1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "config.h" 29 30 #include <math.h> 31 32 #include "bignum-dtoa.h" 33 34 #include "bignum.h" 35 #include "double.h" 36 37 namespace WTF { 38 39 namespace double_conversion { 40 41 static int NormalizedExponent(uint64_t significand, int exponent) { 42 ASSERT(significand != 0); 43 while ((significand & Double::kHiddenBit) == 0) { 44 significand = significand << 1; 45 exponent = exponent - 1; 46 } 47 return exponent; 48 } 49 50 51 // Forward declarations: 52 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. 53 static int EstimatePower(int exponent); 54 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 55 // and denominator. 56 static void InitialScaledStartValues(double v, 57 int estimated_power, 58 bool need_boundary_deltas, 59 Bignum* numerator, 60 Bignum* denominator, 61 Bignum* delta_minus, 62 Bignum* delta_plus); 63 // Multiplies numerator/denominator so that its values lies in the range 1-10. 64 // Returns decimal_point s.t. 65 // v = numerator'/denominator' * 10^(decimal_point-1) 66 // where numerator' and denominator' are the values of numerator and 67 // denominator after the call to this function. 68 static void FixupMultiply10(int estimated_power, bool is_even, 69 int* decimal_point, 70 Bignum* numerator, Bignum* denominator, 71 Bignum* delta_minus, Bignum* delta_plus); 72 // Generates digits from the left to the right and stops when the generated 73 // digits yield the shortest decimal representation of v. 74 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 75 Bignum* delta_minus, Bignum* delta_plus, 76 bool is_even, 77 Vector<char> buffer, int* length); 78 // Generates 'requested_digits' after the decimal point. 79 static void BignumToFixed(int requested_digits, int* decimal_point, 80 Bignum* numerator, Bignum* denominator, 81 Vector<char>(buffer), int* length); 82 // Generates 'count' digits of numerator/denominator. 83 // Once 'count' digits have been produced rounds the result depending on the 84 // remainder (remainders of exactly .5 round upwards). Might update the 85 // decimal_point when rounding up (for example for 0.9999). 86 static void GenerateCountedDigits(int count, int* decimal_point, 87 Bignum* numerator, Bignum* denominator, 88 Vector<char>(buffer), int* length); 89 90 91 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, 92 Vector<char> buffer, int* length, int* decimal_point) { 93 ASSERT(v > 0); 94 ASSERT(!Double(v).IsSpecial()); 95 uint64_t significand = Double(v).Significand(); 96 bool is_even = (significand & 1) == 0; 97 int exponent = Double(v).Exponent(); 98 int normalized_exponent = NormalizedExponent(significand, exponent); 99 // estimated_power might be too low by 1. 100 int estimated_power = EstimatePower(normalized_exponent); 101 102 // Shortcut for Fixed. 103 // The requested digits correspond to the digits after the point. If the 104 // number is much too small, then there is no need in trying to get any 105 // digits. 106 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { 107 buffer[0] = '\0'; 108 *length = 0; 109 // Set decimal-point to -requested_digits. This is what Gay does. 110 // Note that it should not have any effect anyways since the string is 111 // empty. 112 *decimal_point = -requested_digits; 113 return; 114 } 115 116 Bignum numerator; 117 Bignum denominator; 118 Bignum delta_minus; 119 Bignum delta_plus; 120 // Make sure the bignum can grow large enough. The smallest double equals 121 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. 122 // The maximum double is 1.7976931348623157e308 which needs fewer than 123 // 308*4 binary digits. 124 ASSERT(Bignum::kMaxSignificantBits >= 324*4); 125 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); 126 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, 127 &numerator, &denominator, 128 &delta_minus, &delta_plus); 129 // We now have v = (numerator / denominator) * 10^estimated_power. 130 FixupMultiply10(estimated_power, is_even, decimal_point, 131 &numerator, &denominator, 132 &delta_minus, &delta_plus); 133 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and 134 // 1 <= (numerator + delta_plus) / denominator < 10 135 switch (mode) { 136 case BIGNUM_DTOA_SHORTEST: 137 GenerateShortestDigits(&numerator, &denominator, 138 &delta_minus, &delta_plus, 139 is_even, buffer, length); 140 break; 141 case BIGNUM_DTOA_FIXED: 142 BignumToFixed(requested_digits, decimal_point, 143 &numerator, &denominator, 144 buffer, length); 145 break; 146 case BIGNUM_DTOA_PRECISION: 147 GenerateCountedDigits(requested_digits, decimal_point, 148 &numerator, &denominator, 149 buffer, length); 150 break; 151 default: 152 UNREACHABLE(); 153 } 154 buffer[*length] = '\0'; 155 } 156 157 158 // The procedure starts generating digits from the left to the right and stops 159 // when the generated digits yield the shortest decimal representation of v. A 160 // decimal representation of v is a number lying closer to v than to any other 161 // double, so it converts to v when read. 162 // 163 // This is true if d, the decimal representation, is between m- and m+, the 164 // upper and lower boundaries. d must be strictly between them if !is_even. 165 // m- := (numerator - delta_minus) / denominator 166 // m+ := (numerator + delta_plus) / denominator 167 // 168 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. 169 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit 170 // will be produced. This should be the standard precondition. 171 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 172 Bignum* delta_minus, Bignum* delta_plus, 173 bool is_even, 174 Vector<char> buffer, int* length) { 175 // Small optimization: if delta_minus and delta_plus are the same just reuse 176 // one of the two bignums. 177 if (Bignum::Equal(*delta_minus, *delta_plus)) { 178 delta_plus = delta_minus; 179 } 180 *length = 0; 181 while (true) { 182 uint16_t digit; 183 digit = numerator->DivideModuloIntBignum(*denominator); 184 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. 185 // digit = numerator / denominator (integer division). 186 // numerator = numerator % denominator. 187 buffer[(*length)++] = digit + '0'; 188 189 // Can we stop already? 190 // If the remainder of the division is less than the distance to the lower 191 // boundary we can stop. In this case we simply round down (discarding the 192 // remainder). 193 // Similarly we test if we can round up (using the upper boundary). 194 bool in_delta_room_minus; 195 bool in_delta_room_plus; 196 if (is_even) { 197 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); 198 } else { 199 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); 200 } 201 if (is_even) { 202 in_delta_room_plus = 203 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 204 } else { 205 in_delta_room_plus = 206 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 207 } 208 if (!in_delta_room_minus && !in_delta_room_plus) { 209 // Prepare for next iteration. 210 numerator->Times10(); 211 delta_minus->Times10(); 212 // We optimized delta_plus to be equal to delta_minus (if they share the 213 // same value). So don't multiply delta_plus if they point to the same 214 // object. 215 if (delta_minus != delta_plus) { 216 delta_plus->Times10(); 217 } 218 } else if (in_delta_room_minus && in_delta_room_plus) { 219 // Let's see if 2*numerator < denominator. 220 // If yes, then the next digit would be < 5 and we can round down. 221 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); 222 if (compare < 0) { 223 // Remaining digits are less than .5. -> Round down (== do nothing). 224 } else if (compare > 0) { 225 // Remaining digits are more than .5 of denominator. -> Round up. 226 // Note that the last digit could not be a '9' as otherwise the whole 227 // loop would have stopped earlier. 228 // We still have an assert here in case the preconditions were not 229 // satisfied. 230 ASSERT(buffer[(*length) - 1] != '9'); 231 buffer[(*length) - 1]++; 232 } else { 233 // Halfway case. 234 // TODO(floitsch): need a way to solve half-way cases. 235 // For now let's round towards even (since this is what Gay seems to 236 // do). 237 238 if ((buffer[(*length) - 1] - '0') % 2 == 0) { 239 // Round down => Do nothing. 240 } else { 241 ASSERT(buffer[(*length) - 1] != '9'); 242 buffer[(*length) - 1]++; 243 } 244 } 245 return; 246 } else if (in_delta_room_minus) { 247 // Round down (== do nothing). 248 return; 249 } else { // in_delta_room_plus 250 // Round up. 251 // Note again that the last digit could not be '9' since this would have 252 // stopped the loop earlier. 253 // We still have an ASSERT here, in case the preconditions were not 254 // satisfied. 255 ASSERT(buffer[(*length) -1] != '9'); 256 buffer[(*length) - 1]++; 257 return; 258 } 259 } 260 } 261 262 263 // Let v = numerator / denominator < 10. 264 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) 265 // from left to right. Once 'count' digits have been produced we decide wether 266 // to round up or down. Remainders of exactly .5 round upwards. Numbers such 267 // as 9.999999 propagate a carry all the way, and change the 268 // exponent (decimal_point), when rounding upwards. 269 static void GenerateCountedDigits(int count, int* decimal_point, 270 Bignum* numerator, Bignum* denominator, 271 Vector<char>(buffer), int* length) { 272 ASSERT(count >= 0); 273 for (int i = 0; i < count - 1; ++i) { 274 uint16_t digit; 275 digit = numerator->DivideModuloIntBignum(*denominator); 276 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. 277 // digit = numerator / denominator (integer division). 278 // numerator = numerator % denominator. 279 buffer[i] = digit + '0'; 280 // Prepare for next iteration. 281 numerator->Times10(); 282 } 283 // Generate the last digit. 284 uint16_t digit; 285 digit = numerator->DivideModuloIntBignum(*denominator); 286 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 287 digit++; 288 } 289 buffer[count - 1] = digit + '0'; 290 // Correct bad digits (in case we had a sequence of '9's). Propagate the 291 // carry until we hat a non-'9' or til we reach the first digit. 292 for (int i = count - 1; i > 0; --i) { 293 if (buffer[i] != '0' + 10) break; 294 buffer[i] = '0'; 295 buffer[i - 1]++; 296 } 297 if (buffer[0] == '0' + 10) { 298 // Propagate a carry past the top place. 299 buffer[0] = '1'; 300 (*decimal_point)++; 301 } 302 *length = count; 303 } 304 305 306 // Generates 'requested_digits' after the decimal point. It might omit 307 // trailing '0's. If the input number is too small then no digits at all are 308 // generated (ex.: 2 fixed digits for 0.00001). 309 // 310 // Input verifies: 1 <= (numerator + delta) / denominator < 10. 311 static void BignumToFixed(int requested_digits, int* decimal_point, 312 Bignum* numerator, Bignum* denominator, 313 Vector<char>(buffer), int* length) { 314 // Note that we have to look at more than just the requested_digits, since 315 // a number could be rounded up. Example: v=0.5 with requested_digits=0. 316 // Even though the power of v equals 0 we can't just stop here. 317 if (-(*decimal_point) > requested_digits) { 318 // The number is definitively too small. 319 // Ex: 0.001 with requested_digits == 1. 320 // Set decimal-point to -requested_digits. This is what Gay does. 321 // Note that it should not have any effect anyways since the string is 322 // empty. 323 *decimal_point = -requested_digits; 324 *length = 0; 325 return; 326 } else if (-(*decimal_point) == requested_digits) { 327 // We only need to verify if the number rounds down or up. 328 // Ex: 0.04 and 0.06 with requested_digits == 1. 329 ASSERT(*decimal_point == -requested_digits); 330 // Initially the fraction lies in range (1, 10]. Multiply the denominator 331 // by 10 so that we can compare more easily. 332 denominator->Times10(); 333 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 334 // If the fraction is >= 0.5 then we have to include the rounded 335 // digit. 336 buffer[0] = '1'; 337 *length = 1; 338 (*decimal_point)++; 339 } else { 340 // Note that we caught most of similar cases earlier. 341 *length = 0; 342 } 343 return; 344 } else { 345 // The requested digits correspond to the digits after the point. 346 // The variable 'needed_digits' includes the digits before the point. 347 int needed_digits = (*decimal_point) + requested_digits; 348 GenerateCountedDigits(needed_digits, decimal_point, 349 numerator, denominator, 350 buffer, length); 351 } 352 } 353 354 355 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where 356 // v = f * 2^exponent and 2^52 <= f < 2^53. 357 // v is hence a normalized double with the given exponent. The output is an 358 // approximation for the exponent of the decimal approimation .digits * 10^k. 359 // 360 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. 361 // Note: this property holds for v's upper boundary m+ too. 362 // 10^k <= m+ < 10^k+1. 363 // (see explanation below). 364 // 365 // Examples: 366 // EstimatePower(0) => 16 367 // EstimatePower(-52) => 0 368 // 369 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. 370 static int EstimatePower(int exponent) { 371 // This function estimates log10 of v where v = f*2^e (with e == exponent). 372 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). 373 // Note that f is bounded by its container size. Let p = 53 (the double's 374 // significand size). Then 2^(p-1) <= f < 2^p. 375 // 376 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close 377 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). 378 // The computed number undershoots by less than 0.631 (when we compute log3 379 // and not log10). 380 // 381 // Optimization: since we only need an approximated result this computation 382 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is 383 // not really measurable, though. 384 // 385 // Since we want to avoid overshooting we decrement by 1e10 so that 386 // floating-point imprecisions don't affect us. 387 // 388 // Explanation for v's boundary m+: the computation takes advantage of 389 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement 390 // (even for denormals where the delta can be much more important). 391 392 const double k1Log10 = 0.30102999566398114; // 1/lg(10) 393 394 // For doubles len(f) == 53 (don't forget the hidden bit). 395 const int kSignificandSize = 53; 396 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); 397 return static_cast<int>(estimate); 398 } 399 400 401 // See comments for InitialScaledStartValues. 402 static void InitialScaledStartValuesPositiveExponent( 403 double v, int estimated_power, bool need_boundary_deltas, 404 Bignum* numerator, Bignum* denominator, 405 Bignum* delta_minus, Bignum* delta_plus) { 406 // A positive exponent implies a positive power. 407 ASSERT(estimated_power >= 0); 408 // Since the estimated_power is positive we simply multiply the denominator 409 // by 10^estimated_power. 410 411 // numerator = v. 412 numerator->AssignUInt64(Double(v).Significand()); 413 numerator->ShiftLeft(Double(v).Exponent()); 414 // denominator = 10^estimated_power. 415 denominator->AssignPowerUInt16(10, estimated_power); 416 417 if (need_boundary_deltas) { 418 // Introduce a common denominator so that the deltas to the boundaries are 419 // integers. 420 denominator->ShiftLeft(1); 421 numerator->ShiftLeft(1); 422 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 423 // denominator (of 2) delta_plus equals 2^e. 424 delta_plus->AssignUInt16(1); 425 delta_plus->ShiftLeft(Double(v).Exponent()); 426 // Same for delta_minus (with adjustments below if f == 2^p-1). 427 delta_minus->AssignUInt16(1); 428 delta_minus->ShiftLeft(Double(v).Exponent()); 429 430 // If the significand (without the hidden bit) is 0, then the lower 431 // boundary is closer than just half a ulp (unit in the last place). 432 // There is only one exception: if the next lower number is a denormal then 433 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we 434 // have to test it in the other function where exponent < 0). 435 uint64_t v_bits = Double(v).AsUint64(); 436 if ((v_bits & Double::kSignificandMask) == 0) { 437 // The lower boundary is closer at half the distance of "normal" numbers. 438 // Increase the common denominator and adapt all but the delta_minus. 439 denominator->ShiftLeft(1); // *2 440 numerator->ShiftLeft(1); // *2 441 delta_plus->ShiftLeft(1); // *2 442 } 443 } 444 } 445 446 447 // See comments for InitialScaledStartValues 448 static void InitialScaledStartValuesNegativeExponentPositivePower( 449 double v, int estimated_power, bool need_boundary_deltas, 450 Bignum* numerator, Bignum* denominator, 451 Bignum* delta_minus, Bignum* delta_plus) { 452 uint64_t significand = Double(v).Significand(); 453 int exponent = Double(v).Exponent(); 454 // v = f * 2^e with e < 0, and with estimated_power >= 0. 455 // This means that e is close to 0 (have a look at how estimated_power is 456 // computed). 457 458 // numerator = significand 459 // since v = significand * 2^exponent this is equivalent to 460 // numerator = v * / 2^-exponent 461 numerator->AssignUInt64(significand); 462 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) 463 denominator->AssignPowerUInt16(10, estimated_power); 464 denominator->ShiftLeft(-exponent); 465 466 if (need_boundary_deltas) { 467 // Introduce a common denominator so that the deltas to the boundaries are 468 // integers. 469 denominator->ShiftLeft(1); 470 numerator->ShiftLeft(1); 471 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 472 // denominator (of 2) delta_plus equals 2^e. 473 // Given that the denominator already includes v's exponent the distance 474 // to the boundaries is simply 1. 475 delta_plus->AssignUInt16(1); 476 // Same for delta_minus (with adjustments below if f == 2^p-1). 477 delta_minus->AssignUInt16(1); 478 479 // If the significand (without the hidden bit) is 0, then the lower 480 // boundary is closer than just one ulp (unit in the last place). 481 // There is only one exception: if the next lower number is a denormal 482 // then the distance is 1 ulp. Since the exponent is close to zero 483 // (otherwise estimated_power would have been negative) this cannot happen 484 // here either. 485 uint64_t v_bits = Double(v).AsUint64(); 486 if ((v_bits & Double::kSignificandMask) == 0) { 487 // The lower boundary is closer at half the distance of "normal" numbers. 488 // Increase the denominator and adapt all but the delta_minus. 489 denominator->ShiftLeft(1); // *2 490 numerator->ShiftLeft(1); // *2 491 delta_plus->ShiftLeft(1); // *2 492 } 493 } 494 } 495 496 497 // See comments for InitialScaledStartValues 498 static void InitialScaledStartValuesNegativeExponentNegativePower( 499 double v, int estimated_power, bool need_boundary_deltas, 500 Bignum* numerator, Bignum* denominator, 501 Bignum* delta_minus, Bignum* delta_plus) { 502 const uint64_t kMinimalNormalizedExponent = 503 UINT64_2PART_C(0x00100000, 00000000); 504 uint64_t significand = Double(v).Significand(); 505 int exponent = Double(v).Exponent(); 506 // Instead of multiplying the denominator with 10^estimated_power we 507 // multiply all values (numerator and deltas) by 10^-estimated_power. 508 509 // Use numerator as temporary container for power_ten. 510 Bignum* power_ten = numerator; 511 power_ten->AssignPowerUInt16(10, -estimated_power); 512 513 if (need_boundary_deltas) { 514 // Since power_ten == numerator we must make a copy of 10^estimated_power 515 // before we complete the computation of the numerator. 516 // delta_plus = delta_minus = 10^estimated_power 517 delta_plus->AssignBignum(*power_ten); 518 delta_minus->AssignBignum(*power_ten); 519 } 520 521 // numerator = significand * 2 * 10^-estimated_power 522 // since v = significand * 2^exponent this is equivalent to 523 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. 524 // Remember: numerator has been abused as power_ten. So no need to assign it 525 // to itself. 526 ASSERT(numerator == power_ten); 527 numerator->MultiplyByUInt64(significand); 528 529 // denominator = 2 * 2^-exponent with exponent < 0. 530 denominator->AssignUInt16(1); 531 denominator->ShiftLeft(-exponent); 532 533 if (need_boundary_deltas) { 534 // Introduce a common denominator so that the deltas to the boundaries are 535 // integers. 536 numerator->ShiftLeft(1); 537 denominator->ShiftLeft(1); 538 // With this shift the boundaries have their correct value, since 539 // delta_plus = 10^-estimated_power, and 540 // delta_minus = 10^-estimated_power. 541 // These assignments have been done earlier. 542 543 // The special case where the lower boundary is twice as close. 544 // This time we have to look out for the exception too. 545 uint64_t v_bits = Double(v).AsUint64(); 546 if ((v_bits & Double::kSignificandMask) == 0 && 547 // The only exception where a significand == 0 has its boundaries at 548 // "normal" distances: 549 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { 550 numerator->ShiftLeft(1); // *2 551 denominator->ShiftLeft(1); // *2 552 delta_plus->ShiftLeft(1); // *2 553 } 554 } 555 } 556 557 558 // Let v = significand * 2^exponent. 559 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 560 // and denominator. The functions GenerateShortestDigits and 561 // GenerateCountedDigits will then convert this ratio to its decimal 562 // representation d, with the required accuracy. 563 // Then d * 10^estimated_power is the representation of v. 564 // (Note: the fraction and the estimated_power might get adjusted before 565 // generating the decimal representation.) 566 // 567 // The initial start values consist of: 568 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. 569 // - a scaled (common) denominator. 570 // optionally (used by GenerateShortestDigits to decide if it has the shortest 571 // decimal converting back to v): 572 // - v - m-: the distance to the lower boundary. 573 // - m+ - v: the distance to the upper boundary. 574 // 575 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. 576 // 577 // Let ep == estimated_power, then the returned values will satisfy: 578 // v / 10^ep = numerator / denominator. 579 // v's boundarys m- and m+: 580 // m- / 10^ep == v / 10^ep - delta_minus / denominator 581 // m+ / 10^ep == v / 10^ep + delta_plus / denominator 582 // Or in other words: 583 // m- == v - delta_minus * 10^ep / denominator; 584 // m+ == v + delta_plus * 10^ep / denominator; 585 // 586 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) 587 // or 10^k <= v < 10^(k+1) 588 // we then have 0.1 <= numerator/denominator < 1 589 // or 1 <= numerator/denominator < 10 590 // 591 // It is then easy to kickstart the digit-generation routine. 592 // 593 // The boundary-deltas are only filled if need_boundary_deltas is set. 594 static void InitialScaledStartValues(double v, 595 int estimated_power, 596 bool need_boundary_deltas, 597 Bignum* numerator, 598 Bignum* denominator, 599 Bignum* delta_minus, 600 Bignum* delta_plus) { 601 if (Double(v).Exponent() >= 0) { 602 InitialScaledStartValuesPositiveExponent( 603 v, estimated_power, need_boundary_deltas, 604 numerator, denominator, delta_minus, delta_plus); 605 } else if (estimated_power >= 0) { 606 InitialScaledStartValuesNegativeExponentPositivePower( 607 v, estimated_power, need_boundary_deltas, 608 numerator, denominator, delta_minus, delta_plus); 609 } else { 610 InitialScaledStartValuesNegativeExponentNegativePower( 611 v, estimated_power, need_boundary_deltas, 612 numerator, denominator, delta_minus, delta_plus); 613 } 614 } 615 616 617 // This routine multiplies numerator/denominator so that its values lies in the 618 // range 1-10. That is after a call to this function we have: 619 // 1 <= (numerator + delta_plus) /denominator < 10. 620 // Let numerator the input before modification and numerator' the argument 621 // after modification, then the output-parameter decimal_point is such that 622 // numerator / denominator * 10^estimated_power == 623 // numerator' / denominator' * 10^(decimal_point - 1) 624 // In some cases estimated_power was too low, and this is already the case. We 625 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == 626 // estimated_power) but do not touch the numerator or denominator. 627 // Otherwise the routine multiplies the numerator and the deltas by 10. 628 static void FixupMultiply10(int estimated_power, bool is_even, 629 int* decimal_point, 630 Bignum* numerator, Bignum* denominator, 631 Bignum* delta_minus, Bignum* delta_plus) { 632 bool in_range; 633 if (is_even) { 634 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) 635 // are rounded to the closest floating-point number with even significand. 636 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 637 } else { 638 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 639 } 640 if (in_range) { 641 // Since numerator + delta_plus >= denominator we already have 642 // 1 <= numerator/denominator < 10. Simply update the estimated_power. 643 *decimal_point = estimated_power + 1; 644 } else { 645 *decimal_point = estimated_power; 646 numerator->Times10(); 647 if (Bignum::Equal(*delta_minus, *delta_plus)) { 648 delta_minus->Times10(); 649 delta_plus->AssignBignum(*delta_minus); 650 } else { 651 delta_minus->Times10(); 652 delta_plus->Times10(); 653 } 654 } 655 } 656 657 } // namespace double_conversion 658 659 } // namespace WTF 660