1 /**************************************************************** 2 * 3 * The author of this software is David M. Gay. 4 * 5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. 6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved. 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose without fee is hereby granted, provided that this entire notice 10 * is included in all copies of any software which is or includes a copy 11 * or modification of this software and in all copies of the supporting 12 * documentation for such software. 13 * 14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED 15 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY 16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY 17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. 18 * 19 ***************************************************************/ 20 21 /* Please send bug reports to David M. Gay (dmg at acm dot org, 22 * with " at " changed at "@" and " dot " changed to "."). */ 23 24 /* On a machine with IEEE extended-precision registers, it is 25 * necessary to specify double-precision (53-bit) rounding precision 26 * before invoking strtod or dtoa. If the machine uses (the equivalent 27 * of) Intel 80x87 arithmetic, the call 28 * _control87(PC_53, MCW_PC); 29 * does this with many compilers. Whether this or another call is 30 * appropriate depends on the compiler; for this to work, it may be 31 * necessary to #include "float.h" or another system-dependent header 32 * file. 33 */ 34 35 #include "config.h" 36 #include "dtoa.h" 37 38 #include "wtf/CPU.h" 39 #include "wtf/MathExtras.h" 40 #include "wtf/ThreadingPrimitives.h" 41 #include "wtf/Vector.h" 42 43 #if COMPILER(MSVC) 44 #pragma warning(disable: 4244) 45 #pragma warning(disable: 4245) 46 #pragma warning(disable: 4554) 47 48 #if _MSC_VER == 1800 49 // TODO(scottmg): VS2013 currently ICEs on a bunch of functions in this file. 50 // Upstream bug fixed in next release. See http://crbug.com/288498. 51 #pragma optimize("", off) 52 #endif 53 54 #endif 55 56 namespace WTF { 57 58 Mutex* s_dtoaP5Mutex; 59 60 typedef union { 61 double d; 62 uint32_t L[2]; 63 } U; 64 65 #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) 66 #define word0(x) (x)->L[0] 67 #define word1(x) (x)->L[1] 68 #else 69 #define word0(x) (x)->L[1] 70 #define word1(x) (x)->L[0] 71 #endif 72 #define dval(x) (x)->d 73 74 #define Exp_shift 20 75 #define Exp_shift1 20 76 #define Exp_msk1 0x100000 77 #define Exp_msk11 0x100000 78 #define Exp_mask 0x7ff00000 79 #define P 53 80 #define Bias 1023 81 #define Emin (-1022) 82 #define Exp_1 0x3ff00000 83 #define Exp_11 0x3ff00000 84 #define Ebits 11 85 #define Frac_mask 0xfffff 86 #define Frac_mask1 0xfffff 87 #define Ten_pmax 22 88 #define Bletch 0x10 89 #define Bndry_mask 0xfffff 90 #define Bndry_mask1 0xfffff 91 #define LSB 1 92 #define Sign_bit 0x80000000 93 #define Log2P 1 94 #define Tiny0 0 95 #define Tiny1 1 96 #define Quick_max 14 97 #define Int_max 14 98 99 #define rounded_product(a, b) a *= b 100 #define rounded_quotient(a, b) a /= b 101 102 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) 103 #define Big1 0xffffffff 104 105 #if CPU(X86_64) 106 // FIXME: should we enable this on all 64-bit CPUs? 107 // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. 108 #define USE_LONG_LONG 109 #endif 110 111 #ifndef USE_LONG_LONG 112 /* The following definition of Storeinc is appropriate for MIPS processors. 113 * An alternative that might be better on some machines is 114 * *p++ = high << 16 | low & 0xffff; 115 */ 116 static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) 117 { 118 uint16_t* p16 = reinterpret_cast<uint16_t*>(p); 119 #if CPU(BIG_ENDIAN) 120 p16[0] = high; 121 p16[1] = low; 122 #else 123 p16[1] = high; 124 p16[0] = low; 125 #endif 126 return p + 1; 127 } 128 #endif 129 130 struct BigInt { 131 BigInt() : sign(0) { } 132 int sign; 133 134 void clear() 135 { 136 sign = 0; 137 m_words.clear(); 138 } 139 140 size_t size() const 141 { 142 return m_words.size(); 143 } 144 145 void resize(size_t s) 146 { 147 m_words.resize(s); 148 } 149 150 uint32_t* words() 151 { 152 return m_words.data(); 153 } 154 155 const uint32_t* words() const 156 { 157 return m_words.data(); 158 } 159 160 void append(uint32_t w) 161 { 162 m_words.append(w); 163 } 164 165 Vector<uint32_t, 16> m_words; 166 }; 167 168 static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ 169 { 170 #ifdef USE_LONG_LONG 171 unsigned long long carry; 172 #else 173 uint32_t carry; 174 #endif 175 176 int wds = b.size(); 177 uint32_t* x = b.words(); 178 int i = 0; 179 carry = a; 180 do { 181 #ifdef USE_LONG_LONG 182 unsigned long long y = *x * (unsigned long long)m + carry; 183 carry = y >> 32; 184 *x++ = (uint32_t)y & 0xffffffffUL; 185 #else 186 uint32_t xi = *x; 187 uint32_t y = (xi & 0xffff) * m + carry; 188 uint32_t z = (xi >> 16) * m + (y >> 16); 189 carry = z >> 16; 190 *x++ = (z << 16) + (y & 0xffff); 191 #endif 192 } while (++i < wds); 193 194 if (carry) 195 b.append((uint32_t)carry); 196 } 197 198 static int hi0bits(uint32_t x) 199 { 200 int k = 0; 201 202 if (!(x & 0xffff0000)) { 203 k = 16; 204 x <<= 16; 205 } 206 if (!(x & 0xff000000)) { 207 k += 8; 208 x <<= 8; 209 } 210 if (!(x & 0xf0000000)) { 211 k += 4; 212 x <<= 4; 213 } 214 if (!(x & 0xc0000000)) { 215 k += 2; 216 x <<= 2; 217 } 218 if (!(x & 0x80000000)) { 219 k++; 220 if (!(x & 0x40000000)) 221 return 32; 222 } 223 return k; 224 } 225 226 static int lo0bits(uint32_t* y) 227 { 228 int k; 229 uint32_t x = *y; 230 231 if (x & 7) { 232 if (x & 1) 233 return 0; 234 if (x & 2) { 235 *y = x >> 1; 236 return 1; 237 } 238 *y = x >> 2; 239 return 2; 240 } 241 k = 0; 242 if (!(x & 0xffff)) { 243 k = 16; 244 x >>= 16; 245 } 246 if (!(x & 0xff)) { 247 k += 8; 248 x >>= 8; 249 } 250 if (!(x & 0xf)) { 251 k += 4; 252 x >>= 4; 253 } 254 if (!(x & 0x3)) { 255 k += 2; 256 x >>= 2; 257 } 258 if (!(x & 1)) { 259 k++; 260 x >>= 1; 261 if (!x) 262 return 32; 263 } 264 *y = x; 265 return k; 266 } 267 268 static void i2b(BigInt& b, int i) 269 { 270 b.sign = 0; 271 b.resize(1); 272 b.words()[0] = i; 273 } 274 275 static void mult(BigInt& aRef, const BigInt& bRef) 276 { 277 const BigInt* a = &aRef; 278 const BigInt* b = &bRef; 279 BigInt c; 280 int wa, wb, wc; 281 const uint32_t* x = 0; 282 const uint32_t* xa; 283 const uint32_t* xb; 284 const uint32_t* xae; 285 const uint32_t* xbe; 286 uint32_t* xc; 287 uint32_t* xc0; 288 uint32_t y; 289 #ifdef USE_LONG_LONG 290 unsigned long long carry, z; 291 #else 292 uint32_t carry, z; 293 #endif 294 295 if (a->size() < b->size()) { 296 const BigInt* tmp = a; 297 a = b; 298 b = tmp; 299 } 300 301 wa = a->size(); 302 wb = b->size(); 303 wc = wa + wb; 304 c.resize(wc); 305 306 for (xc = c.words(), xa = xc + wc; xc < xa; xc++) 307 *xc = 0; 308 xa = a->words(); 309 xae = xa + wa; 310 xb = b->words(); 311 xbe = xb + wb; 312 xc0 = c.words(); 313 #ifdef USE_LONG_LONG 314 for (; xb < xbe; xc0++) { 315 if ((y = *xb++)) { 316 x = xa; 317 xc = xc0; 318 carry = 0; 319 do { 320 z = *x++ * (unsigned long long)y + *xc + carry; 321 carry = z >> 32; 322 *xc++ = (uint32_t)z & 0xffffffffUL; 323 } while (x < xae); 324 *xc = (uint32_t)carry; 325 } 326 } 327 #else 328 for (; xb < xbe; xb++, xc0++) { 329 if ((y = *xb & 0xffff)) { 330 x = xa; 331 xc = xc0; 332 carry = 0; 333 do { 334 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; 335 carry = z >> 16; 336 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; 337 carry = z2 >> 16; 338 xc = storeInc(xc, z2, z); 339 } while (x < xae); 340 *xc = carry; 341 } 342 if ((y = *xb >> 16)) { 343 x = xa; 344 xc = xc0; 345 carry = 0; 346 uint32_t z2 = *xc; 347 do { 348 z = (*x & 0xffff) * y + (*xc >> 16) + carry; 349 carry = z >> 16; 350 xc = storeInc(xc, z, z2); 351 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; 352 carry = z2 >> 16; 353 } while (x < xae); 354 *xc = z2; 355 } 356 } 357 #endif 358 for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } 359 c.resize(wc); 360 aRef = c; 361 } 362 363 struct P5Node { 364 WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED; 365 public: 366 P5Node() { } 367 BigInt val; 368 P5Node* next; 369 }; 370 371 static P5Node* p5s; 372 static int p5sCount; 373 374 static ALWAYS_INLINE void pow5mult(BigInt& b, int k) 375 { 376 static int p05[3] = { 5, 25, 125 }; 377 378 if (int i = k & 3) 379 multadd(b, p05[i - 1], 0); 380 381 if (!(k >>= 2)) 382 return; 383 384 s_dtoaP5Mutex->lock(); 385 P5Node* p5 = p5s; 386 387 if (!p5) { 388 /* first time */ 389 p5 = new P5Node; 390 i2b(p5->val, 625); 391 p5->next = 0; 392 p5s = p5; 393 p5sCount = 1; 394 } 395 396 int p5sCountLocal = p5sCount; 397 s_dtoaP5Mutex->unlock(); 398 int p5sUsed = 0; 399 400 for (;;) { 401 if (k & 1) 402 mult(b, p5->val); 403 404 if (!(k >>= 1)) 405 break; 406 407 if (++p5sUsed == p5sCountLocal) { 408 s_dtoaP5Mutex->lock(); 409 if (p5sUsed == p5sCount) { 410 ASSERT(!p5->next); 411 p5->next = new P5Node; 412 p5->next->next = 0; 413 p5->next->val = p5->val; 414 mult(p5->next->val, p5->next->val); 415 ++p5sCount; 416 } 417 418 p5sCountLocal = p5sCount; 419 s_dtoaP5Mutex->unlock(); 420 } 421 p5 = p5->next; 422 } 423 } 424 425 static ALWAYS_INLINE void lshift(BigInt& b, int k) 426 { 427 int n = k >> 5; 428 429 int origSize = b.size(); 430 int n1 = n + origSize + 1; 431 432 if (k &= 0x1f) 433 b.resize(b.size() + n + 1); 434 else 435 b.resize(b.size() + n); 436 437 const uint32_t* srcStart = b.words(); 438 uint32_t* dstStart = b.words(); 439 const uint32_t* src = srcStart + origSize - 1; 440 uint32_t* dst = dstStart + n1 - 1; 441 if (k) { 442 uint32_t hiSubword = 0; 443 int s = 32 - k; 444 for (; src >= srcStart; --src) { 445 *dst-- = hiSubword | *src >> s; 446 hiSubword = *src << k; 447 } 448 *dst = hiSubword; 449 ASSERT(dst == dstStart + n); 450 451 b.resize(origSize + n + !!b.words()[n1 - 1]); 452 } 453 else { 454 do { 455 *--dst = *src--; 456 } while (src >= srcStart); 457 } 458 for (dst = dstStart + n; dst != dstStart; ) 459 *--dst = 0; 460 461 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); 462 } 463 464 static int cmp(const BigInt& a, const BigInt& b) 465 { 466 const uint32_t *xa, *xa0, *xb, *xb0; 467 int i, j; 468 469 i = a.size(); 470 j = b.size(); 471 ASSERT(i <= 1 || a.words()[i - 1]); 472 ASSERT(j <= 1 || b.words()[j - 1]); 473 if (i -= j) 474 return i; 475 xa0 = a.words(); 476 xa = xa0 + j; 477 xb0 = b.words(); 478 xb = xb0 + j; 479 for (;;) { 480 if (*--xa != *--xb) 481 return *xa < *xb ? -1 : 1; 482 if (xa <= xa0) 483 break; 484 } 485 return 0; 486 } 487 488 static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) 489 { 490 const BigInt* a = &aRef; 491 const BigInt* b = &bRef; 492 int i, wa, wb; 493 uint32_t* xc; 494 495 i = cmp(*a, *b); 496 if (!i) { 497 c.sign = 0; 498 c.resize(1); 499 c.words()[0] = 0; 500 return; 501 } 502 if (i < 0) { 503 const BigInt* tmp = a; 504 a = b; 505 b = tmp; 506 i = 1; 507 } else 508 i = 0; 509 510 wa = a->size(); 511 const uint32_t* xa = a->words(); 512 const uint32_t* xae = xa + wa; 513 wb = b->size(); 514 const uint32_t* xb = b->words(); 515 const uint32_t* xbe = xb + wb; 516 517 c.resize(wa); 518 c.sign = i; 519 xc = c.words(); 520 #ifdef USE_LONG_LONG 521 unsigned long long borrow = 0; 522 do { 523 unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; 524 borrow = y >> 32 & (uint32_t)1; 525 *xc++ = (uint32_t)y & 0xffffffffUL; 526 } while (xb < xbe); 527 while (xa < xae) { 528 unsigned long long y = *xa++ - borrow; 529 borrow = y >> 32 & (uint32_t)1; 530 *xc++ = (uint32_t)y & 0xffffffffUL; 531 } 532 #else 533 uint32_t borrow = 0; 534 do { 535 uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; 536 borrow = (y & 0x10000) >> 16; 537 uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; 538 borrow = (z & 0x10000) >> 16; 539 xc = storeInc(xc, z, y); 540 } while (xb < xbe); 541 while (xa < xae) { 542 uint32_t y = (*xa & 0xffff) - borrow; 543 borrow = (y & 0x10000) >> 16; 544 uint32_t z = (*xa++ >> 16) - borrow; 545 borrow = (z & 0x10000) >> 16; 546 xc = storeInc(xc, z, y); 547 } 548 #endif 549 while (!*--xc) 550 wa--; 551 c.resize(wa); 552 } 553 554 static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) 555 { 556 int de, k; 557 uint32_t* x; 558 uint32_t y, z; 559 int i; 560 #define d0 word0(d) 561 #define d1 word1(d) 562 563 b.sign = 0; 564 b.resize(1); 565 x = b.words(); 566 567 z = d0 & Frac_mask; 568 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ 569 if ((de = (int)(d0 >> Exp_shift))) 570 z |= Exp_msk1; 571 if ((y = d1)) { 572 if ((k = lo0bits(&y))) { 573 x[0] = y | (z << (32 - k)); 574 z >>= k; 575 } else 576 x[0] = y; 577 if (z) { 578 b.resize(2); 579 x[1] = z; 580 } 581 582 i = b.size(); 583 } else { 584 k = lo0bits(&z); 585 x[0] = z; 586 i = 1; 587 b.resize(1); 588 k += 32; 589 } 590 if (de) { 591 *e = de - Bias - (P - 1) + k; 592 *bits = P - k; 593 } else { 594 *e = 0 - Bias - (P - 1) + 1 + k; 595 *bits = (32 * i) - hi0bits(x[i - 1]); 596 } 597 } 598 #undef d0 599 #undef d1 600 601 static const double tens[] = { 602 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 603 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 604 1e20, 1e21, 1e22 605 }; 606 607 static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; 608 609 #define Scale_Bit 0x10 610 #define n_bigtens 5 611 612 static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) 613 { 614 size_t n; 615 uint32_t* bx; 616 uint32_t* bxe; 617 uint32_t q; 618 uint32_t* sx; 619 uint32_t* sxe; 620 #ifdef USE_LONG_LONG 621 unsigned long long borrow, carry, y, ys; 622 #else 623 uint32_t borrow, carry, y, ys; 624 uint32_t si, z, zs; 625 #endif 626 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); 627 ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); 628 629 n = S.size(); 630 ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); 631 if (b.size() < n) 632 return 0; 633 sx = S.words(); 634 sxe = sx + --n; 635 bx = b.words(); 636 bxe = bx + n; 637 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ 638 ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); 639 if (q) { 640 borrow = 0; 641 carry = 0; 642 do { 643 #ifdef USE_LONG_LONG 644 ys = *sx++ * (unsigned long long)q + carry; 645 carry = ys >> 32; 646 y = *bx - (ys & 0xffffffffUL) - borrow; 647 borrow = y >> 32 & (uint32_t)1; 648 *bx++ = (uint32_t)y & 0xffffffffUL; 649 #else 650 si = *sx++; 651 ys = (si & 0xffff) * q + carry; 652 zs = (si >> 16) * q + (ys >> 16); 653 carry = zs >> 16; 654 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 655 borrow = (y & 0x10000) >> 16; 656 z = (*bx >> 16) - (zs & 0xffff) - borrow; 657 borrow = (z & 0x10000) >> 16; 658 bx = storeInc(bx, z, y); 659 #endif 660 } while (sx <= sxe); 661 if (!*bxe) { 662 bx = b.words(); 663 while (--bxe > bx && !*bxe) 664 --n; 665 b.resize(n); 666 } 667 } 668 if (cmp(b, S) >= 0) { 669 q++; 670 borrow = 0; 671 carry = 0; 672 bx = b.words(); 673 sx = S.words(); 674 do { 675 #ifdef USE_LONG_LONG 676 ys = *sx++ + carry; 677 carry = ys >> 32; 678 y = *bx - (ys & 0xffffffffUL) - borrow; 679 borrow = y >> 32 & (uint32_t)1; 680 *bx++ = (uint32_t)y & 0xffffffffUL; 681 #else 682 si = *sx++; 683 ys = (si & 0xffff) + carry; 684 zs = (si >> 16) + (ys >> 16); 685 carry = zs >> 16; 686 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 687 borrow = (y & 0x10000) >> 16; 688 z = (*bx >> 16) - (zs & 0xffff) - borrow; 689 borrow = (z & 0x10000) >> 16; 690 bx = storeInc(bx, z, y); 691 #endif 692 } while (sx <= sxe); 693 bx = b.words(); 694 bxe = bx + n; 695 if (!*bxe) { 696 while (--bxe > bx && !*bxe) 697 --n; 698 b.resize(n); 699 } 700 } 701 return q; 702 } 703 704 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. 705 * 706 * Inspired by "How to Print Floating-Point Numbers Accurately" by 707 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. 708 * 709 * Modifications: 710 * 1. Rather than iterating, we use a simple numeric overestimate 711 * to determine k = floor(log10(d)). We scale relevant 712 * quantities using O(log2(k)) rather than O(k) multiplications. 713 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't 714 * try to generate digits strictly left to right. Instead, we 715 * compute with fewer bits and propagate the carry if necessary 716 * when rounding the final digit up. This is often faster. 717 * 3. Under the assumption that input will be rounded nearest, 718 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. 719 * That is, we allow equality in stopping tests when the 720 * round-nearest rule will give the same floating-point value 721 * as would satisfaction of the stopping test with strict 722 * inequality. 723 * 4. We remove common factors of powers of 2 from relevant 724 * quantities. 725 * 5. When converting floating-point integers less than 1e16, 726 * we use floating-point arithmetic rather than resorting 727 * to multiple-precision integers. 728 * 6. When asked to produce fewer than 15 digits, we first try 729 * to get by with floating-point arithmetic; we resort to 730 * multiple-precision integer arithmetic only if we cannot 731 * guarantee that the floating-point calculation has given 732 * the correctly rounded result. For k requested digits and 733 * "uniformly" distributed input, the probability is 734 * something like 10^(k-15) that we must resort to the int32_t 735 * calculation. 736 * 737 * Note: 'leftright' translates to 'generate shortest possible string'. 738 */ 739 template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright> 740 void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut) 741 { 742 // Exactly one rounding mode must be specified. 743 ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1); 744 // roundingNone only allowed (only sensible?) with leftright set. 745 ASSERT(!roundingNone || leftright); 746 747 ASSERT(std::isfinite(dd)); 748 749 int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, 750 j, j1, k, k0, k_check, m2, m5, s2, s5, 751 spec_case; 752 int32_t L; 753 int denorm; 754 uint32_t x; 755 BigInt b, delta, mlo, mhi, S; 756 U d2, eps, u; 757 double ds; 758 char* s; 759 char* s0; 760 761 u.d = dd; 762 763 /* Infinity or NaN */ 764 ASSERT((word0(&u) & Exp_mask) != Exp_mask); 765 766 // JavaScript toString conversion treats -0 as 0. 767 if (!dval(&u)) { 768 signOut = false; 769 exponentOut = 0; 770 precisionOut = 1; 771 result[0] = '0'; 772 result[1] = '\0'; 773 return; 774 } 775 776 if (word0(&u) & Sign_bit) { 777 signOut = true; 778 word0(&u) &= ~Sign_bit; // clear sign bit 779 } else 780 signOut = false; 781 782 d2b(b, &u, &be, &bbits); 783 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { 784 dval(&d2) = dval(&u); 785 word0(&d2) &= Frac_mask1; 786 word0(&d2) |= Exp_11; 787 788 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 789 * log10(x) = log(x) / log(10) 790 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) 791 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) 792 * 793 * This suggests computing an approximation k to log10(d) by 794 * 795 * k = (i - Bias)*0.301029995663981 796 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); 797 * 798 * We want k to be too large rather than too small. 799 * The error in the first-order Taylor series approximation 800 * is in our favor, so we just round up the constant enough 801 * to compensate for any error in the multiplication of 802 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, 803 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, 804 * adding 1e-13 to the constant term more than suffices. 805 * Hence we adjust the constant term to 0.1760912590558. 806 * (We could get a more accurate k by invoking log10, 807 * but this is probably not worthwhile.) 808 */ 809 810 i -= Bias; 811 denorm = 0; 812 } else { 813 /* d is denormalized */ 814 815 i = bbits + be + (Bias + (P - 1) - 1); 816 x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) 817 : word1(&u) << (32 - i); 818 dval(&d2) = x; 819 word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ 820 i -= (Bias + (P - 1) - 1) + 1; 821 denorm = 1; 822 } 823 ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); 824 k = (int)ds; 825 if (ds < 0. && ds != k) 826 k--; /* want k = floor(ds) */ 827 k_check = 1; 828 if (k >= 0 && k <= Ten_pmax) { 829 if (dval(&u) < tens[k]) 830 k--; 831 k_check = 0; 832 } 833 j = bbits - i - 1; 834 if (j >= 0) { 835 b2 = 0; 836 s2 = j; 837 } else { 838 b2 = -j; 839 s2 = 0; 840 } 841 if (k >= 0) { 842 b5 = 0; 843 s5 = k; 844 s2 += k; 845 } else { 846 b2 -= k; 847 b5 = -k; 848 s5 = 0; 849 } 850 851 if (roundingNone) { 852 ilim = ilim1 = -1; 853 i = 18; 854 ndigits = 0; 855 } 856 if (roundingSignificantFigures) { 857 if (ndigits <= 0) 858 ndigits = 1; 859 ilim = ilim1 = i = ndigits; 860 } 861 if (roundingDecimalPlaces) { 862 i = ndigits + k + 1; 863 ilim = i; 864 ilim1 = i - 1; 865 if (i <= 0) 866 i = 1; 867 } 868 869 s = s0 = result; 870 871 if (ilim >= 0 && ilim <= Quick_max) { 872 /* Try to get by with floating-point arithmetic. */ 873 874 i = 0; 875 dval(&d2) = dval(&u); 876 k0 = k; 877 ilim0 = ilim; 878 ieps = 2; /* conservative */ 879 if (k > 0) { 880 ds = tens[k & 0xf]; 881 j = k >> 4; 882 if (j & Bletch) { 883 /* prevent overflows */ 884 j &= Bletch - 1; 885 dval(&u) /= bigtens[n_bigtens - 1]; 886 ieps++; 887 } 888 for (; j; j >>= 1, i++) { 889 if (j & 1) { 890 ieps++; 891 ds *= bigtens[i]; 892 } 893 } 894 dval(&u) /= ds; 895 } else if ((j1 = -k)) { 896 dval(&u) *= tens[j1 & 0xf]; 897 for (j = j1 >> 4; j; j >>= 1, i++) { 898 if (j & 1) { 899 ieps++; 900 dval(&u) *= bigtens[i]; 901 } 902 } 903 } 904 if (k_check && dval(&u) < 1. && ilim > 0) { 905 if (ilim1 <= 0) 906 goto fastFailed; 907 ilim = ilim1; 908 k--; 909 dval(&u) *= 10.; 910 ieps++; 911 } 912 dval(&eps) = (ieps * dval(&u)) + 7.; 913 word0(&eps) -= (P - 1) * Exp_msk1; 914 if (!ilim) { 915 S.clear(); 916 mhi.clear(); 917 dval(&u) -= 5.; 918 if (dval(&u) > dval(&eps)) 919 goto oneDigit; 920 if (dval(&u) < -dval(&eps)) 921 goto noDigits; 922 goto fastFailed; 923 } 924 if (leftright) { 925 /* Use Steele & White method of only 926 * generating digits needed. 927 */ 928 dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); 929 for (i = 0;;) { 930 L = (long int)dval(&u); 931 dval(&u) -= L; 932 *s++ = '0' + (int)L; 933 if (dval(&u) < dval(&eps)) 934 goto ret; 935 if (1. - dval(&u) < dval(&eps)) 936 goto bumpUp; 937 if (++i >= ilim) 938 break; 939 dval(&eps) *= 10.; 940 dval(&u) *= 10.; 941 } 942 } else { 943 /* Generate ilim digits, then fix them up. */ 944 dval(&eps) *= tens[ilim - 1]; 945 for (i = 1;; i++, dval(&u) *= 10.) { 946 L = (int32_t)(dval(&u)); 947 if (!(dval(&u) -= L)) 948 ilim = i; 949 *s++ = '0' + (int)L; 950 if (i == ilim) { 951 if (dval(&u) > 0.5 + dval(&eps)) 952 goto bumpUp; 953 if (dval(&u) < 0.5 - dval(&eps)) { 954 while (*--s == '0') { } 955 s++; 956 goto ret; 957 } 958 break; 959 } 960 } 961 } 962 fastFailed: 963 s = s0; 964 dval(&u) = dval(&d2); 965 k = k0; 966 ilim = ilim0; 967 } 968 969 /* Do we have a "small" integer? */ 970 971 if (be >= 0 && k <= Int_max) { 972 /* Yes. */ 973 ds = tens[k]; 974 if (ndigits < 0 && ilim <= 0) { 975 S.clear(); 976 mhi.clear(); 977 if (ilim < 0 || dval(&u) <= 5 * ds) 978 goto noDigits; 979 goto oneDigit; 980 } 981 for (i = 1;; i++, dval(&u) *= 10.) { 982 L = (int32_t)(dval(&u) / ds); 983 dval(&u) -= L * ds; 984 *s++ = '0' + (int)L; 985 if (!dval(&u)) { 986 break; 987 } 988 if (i == ilim) { 989 dval(&u) += dval(&u); 990 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { 991 bumpUp: 992 while (*--s == '9') 993 if (s == s0) { 994 k++; 995 *s = '0'; 996 break; 997 } 998 ++*s++; 999 } 1000 break; 1001 } 1002 } 1003 goto ret; 1004 } 1005 1006 m2 = b2; 1007 m5 = b5; 1008 mhi.clear(); 1009 mlo.clear(); 1010 if (leftright) { 1011 i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; 1012 b2 += i; 1013 s2 += i; 1014 i2b(mhi, 1); 1015 } 1016 if (m2 > 0 && s2 > 0) { 1017 i = m2 < s2 ? m2 : s2; 1018 b2 -= i; 1019 m2 -= i; 1020 s2 -= i; 1021 } 1022 if (b5 > 0) { 1023 if (leftright) { 1024 if (m5 > 0) { 1025 pow5mult(mhi, m5); 1026 mult(b, mhi); 1027 } 1028 if ((j = b5 - m5)) 1029 pow5mult(b, j); 1030 } else 1031 pow5mult(b, b5); 1032 } 1033 i2b(S, 1); 1034 if (s5 > 0) 1035 pow5mult(S, s5); 1036 1037 /* Check for special case that d is a normalized power of 2. */ 1038 1039 spec_case = 0; 1040 if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) { 1041 /* The special case */ 1042 b2 += Log2P; 1043 s2 += Log2P; 1044 spec_case = 1; 1045 } 1046 1047 /* Arrange for convenient computation of quotients: 1048 * shift left if necessary so divisor has 4 leading 0 bits. 1049 * 1050 * Perhaps we should just compute leading 28 bits of S once 1051 * and for all and pass them and a shift to quorem, so it 1052 * can do shifts and ors to compute the numerator for q. 1053 */ 1054 if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) 1055 i = 32 - i; 1056 if (i > 4) { 1057 i -= 4; 1058 b2 += i; 1059 m2 += i; 1060 s2 += i; 1061 } else if (i < 4) { 1062 i += 28; 1063 b2 += i; 1064 m2 += i; 1065 s2 += i; 1066 } 1067 if (b2 > 0) 1068 lshift(b, b2); 1069 if (s2 > 0) 1070 lshift(S, s2); 1071 if (k_check) { 1072 if (cmp(b, S) < 0) { 1073 k--; 1074 multadd(b, 10, 0); /* we botched the k estimate */ 1075 if (leftright) 1076 multadd(mhi, 10, 0); 1077 ilim = ilim1; 1078 } 1079 } 1080 if (ilim <= 0 && roundingDecimalPlaces) { 1081 if (ilim < 0) 1082 goto noDigits; 1083 multadd(S, 5, 0); 1084 // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero. 1085 if (cmp(b, S) < 0) 1086 goto noDigits; 1087 goto oneDigit; 1088 } 1089 if (leftright) { 1090 if (m2 > 0) 1091 lshift(mhi, m2); 1092 1093 /* Compute mlo -- check for special case 1094 * that d is a normalized power of 2. 1095 */ 1096 1097 mlo = mhi; 1098 if (spec_case) 1099 lshift(mhi, Log2P); 1100 1101 for (i = 1;;i++) { 1102 dig = quorem(b, S) + '0'; 1103 /* Do we yet have the shortest decimal string 1104 * that will round to d? 1105 */ 1106 j = cmp(b, mlo); 1107 diff(delta, S, mhi); 1108 j1 = delta.sign ? 1 : cmp(b, delta); 1109 #ifdef DTOA_ROUND_BIASED 1110 if (j < 0 || !j) { 1111 #else 1112 // FIXME: ECMA-262 specifies that equidistant results round away from 1113 // zero, which probably means we shouldn't be on the unbiased code path 1114 // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't 1115 // yet understood this code well enough to make the call, but we should 1116 // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner 1117 // case to understand is probably "Math.pow(0.5, 24).toString()". 1118 // I believe this value is interesting because I think it is precisely 1119 // representable in binary floating point, and its decimal representation 1120 // has a single digit that Steele & White reduction can remove, with the 1121 // value 5 (thus equidistant from the next numbers above and below). 1122 // We produce the correct answer using either codepath, and I don't as 1123 // yet understand why. :-) 1124 if (!j1 && !(word1(&u) & 1)) { 1125 if (dig == '9') 1126 goto round9up; 1127 if (j > 0) 1128 dig++; 1129 *s++ = dig; 1130 goto ret; 1131 } 1132 if (j < 0 || (!j && !(word1(&u) & 1))) { 1133 #endif 1134 if ((b.words()[0] || b.size() > 1) && (j1 > 0)) { 1135 lshift(b, 1); 1136 j1 = cmp(b, S); 1137 // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))), 1138 // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should 1139 // be rounded away from zero. 1140 if (j1 >= 0) { 1141 if (dig == '9') 1142 goto round9up; 1143 dig++; 1144 } 1145 } 1146 *s++ = dig; 1147 goto ret; 1148 } 1149 if (j1 > 0) { 1150 if (dig == '9') { /* possible if i == 1 */ 1151 round9up: 1152 *s++ = '9'; 1153 goto roundoff; 1154 } 1155 *s++ = dig + 1; 1156 goto ret; 1157 } 1158 *s++ = dig; 1159 if (i == ilim) 1160 break; 1161 multadd(b, 10, 0); 1162 multadd(mlo, 10, 0); 1163 multadd(mhi, 10, 0); 1164 } 1165 } else { 1166 for (i = 1;; i++) { 1167 *s++ = dig = quorem(b, S) + '0'; 1168 if (!b.words()[0] && b.size() <= 1) 1169 goto ret; 1170 if (i >= ilim) 1171 break; 1172 multadd(b, 10, 0); 1173 } 1174 } 1175 1176 /* Round off last digit */ 1177 1178 lshift(b, 1); 1179 j = cmp(b, S); 1180 // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))), 1181 // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should 1182 // be rounded away from zero. 1183 if (j >= 0) { 1184 roundoff: 1185 while (*--s == '9') 1186 if (s == s0) { 1187 k++; 1188 *s++ = '1'; 1189 goto ret; 1190 } 1191 ++*s++; 1192 } else { 1193 while (*--s == '0') { } 1194 s++; 1195 } 1196 goto ret; 1197 noDigits: 1198 exponentOut = 0; 1199 precisionOut = 1; 1200 result[0] = '0'; 1201 result[1] = '\0'; 1202 return; 1203 oneDigit: 1204 *s++ = '1'; 1205 k++; 1206 goto ret; 1207 ret: 1208 ASSERT(s > result); 1209 *s = 0; 1210 exponentOut = k; 1211 precisionOut = s - result; 1212 } 1213 1214 void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision) 1215 { 1216 // flags are roundingNone, leftright. 1217 dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision); 1218 } 1219 1220 void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) 1221 { 1222 // flag is roundingSignificantFigures. 1223 dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision); 1224 } 1225 1226 void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) 1227 { 1228 // flag is roundingDecimalPlaces. 1229 dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision); 1230 } 1231 1232 const char* numberToString(double d, NumberToStringBuffer buffer) 1233 { 1234 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1235 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1236 converter.ToShortest(d, &builder); 1237 return builder.Finalize(); 1238 } 1239 1240 static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder) 1241 { 1242 size_t length = builder.position(); 1243 size_t decimalPointPosition = 0; 1244 for (; decimalPointPosition < length; ++decimalPointPosition) { 1245 if (buffer[decimalPointPosition] == '.') 1246 break; 1247 } 1248 1249 // No decimal seperator found, early exit. 1250 if (decimalPointPosition == length) 1251 return builder.Finalize(); 1252 1253 size_t truncatedLength = length - 1; 1254 for (; truncatedLength > decimalPointPosition; --truncatedLength) { 1255 if (buffer[truncatedLength] != '0') 1256 break; 1257 } 1258 1259 // No trailing zeros found to strip. 1260 if (truncatedLength == length - 1) 1261 return builder.Finalize(); 1262 1263 // If we removed all trailing zeros, remove the decimal point as well. 1264 if (truncatedLength == decimalPointPosition) { 1265 ASSERT(truncatedLength > 0); 1266 --truncatedLength; 1267 } 1268 1269 // Truncate the StringBuilder, and return the final result. 1270 builder.SetPosition(truncatedLength + 1); 1271 return builder.Finalize(); 1272 } 1273 1274 const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros) 1275 { 1276 // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities. 1277 // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision. 1278 // The e format is used only when the exponent of the value is less than 4 or greater than or equal to the 1279 // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it. 1280 // "precision": The precision specifies the maximum number of significant digits printed. 1281 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1282 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1283 converter.ToPrecision(d, significantFigures, &builder); 1284 if (!truncateTrailingZeros) 1285 return builder.Finalize(); 1286 return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder); 1287 } 1288 1289 const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer) 1290 { 1291 // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities. 1292 // "f": Signed value having the form [ ]dddd.dddd, where dddd is one or more decimal digits. 1293 // The number of digits before the decimal point depends on the magnitude of the number, and 1294 // the number of digits after the decimal point depends on the requested precision. 1295 // "precision": The precision value specifies the number of digits after the decimal point. 1296 // If a decimal point appears, at least one digit appears before it. 1297 // The value is rounded to the appropriate number of digits. 1298 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1299 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1300 converter.ToFixed(d, decimalPlaces, &builder); 1301 return builder.Finalize(); 1302 } 1303 1304 namespace Internal { 1305 1306 double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength) 1307 { 1308 Vector<LChar> conversionBuffer(length); 1309 for (size_t i = 0; i < length; ++i) 1310 conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0; 1311 return parseDouble(conversionBuffer.data(), length, parsedLength); 1312 } 1313 1314 } // namespace Internal 1315 1316 } // namespace WTF 1317