1 /* 2 * Copyright (C) 2008 Apple Inc. All rights reserved. 3 * Copyright (C) 2009 Jian Li <jianli (at) chromium.org> 4 * Copyright (C) 2012 Patrick Gansterer <paroga (at) paroga.com> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 16 * its contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* Thread local storage is implemented by using either pthread API or Windows 32 * native API. There is subtle semantic discrepancy for the cleanup function 33 * implementation as noted below: 34 * @ In pthread implementation, the destructor function will be called 35 * repeatedly if there is still non-NULL value associated with the function. 36 * @ In Windows native implementation, the destructor function will be called 37 * only once. 38 * This semantic discrepancy does not impose any problem because nowhere in 39 * WebKit the repeated call bahavior is utilized. 40 */ 41 42 #ifndef WTF_ThreadSpecific_h 43 #define WTF_ThreadSpecific_h 44 45 #include "wtf/Noncopyable.h" 46 #include "wtf/StdLibExtras.h" 47 #include "wtf/WTF.h" 48 #include "wtf/WTFExport.h" 49 50 #if USE(PTHREADS) 51 #include <pthread.h> 52 #elif OS(WIN) 53 #include <windows.h> 54 #endif 55 56 namespace WTF { 57 58 #if OS(WIN) 59 // ThreadSpecificThreadExit should be called each time when a thread is detached. 60 // This is done automatically for threads created with WTF::createThread. 61 WTF_EXPORT void ThreadSpecificThreadExit(); 62 #endif 63 64 template<typename T> class ThreadSpecific { 65 WTF_MAKE_NONCOPYABLE(ThreadSpecific); 66 public: 67 ThreadSpecific(); 68 bool isSet(); // Useful as a fast check to see if this thread has set this value. 69 T* operator->(); 70 operator T*(); 71 T& operator*(); 72 73 private: 74 #if OS(WIN) 75 WTF_EXPORT friend void ThreadSpecificThreadExit(); 76 #endif 77 78 // Not implemented. It's technically possible to destroy a thread specific key, but one would need 79 // to make sure that all values have been destroyed already (usually, that all threads that used it 80 // have exited). It's unlikely that any user of this call will be in that situation - and having 81 // a destructor defined can be confusing, given that it has such strong pre-requisites to work correctly. 82 ~ThreadSpecific(); 83 84 T* get(); 85 void set(T*); 86 void static destroy(void* ptr); 87 88 struct Data { 89 WTF_MAKE_NONCOPYABLE(Data); 90 public: 91 Data(T* value, ThreadSpecific<T>* owner) : value(value), owner(owner) {} 92 93 T* value; 94 ThreadSpecific<T>* owner; 95 #if OS(WIN) 96 void (*destructor)(void*); 97 #endif 98 }; 99 100 #if USE(PTHREADS) 101 pthread_key_t m_key; 102 #elif OS(WIN) 103 int m_index; 104 #endif 105 }; 106 107 #if USE(PTHREADS) 108 109 typedef pthread_key_t ThreadSpecificKey; 110 111 inline void threadSpecificKeyCreate(ThreadSpecificKey* key, void (*destructor)(void *)) 112 { 113 int error = pthread_key_create(key, destructor); 114 if (error) 115 CRASH(); 116 } 117 118 inline void threadSpecificKeyDelete(ThreadSpecificKey key) 119 { 120 int error = pthread_key_delete(key); 121 if (error) 122 CRASH(); 123 } 124 125 inline void threadSpecificSet(ThreadSpecificKey key, void* value) 126 { 127 pthread_setspecific(key, value); 128 } 129 130 inline void* threadSpecificGet(ThreadSpecificKey key) 131 { 132 return pthread_getspecific(key); 133 } 134 135 template<typename T> 136 inline ThreadSpecific<T>::ThreadSpecific() 137 { 138 int error = pthread_key_create(&m_key, destroy); 139 if (error) 140 CRASH(); 141 } 142 143 template<typename T> 144 inline T* ThreadSpecific<T>::get() 145 { 146 Data* data = static_cast<Data*>(pthread_getspecific(m_key)); 147 return data ? data->value : 0; 148 } 149 150 template<typename T> 151 inline void ThreadSpecific<T>::set(T* ptr) 152 { 153 ASSERT(!get()); 154 pthread_setspecific(m_key, new Data(ptr, this)); 155 } 156 157 #elif OS(WIN) 158 159 // TLS_OUT_OF_INDEXES is not defined on WinCE. 160 #ifndef TLS_OUT_OF_INDEXES 161 #define TLS_OUT_OF_INDEXES 0xffffffff 162 #endif 163 164 // The maximum number of TLS keys that can be created. For simplification, we assume that: 165 // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. 166 // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. 167 const int kMaxTlsKeySize = 256; 168 169 WTF_EXPORT long& tlsKeyCount(); 170 WTF_EXPORT DWORD* tlsKeys(); 171 172 class PlatformThreadSpecificKey; 173 typedef PlatformThreadSpecificKey* ThreadSpecificKey; 174 175 WTF_EXPORT void threadSpecificKeyCreate(ThreadSpecificKey*, void (*)(void *)); 176 WTF_EXPORT void threadSpecificKeyDelete(ThreadSpecificKey); 177 WTF_EXPORT void threadSpecificSet(ThreadSpecificKey, void*); 178 WTF_EXPORT void* threadSpecificGet(ThreadSpecificKey); 179 180 template<typename T> 181 inline ThreadSpecific<T>::ThreadSpecific() 182 : m_index(-1) 183 { 184 DWORD tlsKey = TlsAlloc(); 185 if (tlsKey == TLS_OUT_OF_INDEXES) 186 CRASH(); 187 188 m_index = InterlockedIncrement(&tlsKeyCount()) - 1; 189 if (m_index >= kMaxTlsKeySize) 190 CRASH(); 191 tlsKeys()[m_index] = tlsKey; 192 } 193 194 template<typename T> 195 inline ThreadSpecific<T>::~ThreadSpecific() 196 { 197 // Does not invoke destructor functions. They will be called from ThreadSpecificThreadExit when the thread is detached. 198 TlsFree(tlsKeys()[m_index]); 199 } 200 201 template<typename T> 202 inline T* ThreadSpecific<T>::get() 203 { 204 Data* data = static_cast<Data*>(TlsGetValue(tlsKeys()[m_index])); 205 return data ? data->value : 0; 206 } 207 208 template<typename T> 209 inline void ThreadSpecific<T>::set(T* ptr) 210 { 211 ASSERT(!get()); 212 Data* data = new Data(ptr, this); 213 data->destructor = &ThreadSpecific<T>::destroy; 214 TlsSetValue(tlsKeys()[m_index], data); 215 } 216 217 #else 218 #error ThreadSpecific is not implemented for this platform. 219 #endif 220 221 template<typename T> 222 inline void ThreadSpecific<T>::destroy(void* ptr) 223 { 224 if (isShutdown()) 225 return; 226 227 Data* data = static_cast<Data*>(ptr); 228 229 #if USE(PTHREADS) 230 // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. 231 // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. 232 pthread_setspecific(data->owner->m_key, ptr); 233 #endif 234 235 data->value->~T(); 236 fastFree(data->value); 237 238 #if USE(PTHREADS) 239 pthread_setspecific(data->owner->m_key, 0); 240 #elif OS(WIN) 241 TlsSetValue(tlsKeys()[data->owner->m_index], 0); 242 #else 243 #error ThreadSpecific is not implemented for this platform. 244 #endif 245 246 delete data; 247 } 248 249 template<typename T> 250 inline bool ThreadSpecific<T>::isSet() 251 { 252 return !!get(); 253 } 254 255 template<typename T> 256 inline ThreadSpecific<T>::operator T*() 257 { 258 T* ptr = static_cast<T*>(get()); 259 if (!ptr) { 260 // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls 261 // needs to access the value, to avoid recursion. 262 ptr = static_cast<T*>(fastZeroedMalloc(sizeof(T))); 263 set(ptr); 264 new (NotNull, ptr) T; 265 } 266 return ptr; 267 } 268 269 template<typename T> 270 inline T* ThreadSpecific<T>::operator->() 271 { 272 return operator T*(); 273 } 274 275 template<typename T> 276 inline T& ThreadSpecific<T>::operator*() 277 { 278 return *operator T*(); 279 } 280 281 } // namespace WTF 282 283 using WTF::ThreadSpecific; 284 285 #endif // WTF_ThreadSpecific_h 286