests are based on this fixture; the test "passes" if it compiles
   6187 // successfully.
   6188 class ProtectedFixtureMethodsTest : public Test {
   6189  protected:
   6190   virtual void SetUp() {
   6191     Test::SetUp();
   6192   }
   6193   virtual void TearDown() {
   6194     Test::TearDown();
   6195   }
   6196 };
   6197 
   6198 // StreamingAssertionsTest tests the streaming versions of a representative
   6199 // sample of assertions.
   6200 TEST(StreamingAssertionsTest, Unconditional) {
   6201   SUCCEED() << "expected success";
   6202   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6203                           "expected failure");
   6204   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6205                        "expected failure");
   6206 }
   6207 
   6208 #ifdef __BORLANDC__
   6209 // Silences warnings: "Condition is always true", "Unreachable code"
   6210 # pragma option push -w-ccc -w-rch
   6211 #endif
   6212 
   6213 TEST(StreamingAssertionsTest, Truth) {
   6214   EXPECT_TRUE(true) << "unexpected failure";
   6215   ASSERT_TRUE(true) << "unexpected failure";
   6216   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6217                           "expected failure");
   6218   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6219                        "expected failure");
   6220 }
   6221 
   6222 TEST(StreamingAssertionsTest, Truth2) {
   6223   EXPECT_FALSE(false) << "unexpected failure";
   6224   ASSERT_FALSE(false) << "unexpected failure";
   6225   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6226                           "expected failure");
   6227   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6228                        "expected failure");
   6229 }
   6230 
   6231 #ifdef __BORLANDC__
   6232 // Restores warnings after previous "#pragma option push" supressed them
   6233 # pragma option pop
   6234 #endif
   6235 
   6236 TEST(StreamingAssertionsTest, IntegerEquals) {
   6237   EXPECT_EQ(1, 1) << "unexpected failure";
   6238   ASSERT_EQ(1, 1) << "unexpected failure";
   6239   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6240                           "expected failure");
   6241   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6242                        "expected failure");
   6243 }
   6244 
   6245 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6246   EXPECT_LT(1, 2) << "unexpected failure";
   6247   ASSERT_LT(1, 2) << "unexpected failure";
   6248   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6249                           "expected failure");
   6250   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6251                        "expected failure");
   6252 }
   6253 
   6254 TEST(StreamingAssertionsTest, StringsEqual) {
   6255   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6256   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6257   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6258                           "expected failure");
   6259   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6260                        "expected failure");
   6261 }
   6262 
   6263 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6264   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6265   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6266   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6267                           "expected failure");
   6268   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6269                        "expected failure");
   6270 }
   6271 
   6272 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6273   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6274   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6275   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6276                           "expected failure");
   6277   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6278                        "expected failure");
   6279 }
   6280 
   6281 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6282   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6283   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6284   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6285                           "expected failure");
   6286   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6287                        "expected failure");
   6288 }
   6289 
   6290 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6291   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6292   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6293   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6294                           "expected failure");
   6295   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6296                        "expected failure");
   6297 }
   6298 
   6299 #if GTEST_HAS_EXCEPTIONS
   6300 
   6301 TEST(StreamingAssertionsTest, Throw) {
   6302   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6303   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6304   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6305                           "expected failure", "expected failure");
   6306   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6307                        "expected failure", "expected failure");
   6308 }
   6309 
   6310 TEST(StreamingAssertionsTest, NoThrow) {
   6311   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6312   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6313   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6314                           "expected failure", "expected failure");
   6315   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6316                        "expected failure", "expected failure");
   6317 }
   6318 
   6319 TEST(StreamingAssertionsTest, AnyThrow) {
   6320   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6321   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6322   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6323                           "expected failure", "expected failure");
   6324   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6325                        "expected failure", "expected failure");
   6326 }
   6327 
   6328 #endif  // GTEST_HAS_EXCEPTIONS
   6329 
   6330 // Tests that Google Test correctly decides whether to use colors in the output.
   6331 
   6332 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6333   GTEST_FLAG(color) = "yes";
   6334 
   6335   SetEnv("TERM", "xterm");  // TERM supports colors.
   6336   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6337   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6338 
   6339   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6340   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6341   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6342 }
   6343 
   6344 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6345   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6346 
   6347   GTEST_FLAG(color) = "True";
   6348   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6349 
   6350   GTEST_FLAG(color) = "t";
   6351   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6352 
   6353   GTEST_FLAG(color) = "1";
   6354   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6355 }
   6356 
   6357 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6358   GTEST_FLAG(color) = "no";
   6359 
   6360   SetEnv("TERM", "xterm");  // TERM supports colors.
   6361   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6362   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6363 
   6364   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6365   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6366   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6367 }
   6368 
   6369 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6370   SetEnv("TERM", "xterm");  // TERM supports colors.
   6371 
   6372   GTEST_FLAG(color) = "F";
   6373   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6374 
   6375   GTEST_FLAG(color) = "0";
   6376   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6377 
   6378   GTEST_FLAG(color) = "unknown";
   6379   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6380 }
   6381 
   6382 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6383   GTEST_FLAG(color) = "auto";
   6384 
   6385   SetEnv("TERM", "xterm");  // TERM supports colors.
   6386   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6387   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6388 }
   6389 
   6390 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6391   GTEST_FLAG(color) = "auto";
   6392 
   6393 #if GTEST_OS_WINDOWS
   6394   // On Windows, we ignore the TERM variable as it's usually not set.
   6395 
   6396   SetEnv("TERM", "dumb");
   6397   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6398 
   6399   SetEnv("TERM", "");
   6400   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6401 
   6402   SetEnv("TERM", "xterm");
   6403   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6404 #else
   6405   // On non-Windows platforms, we rely on TERM to determine if the
   6406   // terminal supports colors.
   6407 
   6408   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6409   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6410 
   6411   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6412   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6413 
   6414   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6415   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6416 
   6417   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6418   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6419 
   6420   SetEnv("TERM", "xterm");  // TERM supports colors.
   6421   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6422 
   6423   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6424   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6425 
   6426   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6427   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6428 
   6429   SetEnv("TERM", "screen");  // TERM supports colors.
   6430   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6431 
   6432   SetEnv("TERM", "linux");  // TERM supports colors.
   6433   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6434 
   6435   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6436   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6437 #endif  // GTEST_OS_WINDOWS
   6438 }
   6439 
   6440 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6441 
   6442 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6443 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6444     StaticAssertTypeEq<const int, const int>();
   6445 
   6446 // Verifies that StaticAssertTypeEq works in a class.
   6447 
   6448 template <typename T>
   6449 class StaticAssertTypeEqTestHelper {
   6450  public:
   6451   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6452 };
   6453 
   6454 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6455   StaticAssertTypeEqTestHelper<bool>();
   6456 }
   6457 
   6458 // Verifies that StaticAssertTypeEq works inside a function.
   6459 
   6460 typedef int IntAlias;
   6461 
   6462 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6463   StaticAssertTypeEq<int, IntAlias>();
   6464   StaticAssertTypeEq<int*, IntAlias*>();
   6465 }
   6466 
   6467 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6468   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6469 
   6470   // We don't have a stack walker in Google Test yet.
   6471   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6472   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6473 }
   6474 
   6475 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6476   EXPECT_FALSE(HasNonfatalFailure());
   6477 }
   6478 
   6479 static void FailFatally() { FAIL(); }
   6480 
   6481 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6482   FailFatally();
   6483   const bool has_nonfatal_failure = HasNonfatalFailure();
   6484   ClearCurrentTestPartResults();
   6485   EXPECT_FALSE(has_nonfatal_failure);
   6486 }
   6487 
   6488 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6489   ADD_FAILURE();
   6490   const bool has_nonfatal_failure = HasNonfatalFailure();
   6491   ClearCurrentTestPartResults();
   6492   EXPECT_TRUE(has_nonfatal_failure);
   6493 }
   6494 
   6495 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6496   FailFatally();
   6497   ADD_FAILURE();
   6498   const bool has_nonfatal_failure = HasNonfatalFailure();
   6499   ClearCurrentTestPartResults();
   6500   EXPECT_TRUE(has_nonfatal_failure);
   6501 }
   6502 
   6503 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6504 static bool HasNonfatalFailureHelper() {
   6505   return testing::Test::HasNonfatalFailure();
   6506 }
   6507 
   6508 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6509   EXPECT_FALSE(HasNonfatalFailureHelper());
   6510 }
   6511 
   6512 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6513   ADD_FAILURE();
   6514   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6515   ClearCurrentTestPartResults();
   6516   EXPECT_TRUE(has_nonfatal_failure);
   6517 }
   6518 
   6519 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6520   EXPECT_FALSE(HasFailure());
   6521 }
   6522 
   6523 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6524   FailFatally();
   6525   const bool has_failure = HasFailure();
   6526   ClearCurrentTestPartResults();
   6527   EXPECT_TRUE(has_failure);
   6528 }
   6529 
   6530 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6531   ADD_FAILURE();
   6532   const bool has_failure = HasFailure();
   6533   ClearCurrentTestPartResults();
   6534   EXPECT_TRUE(has_failure);
   6535 }
   6536 
   6537 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6538   FailFatally();
   6539   ADD_FAILURE();
   6540   const bool has_failure = HasFailure();
   6541   ClearCurrentTestPartResults();
   6542   EXPECT_TRUE(has_failure);
   6543 }
   6544 
   6545 // A wrapper for calling HasFailure outside of a test body.
   6546 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6547 
   6548 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6549   EXPECT_FALSE(HasFailureHelper());
   6550 }
   6551 
   6552 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6553   ADD_FAILURE();
   6554   const bool has_failure = HasFailureHelper();
   6555   ClearCurrentTestPartResults();
   6556   EXPECT_TRUE(has_failure);
   6557 }
   6558 
   6559 class TestListener : public EmptyTestEventListener {
   6560  public:
   6561   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6562   TestListener(int* on_start_counter, bool* is_destroyed)
   6563       : on_start_counter_(on_start_counter),
   6564         is_destroyed_(is_destroyed) {}
   6565 
   6566   virtual ~TestListener() {
   6567     if (is_destroyed_)
   6568       *is_destroyed_ = true;
   6569   }
   6570 
   6571  protected:
   6572   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6573     if (on_start_counter_ != NULL)
   6574       (*on_start_counter_)++;
   6575   }
   6576 
   6577  private:
   6578   int* on_start_counter_;
   6579   bool* is_destroyed_;
   6580 };
   6581 
   6582 // Tests the constructor.
   6583 TEST(TestEventListenersTest, ConstructionWorks) {
   6584   TestEventListeners listeners;
   6585 
   6586   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6587   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6588   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6589 }
   6590 
   6591 // Tests that the TestEventListeners destructor deletes all the listeners it
   6592 // owns.
   6593 TEST(TestEventListenersTest, DestructionWorks) {
   6594   bool default_result_printer_is_destroyed = false;
   6595   bool default_xml_printer_is_destroyed = false;
   6596   bool extra_listener_is_destroyed = false;
   6597   TestListener* default_result_printer = new TestListener(
   6598       NULL, &default_result_printer_is_destroyed);
   6599   TestListener* default_xml_printer = new TestListener(
   6600       NULL, &default_xml_printer_is_destroyed);
   6601   TestListener* extra_listener = new TestListener(
   6602       NULL, &extra_listener_is_destroyed);
   6603 
   6604   {
   6605     TestEventListeners listeners;
   6606     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6607                                                         default_result_printer);
   6608     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6609                                                        default_xml_printer);
   6610     listeners.Append(extra_listener);
   6611   }
   6612   EXPECT_TRUE(default_result_printer_is_destroyed);
   6613   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6614   EXPECT_TRUE(extra_listener_is_destroyed);
   6615 }
   6616 
   6617 // Tests that a listener Append'ed to a TestEventListeners list starts
   6618 // receiving events.
   6619 TEST(TestEventListenersTest, Append) {
   6620   int on_start_counter = 0;
   6621   bool is_destroyed = false;
   6622   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6623   {
   6624     TestEventListeners listeners;
   6625     listeners.Append(listener);
   6626     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6627         *UnitTest::GetInstance());
   6628     EXPECT_EQ(1, on_start_counter);
   6629   }
   6630   EXPECT_TRUE(is_destroyed);
   6631 }
   6632 
   6633 // Tests that listeners receive events in the order they were appended to
   6634 // the list, except for *End requests, which must be received in the reverse
   6635 // order.
   6636 class SequenceTestingListener : public EmptyTestEventListener {
   6637  public:
   6638   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
   6639       : vector_(vector), id_(id) {}
   6640 
   6641  protected:
   6642   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6643     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6644   }
   6645 
   6646   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6647     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6648   }
   6649 
   6650   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6651                                     int /*iteration*/) {
   6652     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6653   }
   6654 
   6655   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6656                                   int /*iteration*/) {
   6657     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6658   }
   6659 
   6660  private:
   6661   std::string GetEventDescription(const char* method) {
   6662     Message message;
   6663     message << id_ << "." << method;
   6664     return message.GetString();
   6665   }
   6666 
   6667   std::vector<std::string>* vector_;
   6668   const char* const id_;
   6669 
   6670   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6671 };
   6672 
   6673 TEST(EventListenerTest, AppendKeepsOrder) {
   6674   std::vector<std::string> vec;
   6675   TestEventListeners listeners;
   6676   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6677   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6678   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6679 
   6680   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6681       *UnitTest::GetInstance());
   6682   ASSERT_EQ(3U, vec.size());
   6683   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6684   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6685   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6686 
   6687   vec.clear();
   6688   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6689       *UnitTest::GetInstance());
   6690   ASSERT_EQ(3U, vec.size());
   6691   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6692   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6693   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6694 
   6695   vec.clear();
   6696   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6697       *UnitTest::GetInstance(), 0);
   6698   ASSERT_EQ(3U, vec.size());
   6699   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6700   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6701   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6702 
   6703   vec.clear();
   6704   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6705       *UnitTest::GetInstance(), 0);
   6706   ASSERT_EQ(3U, vec.size());
   6707   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6708   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6709   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6710 }
   6711 
   6712 // Tests that a listener removed from a TestEventListeners list stops receiving
   6713 // events and is not deleted when the list is destroyed.
   6714 TEST(TestEventListenersTest, Release) {
   6715   int on_start_counter = 0;
   6716   bool is_destroyed = false;
   6717   // Although Append passes the ownership of this object to the list,
   6718   // the following calls release it, and we need to delete it before the
   6719   // test ends.
   6720   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6721   {
   6722     TestEventListeners listeners;
   6723     listeners.Append(listener);
   6724     EXPECT_EQ(listener, listeners.Release(listener));
   6725     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6726         *UnitTest::GetInstance());
   6727     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6728   }
   6729   EXPECT_EQ(0, on_start_counter);
   6730   EXPECT_FALSE(is_destroyed);
   6731   delete listener;
   6732 }
   6733 
   6734 // Tests that no events are forwarded when event forwarding is disabled.
   6735 TEST(EventListenerTest, SuppressEventForwarding) {
   6736   int on_start_counter = 0;
   6737   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6738 
   6739   TestEventListeners listeners;
   6740   listeners.Append(listener);
   6741   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6742   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6743   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6744   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6745       *UnitTest::GetInstance());
   6746   EXPECT_EQ(0, on_start_counter);
   6747 }
   6748 
   6749 // Tests that events generated by Google Test are not forwarded in
   6750 // death test subprocesses.
   6751 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6752   EXPECT_DEATH_IF_SUPPORTED({
   6753       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6754           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6755       "expected failure");
   6756 }
   6757 
   6758 // Tests that a listener installed via SetDefaultResultPrinter() starts
   6759 // receiving events and is returned via default_result_printer() and that
   6760 // the previous default_result_printer is removed from the list and deleted.
   6761 TEST(EventListenerTest, default_result_printer) {
   6762   int on_start_counter = 0;
   6763   bool is_destroyed = false;
   6764   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6765 
   6766   TestEventListeners listeners;
   6767   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6768 
   6769   EXPECT_EQ(listener, listeners.default_result_printer());
   6770 
   6771   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6772       *UnitTest::GetInstance());
   6773 
   6774   EXPECT_EQ(1, on_start_counter);
   6775 
   6776   // Replacing default_result_printer with something else should remove it
   6777   // from the list and destroy it.
   6778   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   6779 
   6780   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6781   EXPECT_TRUE(is_destroyed);
   6782 
   6783   // After broadcasting an event the counter is still the same, indicating
   6784   // the listener is not in the list anymore.
   6785   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6786       *UnitTest::GetInstance());
   6787   EXPECT_EQ(1, on_start_counter);
   6788 }
   6789 
   6790 // Tests that the default_result_printer listener stops receiving events
   6791 // when removed via Release and that is not owned by the list anymore.
   6792 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   6793   int on_start_counter = 0;
   6794   bool is_destroyed = false;
   6795   // Although Append passes the ownership of this object to the list,
   6796   // the following calls release it, and we need to delete it before the
   6797   // test ends.
   6798   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6799   {
   6800     TestEventListeners listeners;
   6801     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6802 
   6803     EXPECT_EQ(listener, listeners.Release(listener));
   6804     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6805     EXPECT_FALSE(is_destroyed);
   6806 
   6807     // Broadcasting events now should not affect default_result_printer.
   6808     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6809         *UnitTest::GetInstance());
   6810     EXPECT_EQ(0, on_start_counter);
   6811   }
   6812   // Destroying the list should not affect the listener now, too.
   6813   EXPECT_FALSE(is_destroyed);
   6814   delete listener;
   6815 }
   6816 
   6817 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   6818 // receiving events and is returned via default_xml_generator() and that
   6819 // the previous default_xml_generator is removed from the list and deleted.
   6820 TEST(EventListenerTest, default_xml_generator) {
   6821   int on_start_counter = 0;
   6822   bool is_destroyed = false;
   6823   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6824 
   6825   TestEventListeners listeners;
   6826   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6827 
   6828   EXPECT_EQ(listener, listeners.default_xml_generator());
   6829 
   6830   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6831       *UnitTest::GetInstance());
   6832 
   6833   EXPECT_EQ(1, on_start_counter);
   6834 
   6835   // Replacing default_xml_generator with something else should remove it
   6836   // from the list and destroy it.
   6837   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   6838 
   6839   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6840   EXPECT_TRUE(is_destroyed);
   6841 
   6842   // After broadcasting an event the counter is still the same, indicating
   6843   // the listener is not in the list anymore.
   6844   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6845       *UnitTest::GetInstance());
   6846   EXPECT_EQ(1, on_start_counter);
   6847 }
   6848 
   6849 // Tests that the default_xml_generator listener stops receiving events
   6850 // when removed via Release and that is not owned by the list anymore.
   6851 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   6852   int on_start_counter = 0;
   6853   bool is_destroyed = false;
   6854   // Although Append passes the ownership of this object to the list,
   6855   // the following calls release it, and we need to delete it before the
   6856   // test ends.
   6857   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6858   {
   6859     TestEventListeners listeners;
   6860     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6861 
   6862     EXPECT_EQ(listener, listeners.Release(listener));
   6863     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6864     EXPECT_FALSE(is_destroyed);
   6865 
   6866     // Broadcasting events now should not affect default_xml_generator.
   6867     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6868         *UnitTest::GetInstance());
   6869     EXPECT_EQ(0, on_start_counter);
   6870   }
   6871   // Destroying the list should not affect the listener now, too.
   6872   EXPECT_FALSE(is_destroyed);
   6873   delete listener;
   6874 }
   6875 
   6876 // Sanity tests to ensure that the alternative, verbose spellings of
   6877 // some of the macros work.  We don't test them thoroughly as that
   6878 // would be quite involved.  Since their implementations are
   6879 // straightforward, and they are rarely used, we'll just rely on the
   6880 // users to tell us when they are broken.
   6881 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   6882   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   6883 
   6884   // GTEST_FAIL is the same as FAIL.
   6885   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   6886                        "An expected failure");
   6887 
   6888   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   6889 
   6890   GTEST_ASSERT_EQ(0, 0);
   6891   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   6892                        "An expected failure");
   6893   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   6894                        "An expected failure");
   6895 
   6896   GTEST_ASSERT_NE(0, 1);
   6897   GTEST_ASSERT_NE(1, 0);
   6898   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   6899                        "An expected failure");
   6900 
   6901   GTEST_ASSERT_LE(0, 0);
   6902   GTEST_ASSERT_LE(0, 1);
   6903   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   6904                        "An expected failure");
   6905 
   6906   GTEST_ASSERT_LT(0, 1);
   6907   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   6908                        "An expected failure");
   6909   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   6910                        "An expected failure");
   6911 
   6912   GTEST_ASSERT_GE(0, 0);
   6913   GTEST_ASSERT_GE(1, 0);
   6914   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   6915                        "An expected failure");
   6916 
   6917   GTEST_ASSERT_GT(1, 0);
   6918   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   6919                        "An expected failure");
   6920   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   6921                        "An expected failure");
   6922 }
   6923 
   6924 // Tests for internal utilities necessary for implementation of the universal
   6925 // printing.
   6926 // TODO(vladl (at) google.com): Find a better home for them.
   6927 
   6928 class ConversionHelperBase {};
   6929 class ConversionHelperDerived : public ConversionHelperBase {};
   6930 
   6931 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   6932 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   6933   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   6934                         const_true);
   6935   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   6936 }
   6937 
   6938 // Tests that IsAProtocolMessage<T>::value is true when T is
   6939 // proto2::Message or a sub-class of it.
   6940 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   6941   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   6942   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   6943 }
   6944 
   6945 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   6946 // ProtocolMessage nor a sub-class of it.
   6947 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   6948   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   6949   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   6950 }
   6951 
   6952 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   6953 // equal.
   6954 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   6955   CompileAssertTypesEqual<void, void>();
   6956   CompileAssertTypesEqual<int*, int*>();
   6957 }
   6958 
   6959 // Tests that RemoveReference does not affect non-reference types.
   6960 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   6961   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   6962   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   6963 }
   6964 
   6965 // Tests that RemoveReference removes reference from reference types.
   6966 TEST(RemoveReferenceTest, RemovesReference) {
   6967   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   6968   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   6969 }
   6970 
   6971 // Tests GTEST_REMOVE_REFERENCE_.
   6972 
   6973 template <typename T1, typename T2>
   6974 void TestGTestRemoveReference() {
   6975   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   6976 }
   6977 
   6978 TEST(RemoveReferenceTest, MacroVersion) {
   6979   TestGTestRemoveReference<int, int>();
   6980   TestGTestRemoveReference<const char, const char&>();
   6981 }
   6982 
   6983 
   6984 // Tests that RemoveConst does not affect non-const types.
   6985 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   6986   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   6987   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   6988 }
   6989 
   6990 // Tests that RemoveConst removes const from const types.
   6991 TEST(RemoveConstTest, RemovesConst) {
   6992   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   6993   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   6994   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   6995 }
   6996 
   6997 // Tests GTEST_REMOVE_CONST_.
   6998 
   6999 template <typename T1, typename T2>
   7000 void TestGTestRemoveConst() {
   7001   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7002 }
   7003 
   7004 TEST(RemoveConstTest, MacroVersion) {
   7005   TestGTestRemoveConst<int, int>();
   7006   TestGTestRemoveConst<double&, double&>();
   7007   TestGTestRemoveConst<char, const char>();
   7008 }
   7009 
   7010 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7011 
   7012 template <typename T1, typename T2>
   7013 void TestGTestRemoveReferenceAndConst() {
   7014   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7015 }
   7016 
   7017 TEST(RemoveReferenceToConstTest, Works) {
   7018   TestGTestRemoveReferenceAndConst<int, int>();
   7019   TestGTestRemoveReferenceAndConst<double, double&>();
   7020   TestGTestRemoveReferenceAndConst<char, const char>();
   7021   TestGTestRemoveReferenceAndConst<char, const char&>();
   7022   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7023 }
   7024 
   7025 // Tests that AddReference does not affect reference types.
   7026 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7027   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7028   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7029 }
   7030 
   7031 // Tests that AddReference adds reference to non-reference types.
   7032 TEST(AddReferenceTest, AddsReference) {
   7033   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7034   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7035 }
   7036 
   7037 // Tests GTEST_ADD_REFERENCE_.
   7038 
   7039 template <typename T1, typename T2>
   7040 void TestGTestAddReference() {
   7041   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7042 }
   7043 
   7044 TEST(AddReferenceTest, MacroVersion) {
   7045   TestGTestAddReference<int&, int>();
   7046   TestGTestAddReference<const char&, const char&>();
   7047 }
   7048 
   7049 // Tests GTEST_REFERENCE_TO_CONST_.
   7050 
   7051 template <typename T1, typename T2>
   7052 void TestGTestReferenceToConst() {
   7053   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7054 }
   7055 
   7056 TEST(GTestReferenceToConstTest, Works) {
   7057   TestGTestReferenceToConst<const char&, char>();
   7058   TestGTestReferenceToConst<const int&, const int>();
   7059   TestGTestReferenceToConst<const double&, double>();
   7060   TestGTestReferenceToConst<const std::string&, const std::string&>();
   7061 }
   7062 
   7063 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7064 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7065   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7066   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7067                         const_false);
   7068 }
   7069 
   7070 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7071 // be implicitly converted to T2.
   7072 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7073   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7074   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7075   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7076   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7077   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7078                                      const ConversionHelperBase&>::value));
   7079   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7080                                      ConversionHelperBase>::value));
   7081 }
   7082 
   7083 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7084 // cannot be implicitly converted to T2.
   7085 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7086   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7087   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7088   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7089   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7090                                       ConversionHelperDerived&>::value));
   7091 }
   7092 
   7093 // Tests IsContainerTest.
   7094 
   7095 class NonContainer {};
   7096 
   7097 TEST(IsContainerTestTest, WorksForNonContainer) {
   7098   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7099   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7100   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7101 }
   7102 
   7103 TEST(IsContainerTestTest, WorksForContainer) {
   7104   EXPECT_EQ(sizeof(IsContainer),
   7105             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7106   EXPECT_EQ(sizeof(IsContainer),
   7107             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7108 }
   7109 
   7110 // Tests ArrayEq().
   7111 
   7112 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7113   EXPECT_TRUE(ArrayEq(5, 5L));
   7114   EXPECT_FALSE(ArrayEq('a', 0));
   7115 }
   7116 
   7117 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7118   // Note that a and b are distinct but compatible types.
   7119   const int a[] = { 0, 1 };
   7120   long b[] = { 0, 1 };
   7121   EXPECT_TRUE(ArrayEq(a, b));
   7122   EXPECT_TRUE(ArrayEq(a, 2, b));
   7123 
   7124   b[0] = 2;
   7125   EXPECT_FALSE(ArrayEq(a, b));
   7126   EXPECT_FALSE(ArrayEq(a, 1, b));
   7127 }
   7128 
   7129 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7130   const char a[][3] = { "hi", "lo" };
   7131   const char b[][3] = { "hi", "lo" };
   7132   const char c[][3] = { "hi", "li" };
   7133 
   7134   EXPECT_TRUE(ArrayEq(a, b));
   7135   EXPECT_TRUE(ArrayEq(a, 2, b));
   7136 
   7137   EXPECT_FALSE(ArrayEq(a, c));
   7138   EXPECT_FALSE(ArrayEq(a, 2, c));
   7139 }
   7140 
   7141 // Tests ArrayAwareFind().
   7142 
   7143 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7144   const char a[] = "hello";
   7145   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7146   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7147 }
   7148 
   7149 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7150   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7151   const int b[2] = { 2, 3 };
   7152   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7153 
   7154   const int c[2] = { 6, 7 };
   7155   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7156 }
   7157 
   7158 // Tests CopyArray().
   7159 
   7160 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7161   int n = 0;
   7162   CopyArray('a', &n);
   7163   EXPECT_EQ('a', n);
   7164 }
   7165 
   7166 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7167   const char a[3] = "hi";
   7168   int b[3];
   7169 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7170   CopyArray(a, &b);
   7171   EXPECT_TRUE(ArrayEq(a, b));
   7172 #endif
   7173 
   7174   int c[3];
   7175   CopyArray(a, 3, c);
   7176   EXPECT_TRUE(ArrayEq(a, c));
   7177 }
   7178 
   7179 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7180   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7181   int b[2][3];
   7182 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7183   CopyArray(a, &b);
   7184   EXPECT_TRUE(ArrayEq(a, b));
   7185 #endif
   7186 
   7187   int c[2][3];
   7188   CopyArray(a, 2, c);
   7189   EXPECT_TRUE(ArrayEq(a, c));
   7190 }
   7191 
   7192 // Tests NativeArray.
   7193 
   7194 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7195   const int a[3] = { 0, 1, 2 };
   7196   NativeArray<int> na(a, 3, kReference);
   7197   EXPECT_EQ(3U, na.size());
   7198   EXPECT_EQ(a, na.begin());
   7199 }
   7200 
   7201 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7202   typedef int Array[2];
   7203   Array* a = new Array[1];
   7204   (*a)[0] = 0;
   7205   (*a)[1] = 1;
   7206   NativeArray<int> na(*a, 2, kCopy);
   7207   EXPECT_NE(*a, na.begin());
   7208   delete[] a;
   7209   EXPECT_EQ(0, na.begin()[0]);
   7210   EXPECT_EQ(1, na.begin()[1]);
   7211 
   7212   // We rely on the heap checker to verify that na deletes the copy of
   7213   // array.
   7214 }
   7215 
   7216 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7217   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7218   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7219 
   7220   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7221   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7222 }
   7223 
   7224 TEST(NativeArrayTest, MethodsWork) {
   7225   const int a[3] = { 0, 1, 2 };
   7226   NativeArray<int> na(a, 3, kCopy);
   7227   ASSERT_EQ(3U, na.size());
   7228   EXPECT_EQ(3, na.end() - na.begin());
   7229 
   7230   NativeArray<int>::const_iterator it = na.begin();
   7231   EXPECT_EQ(0, *it);
   7232   ++it;
   7233   EXPECT_EQ(1, *it);
   7234   it++;
   7235   EXPECT_EQ(2, *it);
   7236   ++it;
   7237   EXPECT_EQ(na.end(), it);
   7238 
   7239   EXPECT_TRUE(na == na);
   7240 
   7241   NativeArray<int> na2(a, 3, kReference);
   7242   EXPECT_TRUE(na == na2);
   7243 
   7244   const int b1[3] = { 0, 1, 1 };
   7245   const int b2[4] = { 0, 1, 2, 3 };
   7246   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
   7247   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
   7248 }
   7249 
   7250 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7251   const char a[2][3] = { "hi", "lo" };
   7252   NativeArray<char[3]> na(a, 2, kReference);
   7253   ASSERT_EQ(2U, na.size());
   7254   EXPECT_EQ(a, na.begin());
   7255 }
   7256 
   7257 // Tests SkipPrefix().
   7258 
   7259 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7260   const char* const str = "hello";
   7261 
   7262   const char* p = str;
   7263   EXPECT_TRUE(SkipPrefix("", &p));
   7264   EXPECT_EQ(str, p);
   7265 
   7266   p = str;
   7267   EXPECT_TRUE(SkipPrefix("hell", &p));
   7268   EXPECT_EQ(str + 4, p);
   7269 }
   7270 
   7271 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7272   const char* const str = "world";
   7273 
   7274   const char* p = str;
   7275   EXPECT_FALSE(SkipPrefix("W", &p));
   7276   EXPECT_EQ(str, p);
   7277 
   7278   p = str;
   7279   EXPECT_FALSE(SkipPrefix("world!", &p));
   7280   EXPECT_EQ(str, p);
   7281 }
   7282