1 // Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_SCOPED_PTR_H__ 6 #define BASE_SCOPED_PTR_H__ 7 8 // This is an implementation designed to match the anticipated future TR2 9 // implementation of the scoped_ptr class, and its closely-related brethren, 10 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. 11 // 12 // See http://wiki/Main/ScopedPointerInterface for the spec that drove this 13 // file. 14 15 #include <assert.h> 16 #include <stdlib.h> 17 #include <cstddef> 18 19 #ifdef OS_EMBEDDED_QNX 20 // NOTE(akirmse): 21 // The C++ standard says that <stdlib.h> declares both ::foo and std::foo 22 // But this isn't done in QNX version 6.3.2 200709062316. 23 using std::free; 24 using std::malloc; 25 using std::realloc; 26 #endif 27 28 template <class C> class scoped_ptr; 29 template <class C, class Free> class scoped_ptr_malloc; 30 template <class C> class scoped_array; 31 32 template <class C> 33 scoped_ptr<C> make_scoped_ptr(C *); 34 35 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 36 // automatically deletes the pointer it holds (if any). 37 // That is, scoped_ptr<T> owns the T object that it points to. 38 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 39 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 40 // dereference it, you get the threadsafety guarantees of T. 41 // 42 // The size of a scoped_ptr is small: 43 // sizeof(scoped_ptr<C>) == sizeof(C*) 44 template <class C> 45 class scoped_ptr { 46 public: 47 48 // The element type 49 typedef C element_type; 50 51 // Constructor. Defaults to intializing with NULL. 52 // There is no way to create an uninitialized scoped_ptr. 53 // The input parameter must be allocated with new. 54 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 55 56 // Destructor. If there is a C object, delete it. 57 // We don't need to test ptr_ == NULL because C++ does that for us. 58 ~scoped_ptr() { 59 enum { type_must_be_complete = sizeof(C) }; 60 delete ptr_; 61 } 62 63 // Reset. Deletes the current owned object, if any. 64 // Then takes ownership of a new object, if given. 65 // this->reset(this->get()) works. 66 void reset(C* p = NULL) { 67 if (p != ptr_) { 68 enum { type_must_be_complete = sizeof(C) }; 69 delete ptr_; 70 ptr_ = p; 71 } 72 } 73 74 // Accessors to get the owned object. 75 // operator* and operator-> will assert() if there is no current object. 76 C& operator*() const { 77 assert(ptr_ != NULL); 78 return *ptr_; 79 } 80 C* operator->() const { 81 assert(ptr_ != NULL); 82 return ptr_; 83 } 84 C* get() const { return ptr_; } 85 86 // Comparison operators. 87 // These return whether a scoped_ptr and a raw pointer refer to 88 // the same object, not just to two different but equal objects. 89 bool operator==(const C* p) const { return ptr_ == p; } 90 bool operator!=(const C* p) const { return ptr_ != p; } 91 92 // Swap two scoped pointers. 93 void swap(scoped_ptr& p2) { 94 C* tmp = ptr_; 95 ptr_ = p2.ptr_; 96 p2.ptr_ = tmp; 97 } 98 99 // Release a pointer. 100 // The return value is the current pointer held by this object. 101 // If this object holds a NULL pointer, the return value is NULL. 102 // After this operation, this object will hold a NULL pointer, 103 // and will not own the object any more. 104 C* release() { 105 C* retVal = ptr_; 106 ptr_ = NULL; 107 return retVal; 108 } 109 110 private: 111 C* ptr_; 112 113 // google3 friend class that can access copy ctor (although if it actually 114 // calls a copy ctor, there will be a problem) see below 115 friend scoped_ptr<C> make_scoped_ptr<C>(C *p); 116 117 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 118 // make sense, and if C2 == C, it still doesn't make sense because you should 119 // never have the same object owned by two different scoped_ptrs. 120 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 121 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 122 123 // Disallow evil constructors 124 scoped_ptr(const scoped_ptr&); 125 void operator=(const scoped_ptr&); 126 }; 127 128 // Free functions 129 template <class C> 130 inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 131 p1.swap(p2); 132 } 133 134 template <class C> 135 inline bool operator==(const C* p1, const scoped_ptr<C>& p2) { 136 return p1 == p2.get(); 137 } 138 139 template <class C> 140 inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) { 141 return p1 == p2.get(); 142 } 143 144 template <class C> 145 inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) { 146 return p1 != p2.get(); 147 } 148 149 template <class C> 150 inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) { 151 return p1 != p2.get(); 152 } 153 154 template <class C> 155 scoped_ptr<C> make_scoped_ptr(C *p) { 156 // This does nothing but to return a scoped_ptr of the type that the passed 157 // pointer is of. (This eliminates the need to specify the name of T when 158 // making a scoped_ptr that is used anonymously/temporarily.) From an 159 // access control point of view, we construct an unnamed scoped_ptr here 160 // which we return and thus copy-construct. Hence, we need to have access 161 // to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed 162 // that we never actually call the copy constructor, which is a good thing 163 // as we would call the temporary's object destructor (and thus delete p) 164 // if we actually did copy some object, here. 165 return scoped_ptr<C>(p); 166 } 167 168 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 169 // with new [] and the destructor deletes objects with delete []. 170 // 171 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 172 // or is NULL. A scoped_array<C> owns the object that it points to. 173 // scoped_array<T> is thread-compatible, and once you index into it, 174 // the returned objects have only the threadsafety guarantees of T. 175 // 176 // Size: sizeof(scoped_array<C>) == sizeof(C*) 177 template <class C> 178 class scoped_array { 179 public: 180 181 // The element type 182 typedef C element_type; 183 184 // Constructor. Defaults to intializing with NULL. 185 // There is no way to create an uninitialized scoped_array. 186 // The input parameter must be allocated with new []. 187 explicit scoped_array(C* p = NULL) : array_(p) { } 188 189 // Destructor. If there is a C object, delete it. 190 // We don't need to test ptr_ == NULL because C++ does that for us. 191 ~scoped_array() { 192 enum { type_must_be_complete = sizeof(C) }; 193 delete[] array_; 194 } 195 196 // Reset. Deletes the current owned object, if any. 197 // Then takes ownership of a new object, if given. 198 // this->reset(this->get()) works. 199 void reset(C* p = NULL) { 200 if (p != array_) { 201 enum { type_must_be_complete = sizeof(C) }; 202 delete[] array_; 203 array_ = p; 204 } 205 } 206 207 // Get one element of the current object. 208 // Will assert() if there is no current object, or index i is negative. 209 C& operator[](std::ptrdiff_t i) const { 210 assert(i >= 0); 211 assert(array_ != NULL); 212 return array_[i]; 213 } 214 215 // Get a pointer to the zeroth element of the current object. 216 // If there is no current object, return NULL. 217 C* get() const { 218 return array_; 219 } 220 221 // Comparison operators. 222 // These return whether a scoped_array and a raw pointer refer to 223 // the same array, not just to two different but equal arrays. 224 bool operator==(const C* p) const { return array_ == p; } 225 bool operator!=(const C* p) const { return array_ != p; } 226 227 // Swap two scoped arrays. 228 void swap(scoped_array& p2) { 229 C* tmp = array_; 230 array_ = p2.array_; 231 p2.array_ = tmp; 232 } 233 234 // Release an array. 235 // The return value is the current pointer held by this object. 236 // If this object holds a NULL pointer, the return value is NULL. 237 // After this operation, this object will hold a NULL pointer, 238 // and will not own the object any more. 239 C* release() { 240 C* retVal = array_; 241 array_ = NULL; 242 return retVal; 243 } 244 245 private: 246 C* array_; 247 248 // Forbid comparison of different scoped_array types. 249 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 250 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 251 252 // Disallow evil constructors 253 scoped_array(const scoped_array&); 254 void operator=(const scoped_array&); 255 }; 256 257 // Free functions 258 template <class C> 259 inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) { 260 p1.swap(p2); 261 } 262 263 template <class C> 264 inline bool operator==(const C* p1, const scoped_array<C>& p2) { 265 return p1 == p2.get(); 266 } 267 268 template <class C> 269 inline bool operator==(const C* p1, const scoped_array<const C>& p2) { 270 return p1 == p2.get(); 271 } 272 273 template <class C> 274 inline bool operator!=(const C* p1, const scoped_array<C>& p2) { 275 return p1 != p2.get(); 276 } 277 278 template <class C> 279 inline bool operator!=(const C* p1, const scoped_array<const C>& p2) { 280 return p1 != p2.get(); 281 } 282 283 // This class wraps the c library function free() in a class that can be 284 // passed as a template argument to scoped_ptr_malloc below. 285 class ScopedPtrMallocFree { 286 public: 287 inline void operator()(void* x) const { 288 free(x); 289 } 290 }; 291 292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a 293 // second template argument, the functor used to free the object. 294 295 template<class C, class FreeProc = ScopedPtrMallocFree> 296 class scoped_ptr_malloc { 297 public: 298 299 // The element type 300 typedef C element_type; 301 302 // Construction with no arguments sets ptr_ to NULL. 303 // There is no way to create an uninitialized scoped_ptr. 304 // The input parameter must be allocated with an allocator that matches the 305 // Free functor. For the default Free functor, this is malloc, calloc, or 306 // realloc. 307 explicit scoped_ptr_malloc(): ptr_(NULL) { } 308 309 // Construct with a C*, and provides an error with a D*. 310 template<class must_be_C> 311 explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { } 312 313 // Construct with a void*, such as you get from malloc. 314 explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { } 315 316 // Destructor. If there is a C object, call the Free functor. 317 ~scoped_ptr_malloc() { 318 free_(ptr_); 319 } 320 321 // Reset. Calls the Free functor on the current owned object, if any. 322 // Then takes ownership of a new object, if given. 323 // this->reset(this->get()) works. 324 void reset(C* p = NULL) { 325 if (ptr_ != p) { 326 free_(ptr_); 327 ptr_ = p; 328 } 329 } 330 331 // Reallocates the existing pointer, and returns 'true' if 332 // the reallcation is succesfull. If the reallocation failed, then 333 // the pointer remains in its previous state. 334 // 335 // Note: this calls realloc() directly, even if an alternate 'free' 336 // functor is provided in the template instantiation. 337 bool try_realloc(size_t new_size) { 338 C* new_ptr = static_cast<C*>(realloc(ptr_, new_size)); 339 if (new_ptr == NULL) { 340 return false; 341 } 342 ptr_ = new_ptr; 343 return true; 344 } 345 346 // Get the current object. 347 // operator* and operator-> will cause an assert() failure if there is 348 // no current object. 349 C& operator*() const { 350 assert(ptr_ != NULL); 351 return *ptr_; 352 } 353 354 C* operator->() const { 355 assert(ptr_ != NULL); 356 return ptr_; 357 } 358 359 C* get() const { 360 return ptr_; 361 } 362 363 // Comparison operators. 364 // These return whether a scoped_ptr_malloc and a plain pointer refer 365 // to the same object, not just to two different but equal objects. 366 // For compatibility with the boost-derived implementation, these 367 // take non-const arguments. 368 bool operator==(C* p) const { 369 return ptr_ == p; 370 } 371 372 bool operator!=(C* p) const { 373 return ptr_ != p; 374 } 375 376 // Swap two scoped pointers. 377 void swap(scoped_ptr_malloc & b) { 378 C* tmp = b.ptr_; 379 b.ptr_ = ptr_; 380 ptr_ = tmp; 381 } 382 383 // Release a pointer. 384 // The return value is the current pointer held by this object. 385 // If this object holds a NULL pointer, the return value is NULL. 386 // After this operation, this object will hold a NULL pointer, 387 // and will not own the object any more. 388 C* release() { 389 C* tmp = ptr_; 390 ptr_ = NULL; 391 return tmp; 392 } 393 394 private: 395 C* ptr_; 396 397 // no reason to use these: each scoped_ptr_malloc should have its own object 398 template <class C2, class GP> 399 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; 400 template <class C2, class GP> 401 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; 402 403 static FreeProc const free_; 404 405 // Disallow evil constructors 406 scoped_ptr_malloc(const scoped_ptr_malloc&); 407 void operator=(const scoped_ptr_malloc&); 408 }; 409 410 template<class C, class FP> 411 FP const scoped_ptr_malloc<C, FP>::free_ = FP(); 412 413 template<class C, class FP> inline 414 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { 415 a.swap(b); 416 } 417 418 template<class C, class FP> inline 419 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { 420 return p == b.get(); 421 } 422 423 template<class C, class FP> inline 424 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { 425 return p != b.get(); 426 } 427 428 #endif // BASE_SCOPED_PTR_H__ 429