Home | History | Annotate | Download | only in i18n
      1 /*
      2  **********************************************************************
      3  *   Copyright (C) 1999-2008, International Business Machines
      4  *   Corporation and others.  All Rights Reserved.
      5  **********************************************************************
      6  *   Date        Name        Description
      7  *   11/17/99    aliu        Creation.
      8  **********************************************************************
      9  */
     10 
     11 #include "unicode/utypes.h"
     12 
     13 #if !UCONFIG_NO_TRANSLITERATION
     14 
     15 #include "unicode/uobject.h"
     16 #include "unicode/parseerr.h"
     17 #include "unicode/parsepos.h"
     18 #include "unicode/putil.h"
     19 #include "unicode/uchar.h"
     20 #include "unicode/ustring.h"
     21 #include "unicode/uniset.h"
     22 #include "cstring.h"
     23 #include "funcrepl.h"
     24 #include "hash.h"
     25 #include "quant.h"
     26 #include "rbt.h"
     27 #include "rbt_data.h"
     28 #include "rbt_pars.h"
     29 #include "rbt_rule.h"
     30 #include "strmatch.h"
     31 #include "strrepl.h"
     32 #include "unicode/symtable.h"
     33 #include "tridpars.h"
     34 #include "uvector.h"
     35 #include "hash.h"
     36 #include "util.h"
     37 #include "cmemory.h"
     38 #include "uprops.h"
     39 #include "putilimp.h"
     40 
     41 // Operators
     42 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
     43 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
     44 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
     45 #define FWDREV_RULE_OP  ((UChar)0x007E) /*~*/ // internal rep of <> op
     46 
     47 // Other special characters
     48 #define QUOTE             ((UChar)0x0027) /*'*/
     49 #define ESCAPE            ((UChar)0x005C) /*\*/
     50 #define END_OF_RULE       ((UChar)0x003B) /*;*/
     51 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
     52 
     53 #define SEGMENT_OPEN       ((UChar)0x0028) /*(*/
     54 #define SEGMENT_CLOSE      ((UChar)0x0029) /*)*/
     55 #define CONTEXT_ANTE       ((UChar)0x007B) /*{*/
     56 #define CONTEXT_POST       ((UChar)0x007D) /*}*/
     57 #define CURSOR_POS         ((UChar)0x007C) /*|*/
     58 #define CURSOR_OFFSET      ((UChar)0x0040) /*@*/
     59 #define ANCHOR_START       ((UChar)0x005E) /*^*/
     60 #define KLEENE_STAR        ((UChar)0x002A) /***/
     61 #define ONE_OR_MORE        ((UChar)0x002B) /*+*/
     62 #define ZERO_OR_ONE        ((UChar)0x003F) /*?*/
     63 
     64 #define DOT                ((UChar)46)     /*.*/
     65 
     66 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
     67     91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
     68     108, 58, 93, 92, 114, 92, 110, 36, 93, 0
     69 };
     70 
     71 // A function is denoted &Source-Target/Variant(text)
     72 #define FUNCTION           ((UChar)38)     /*&*/
     73 
     74 // Aliases for some of the syntax characters. These are provided so
     75 // transliteration rules can be expressed in XML without clashing with
     76 // XML syntax characters '<', '>', and '&'.
     77 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
     78 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
     79 #define ALT_FWDREV_RULE_OP  ((UChar)0x2194) // Left Right Arrow
     80 #define ALT_FUNCTION        ((UChar)0x2206) // Increment (~Greek Capital Delta)
     81 
     82 // Special characters disallowed at the top level
     83 static const UChar ILLEGAL_TOP[] = {41,0}; // ")"
     84 
     85 // Special characters disallowed within a segment
     86 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"
     87 
     88 // Special characters disallowed within a function argument
     89 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
     90 
     91 // By definition, the ANCHOR_END special character is a
     92 // trailing SymbolTable.SYMBOL_REF character.
     93 // private static final char ANCHOR_END       = '$';
     94 
     95 static const UChar gOPERATORS[] = { // "=><"
     96     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
     97     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
     98     0
     99 };
    100 
    101 static const UChar HALF_ENDERS[] = { // "=><;"
    102     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
    103     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
    104     END_OF_RULE,
    105     0
    106 };
    107 
    108 // These are also used in Transliterator::toRules()
    109 static const int32_t ID_TOKEN_LEN = 2;
    110 static const UChar   ID_TOKEN[]   = { 0x3A, 0x3A }; // ':', ':'
    111 
    112 /*
    113 commented out until we do real ::BEGIN/::END functionality
    114 static const int32_t BEGIN_TOKEN_LEN = 5;
    115 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
    116 
    117 static const int32_t END_TOKEN_LEN = 3;
    118 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
    119 */
    120 
    121 U_NAMESPACE_BEGIN
    122 
    123 //----------------------------------------------------------------------
    124 // BEGIN ParseData
    125 //----------------------------------------------------------------------
    126 
    127 /**
    128  * This class implements the SymbolTable interface.  It is used
    129  * during parsing to give UnicodeSet access to variables that
    130  * have been defined so far.  Note that it uses variablesVector,
    131  * _not_ data.setVariables.
    132  */
    133 class ParseData : public UMemory, public SymbolTable {
    134 public:
    135     const TransliterationRuleData* data; // alias
    136 
    137     const UVector* variablesVector; // alias
    138 
    139     const Hashtable* variableNames; // alias
    140 
    141     ParseData(const TransliterationRuleData* data = 0,
    142               const UVector* variablesVector = 0,
    143               const Hashtable* variableNames = 0);
    144 
    145     virtual const UnicodeString* lookup(const UnicodeString& s) const;
    146 
    147     virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;
    148 
    149     virtual UnicodeString parseReference(const UnicodeString& text,
    150                                          ParsePosition& pos, int32_t limit) const;
    151     /**
    152      * Return true if the given character is a matcher standin or a plain
    153      * character (non standin).
    154      */
    155     UBool isMatcher(UChar32 ch);
    156 
    157     /**
    158      * Return true if the given character is a replacer standin or a plain
    159      * character (non standin).
    160      */
    161     UBool isReplacer(UChar32 ch);
    162 
    163 private:
    164     ParseData(const ParseData &other); // forbid copying of this class
    165     ParseData &operator=(const ParseData &other); // forbid copying of this class
    166 };
    167 
    168 ParseData::ParseData(const TransliterationRuleData* d,
    169                      const UVector* sets,
    170                      const Hashtable* vNames) :
    171     data(d), variablesVector(sets), variableNames(vNames) {}
    172 
    173 /**
    174  * Implement SymbolTable API.
    175  */
    176 const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
    177     return (const UnicodeString*) variableNames->get(name);
    178 }
    179 
    180 /**
    181  * Implement SymbolTable API.
    182  */
    183 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
    184     // Note that we cannot use data.lookupSet() because the
    185     // set array has not been constructed yet.
    186     const UnicodeFunctor* set = NULL;
    187     int32_t i = ch - data->variablesBase;
    188     if (i >= 0 && i < variablesVector->size()) {
    189         int32_t i = ch - data->variablesBase;
    190         set = (i < variablesVector->size()) ?
    191             (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
    192     }
    193     return set;
    194 }
    195 
    196 /**
    197  * Implement SymbolTable API.  Parse out a symbol reference
    198  * name.
    199  */
    200 UnicodeString ParseData::parseReference(const UnicodeString& text,
    201                                         ParsePosition& pos, int32_t limit) const {
    202     int32_t start = pos.getIndex();
    203     int32_t i = start;
    204     UnicodeString result;
    205     while (i < limit) {
    206         UChar c = text.charAt(i);
    207         if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
    208             break;
    209         }
    210         ++i;
    211     }
    212     if (i == start) { // No valid name chars
    213         return result; // Indicate failure with empty string
    214     }
    215     pos.setIndex(i);
    216     text.extractBetween(start, i, result);
    217     return result;
    218 }
    219 
    220 UBool ParseData::isMatcher(UChar32 ch) {
    221     // Note that we cannot use data.lookup() because the
    222     // set array has not been constructed yet.
    223     int32_t i = ch - data->variablesBase;
    224     if (i >= 0 && i < variablesVector->size()) {
    225         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
    226         return f != NULL && f->toMatcher() != NULL;
    227     }
    228     return TRUE;
    229 }
    230 
    231 /**
    232  * Return true if the given character is a replacer standin or a plain
    233  * character (non standin).
    234  */
    235 UBool ParseData::isReplacer(UChar32 ch) {
    236     // Note that we cannot use data.lookup() because the
    237     // set array has not been constructed yet.
    238     int i = ch - data->variablesBase;
    239     if (i >= 0 && i < variablesVector->size()) {
    240         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
    241         return f != NULL && f->toReplacer() != NULL;
    242     }
    243     return TRUE;
    244 }
    245 
    246 //----------------------------------------------------------------------
    247 // BEGIN RuleHalf
    248 //----------------------------------------------------------------------
    249 
    250 /**
    251  * A class representing one side of a rule.  This class knows how to
    252  * parse half of a rule.  It is tightly coupled to the method
    253  * RuleBasedTransliterator.Parser.parseRule().
    254  */
    255 class RuleHalf : public UMemory {
    256 
    257 public:
    258 
    259     UnicodeString text;
    260 
    261     int32_t cursor; // position of cursor in text
    262     int32_t ante;   // position of ante context marker '{' in text
    263     int32_t post;   // position of post context marker '}' in text
    264 
    265     // Record the offset to the cursor either to the left or to the
    266     // right of the key.  This is indicated by characters on the output
    267     // side that allow the cursor to be positioned arbitrarily within
    268     // the matching text.  For example, abc{def} > | @@@ xyz; changes
    269     // def to xyz and moves the cursor to before abc.  Offset characters
    270     // must be at the start or end, and they cannot move the cursor past
    271     // the ante- or postcontext text.  Placeholders are only valid in
    272     // output text.  The length of the ante and post context is
    273     // determined at runtime, because of supplementals and quantifiers.
    274     int32_t cursorOffset; // only nonzero on output side
    275 
    276     // Position of first CURSOR_OFFSET on _right_.  This will be -1
    277     // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
    278     int32_t cursorOffsetPos;
    279 
    280     UBool anchorStart;
    281     UBool anchorEnd;
    282 
    283     /**
    284      * The segment number from 1..n of the next '(' we see
    285      * during parsing; 1-based.
    286      */
    287     int32_t nextSegmentNumber;
    288 
    289     TransliteratorParser& parser;
    290 
    291     //--------------------------------------------------
    292     // Methods
    293 
    294     RuleHalf(TransliteratorParser& parser);
    295     ~RuleHalf();
    296 
    297     int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);
    298 
    299     int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
    300                          UnicodeString& buf,
    301                          const UnicodeString& illegal,
    302                          UBool isSegment,
    303                          UErrorCode& status);
    304 
    305     /**
    306      * Remove context.
    307      */
    308     void removeContext();
    309 
    310     /**
    311      * Return true if this half looks like valid output, that is, does not
    312      * contain quantifiers or other special input-only elements.
    313      */
    314     UBool isValidOutput(TransliteratorParser& parser);
    315 
    316     /**
    317      * Return true if this half looks like valid input, that is, does not
    318      * contain functions or other special output-only elements.
    319      */
    320     UBool isValidInput(TransliteratorParser& parser);
    321 
    322     int syntaxError(UErrorCode code,
    323                     const UnicodeString& rule,
    324                     int32_t start,
    325                     UErrorCode& status) {
    326         return parser.syntaxError(code, rule, start, status);
    327     }
    328 
    329 private:
    330     // Disallowed methods; no impl.
    331     RuleHalf(const RuleHalf&);
    332     RuleHalf& operator=(const RuleHalf&);
    333 };
    334 
    335 RuleHalf::RuleHalf(TransliteratorParser& p) :
    336     parser(p)
    337 {
    338     cursor = -1;
    339     ante = -1;
    340     post = -1;
    341     cursorOffset = 0;
    342     cursorOffsetPos = 0;
    343     anchorStart = anchorEnd = FALSE;
    344     nextSegmentNumber = 1;
    345 }
    346 
    347 RuleHalf::~RuleHalf() {
    348 }
    349 
    350 /**
    351  * Parse one side of a rule, stopping at either the limit,
    352  * the END_OF_RULE character, or an operator.
    353  * @return the index after the terminating character, or
    354  * if limit was reached, limit
    355  */
    356 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
    357     int32_t start = pos;
    358     text.truncate(0);
    359     pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status);
    360 
    361     if (cursorOffset > 0 && cursor != cursorOffsetPos) {
    362         return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    363     }
    364 
    365     return pos;
    366 }
    367 
    368 /**
    369  * Parse a section of one side of a rule, stopping at either
    370  * the limit, the END_OF_RULE character, an operator, or a
    371  * segment close character.  This method parses both a
    372  * top-level rule half and a segment within such a rule half.
    373  * It calls itself recursively to parse segments and nested
    374  * segments.
    375  * @param buf buffer into which to accumulate the rule pattern
    376  * characters, either literal characters from the rule or
    377  * standins for UnicodeMatcher objects including segments.
    378  * @param illegal the set of special characters that is illegal during
    379  * this parse.
    380  * @param isSegment if true, then we've already seen a '(' and
    381  * pos on entry points right after it.  Accumulate everything
    382  * up to the closing ')', put it in a segment matcher object,
    383  * generate a standin for it, and add the standin to buf.  As
    384  * a side effect, update the segments vector with a reference
    385  * to the segment matcher.  This works recursively for nested
    386  * segments.  If isSegment is false, just accumulate
    387  * characters into buf.
    388  * @return the index after the terminating character, or
    389  * if limit was reached, limit
    390  */
    391 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
    392                                UnicodeString& buf,
    393                                const UnicodeString& illegal,
    394                                UBool isSegment, UErrorCode& status) {
    395     int32_t start = pos;
    396     ParsePosition pp;
    397     UnicodeString scratch;
    398     UBool done = FALSE;
    399     int32_t quoteStart = -1; // Most recent 'single quoted string'
    400     int32_t quoteLimit = -1;
    401     int32_t varStart = -1; // Most recent $variableReference
    402     int32_t varLimit = -1;
    403     int32_t bufStart = buf.length();
    404 
    405     while (pos < limit && !done) {
    406         // Since all syntax characters are in the BMP, fetching
    407         // 16-bit code units suffices here.
    408         UChar c = rule.charAt(pos++);
    409         if (uprv_isRuleWhiteSpace(c)) {
    410             // Ignore whitespace.  Note that this is not Unicode
    411             // spaces, but Java spaces -- a subset, representing
    412             // whitespace likely to be seen in code.
    413             continue;
    414         }
    415         if (u_strchr(HALF_ENDERS, c) != NULL) {
    416             if (isSegment) {
    417                 // Unclosed segment
    418                 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
    419             }
    420             break;
    421         }
    422         if (anchorEnd) {
    423             // Text after a presumed end anchor is a syntax err
    424             return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
    425         }
    426         if (UnicodeSet::resemblesPattern(rule, pos-1)) {
    427             pp.setIndex(pos-1); // Backup to opening '['
    428             buf.append(parser.parseSet(rule, pp, status));
    429             if (U_FAILURE(status)) {
    430                 return syntaxError(U_MALFORMED_SET, rule, start, status);
    431             }
    432             pos = pp.getIndex();
    433             continue;
    434         }
    435         // Handle escapes
    436         if (c == ESCAPE) {
    437             if (pos == limit) {
    438                 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
    439             }
    440             UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
    441             if (escaped == (UChar32) -1) {
    442                 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
    443             }
    444             if (!parser.checkVariableRange(escaped)) {
    445                 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    446             }
    447             buf.append(escaped);
    448             continue;
    449         }
    450         // Handle quoted matter
    451         if (c == QUOTE) {
    452             int32_t iq = rule.indexOf(QUOTE, pos);
    453             if (iq == pos) {
    454                 buf.append(c); // Parse [''] outside quotes as [']
    455                 ++pos;
    456             } else {
    457                 /* This loop picks up a run of quoted text of the
    458                  * form 'aaaa' each time through.  If this run
    459                  * hasn't really ended ('aaaa''bbbb') then it keeps
    460                  * looping, each time adding on a new run.  When it
    461                  * reaches the final quote it breaks.
    462                  */
    463                 quoteStart = buf.length();
    464                 for (;;) {
    465                     if (iq < 0) {
    466                         return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
    467                     }
    468                     scratch.truncate(0);
    469                     rule.extractBetween(pos, iq, scratch);
    470                     buf.append(scratch);
    471                     pos = iq+1;
    472                     if (pos < limit && rule.charAt(pos) == QUOTE) {
    473                         // Parse [''] inside quotes as [']
    474                         iq = rule.indexOf(QUOTE, pos+1);
    475                         // Continue looping
    476                     } else {
    477                         break;
    478                     }
    479                 }
    480                 quoteLimit = buf.length();
    481 
    482                 for (iq=quoteStart; iq<quoteLimit; ++iq) {
    483                     if (!parser.checkVariableRange(buf.charAt(iq))) {
    484                         return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    485                     }
    486                 }
    487             }
    488             continue;
    489         }
    490 
    491         if (!parser.checkVariableRange(c)) {
    492             return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    493         }
    494 
    495         if (illegal.indexOf(c) >= 0) {
    496             syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
    497         }
    498 
    499         switch (c) {
    500 
    501         //------------------------------------------------------
    502         // Elements allowed within and out of segments
    503         //------------------------------------------------------
    504         case ANCHOR_START:
    505             if (buf.length() == 0 && !anchorStart) {
    506                 anchorStart = TRUE;
    507             } else {
    508               return syntaxError(U_MISPLACED_ANCHOR_START,
    509                                  rule, start, status);
    510             }
    511           break;
    512         case SEGMENT_OPEN:
    513             {
    514                 // bufSegStart is the offset in buf to the first
    515                 // character of the segment we are parsing.
    516                 int32_t bufSegStart = buf.length();
    517 
    518                 // Record segment number now, since nextSegmentNumber
    519                 // will be incremented during the call to parseSection
    520                 // if there are nested segments.
    521                 int32_t segmentNumber = nextSegmentNumber++; // 1-based
    522 
    523                 // Parse the segment
    524                 pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, status);
    525 
    526                 // After parsing a segment, the relevant characters are
    527                 // in buf, starting at offset bufSegStart.  Extract them
    528                 // into a string matcher, and replace them with a
    529                 // standin for that matcher.
    530                 StringMatcher* m =
    531                     new StringMatcher(buf, bufSegStart, buf.length(),
    532                                       segmentNumber, *parser.curData);
    533                 if (m == NULL) {
    534                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    535                 }
    536 
    537                 // Record and associate object and segment number
    538                 parser.setSegmentObject(segmentNumber, m, status);
    539                 buf.truncate(bufSegStart);
    540                 buf.append(parser.getSegmentStandin(segmentNumber, status));
    541             }
    542             break;
    543         case FUNCTION:
    544         case ALT_FUNCTION:
    545             {
    546                 int32_t iref = pos;
    547                 TransliteratorIDParser::SingleID* single =
    548                     TransliteratorIDParser::parseFilterID(rule, iref);
    549                 // The next character MUST be a segment open
    550                 if (single == NULL ||
    551                     !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
    552                     return syntaxError(U_INVALID_FUNCTION, rule, start, status);
    553                 }
    554 
    555                 Transliterator *t = single->createInstance();
    556                 delete single;
    557                 if (t == NULL) {
    558                     return syntaxError(U_INVALID_FUNCTION, rule, start, status);
    559                 }
    560 
    561                 // bufSegStart is the offset in buf to the first
    562                 // character of the segment we are parsing.
    563                 int32_t bufSegStart = buf.length();
    564 
    565                 // Parse the segment
    566                 pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, status);
    567 
    568                 // After parsing a segment, the relevant characters are
    569                 // in buf, starting at offset bufSegStart.
    570                 UnicodeString output;
    571                 buf.extractBetween(bufSegStart, buf.length(), output);
    572                 FunctionReplacer *r =
    573                     new FunctionReplacer(t, new StringReplacer(output, parser.curData));
    574                 if (r == NULL) {
    575                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    576                 }
    577 
    578                 // Replace the buffer contents with a stand-in
    579                 buf.truncate(bufSegStart);
    580                 buf.append(parser.generateStandInFor(r, status));
    581             }
    582             break;
    583         case SymbolTable::SYMBOL_REF:
    584             // Handle variable references and segment references "$1" .. "$9"
    585             {
    586                 // A variable reference must be followed immediately
    587                 // by a Unicode identifier start and zero or more
    588                 // Unicode identifier part characters, or by a digit
    589                 // 1..9 if it is a segment reference.
    590                 if (pos == limit) {
    591                     // A variable ref character at the end acts as
    592                     // an anchor to the context limit, as in perl.
    593                     anchorEnd = TRUE;
    594                     break;
    595                 }
    596                 // Parse "$1" "$2" .. "$9" .. (no upper limit)
    597                 c = rule.charAt(pos);
    598                 int32_t r = u_digit(c, 10);
    599                 if (r >= 1 && r <= 9) {
    600                     r = ICU_Utility::parseNumber(rule, pos, 10);
    601                     if (r < 0) {
    602                         return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
    603                                            rule, start, status);
    604                     }
    605                     buf.append(parser.getSegmentStandin(r, status));
    606                 } else {
    607                     pp.setIndex(pos);
    608                     UnicodeString name = parser.parseData->
    609                                     parseReference(rule, pp, limit);
    610                     if (name.length() == 0) {
    611                         // This means the '$' was not followed by a
    612                         // valid name.  Try to interpret it as an
    613                         // end anchor then.  If this also doesn't work
    614                         // (if we see a following character) then signal
    615                         // an error.
    616                         anchorEnd = TRUE;
    617                         break;
    618                     }
    619                     pos = pp.getIndex();
    620                     // If this is a variable definition statement,
    621                     // then the LHS variable will be undefined.  In
    622                     // that case appendVariableDef() will append the
    623                     // special placeholder char variableLimit-1.
    624                     varStart = buf.length();
    625                     parser.appendVariableDef(name, buf, status);
    626                     varLimit = buf.length();
    627                 }
    628             }
    629             break;
    630         case DOT:
    631             buf.append(parser.getDotStandIn(status));
    632             break;
    633         case KLEENE_STAR:
    634         case ONE_OR_MORE:
    635         case ZERO_OR_ONE:
    636             // Quantifiers.  We handle single characters, quoted strings,
    637             // variable references, and segments.
    638             //  a+      matches  aaa
    639             //  'foo'+  matches  foofoofoo
    640             //  $v+     matches  xyxyxy if $v == xy
    641             //  (seg)+  matches  segsegseg
    642             {
    643                 if (isSegment && buf.length() == bufStart) {
    644                     // The */+ immediately follows '('
    645                     return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
    646                 }
    647 
    648                 int32_t qstart, qlimit;
    649                 // The */+ follows an isolated character or quote
    650                 // or variable reference
    651                 if (buf.length() == quoteLimit) {
    652                     // The */+ follows a 'quoted string'
    653                     qstart = quoteStart;
    654                     qlimit = quoteLimit;
    655                 } else if (buf.length() == varLimit) {
    656                     // The */+ follows a $variableReference
    657                     qstart = varStart;
    658                     qlimit = varLimit;
    659                 } else {
    660                     // The */+ follows a single character, possibly
    661                     // a segment standin
    662                     qstart = buf.length() - 1;
    663                     qlimit = qstart + 1;
    664                 }
    665 
    666                 UnicodeFunctor *m =
    667                     new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
    668                 if (m == NULL) {
    669                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    670                 }
    671                 int32_t min = 0;
    672                 int32_t max = Quantifier::MAX;
    673                 switch (c) {
    674                 case ONE_OR_MORE:
    675                     min = 1;
    676                     break;
    677                 case ZERO_OR_ONE:
    678                     min = 0;
    679                     max = 1;
    680                     break;
    681                 // case KLEENE_STAR:
    682                 //    do nothing -- min, max already set
    683                 }
    684                 m = new Quantifier(m, min, max);
    685                 if (m == NULL) {
    686                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    687                 }
    688                 buf.truncate(qstart);
    689                 buf.append(parser.generateStandInFor(m, status));
    690             }
    691             break;
    692 
    693         //------------------------------------------------------
    694         // Elements allowed ONLY WITHIN segments
    695         //------------------------------------------------------
    696         case SEGMENT_CLOSE:
    697             // assert(isSegment);
    698             // We're done parsing a segment.
    699             done = TRUE;
    700             break;
    701 
    702         //------------------------------------------------------
    703         // Elements allowed ONLY OUTSIDE segments
    704         //------------------------------------------------------
    705         case CONTEXT_ANTE:
    706             if (ante >= 0) {
    707                 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
    708             }
    709             ante = buf.length();
    710             break;
    711         case CONTEXT_POST:
    712             if (post >= 0) {
    713                 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
    714             }
    715             post = buf.length();
    716             break;
    717         case CURSOR_POS:
    718             if (cursor >= 0) {
    719                 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
    720             }
    721             cursor = buf.length();
    722             break;
    723         case CURSOR_OFFSET:
    724             if (cursorOffset < 0) {
    725                 if (buf.length() > 0) {
    726                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    727                 }
    728                 --cursorOffset;
    729             } else if (cursorOffset > 0) {
    730                 if (buf.length() != cursorOffsetPos || cursor >= 0) {
    731                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    732                 }
    733                 ++cursorOffset;
    734             } else {
    735                 if (cursor == 0 && buf.length() == 0) {
    736                     cursorOffset = -1;
    737                 } else if (cursor < 0) {
    738                     cursorOffsetPos = buf.length();
    739                     cursorOffset = 1;
    740                 } else {
    741                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    742                 }
    743             }
    744             break;
    745 
    746 
    747         //------------------------------------------------------
    748         // Non-special characters
    749         //------------------------------------------------------
    750         default:
    751             // Disallow unquoted characters other than [0-9A-Za-z]
    752             // in the printable ASCII range.  These characters are
    753             // reserved for possible future use.
    754             if (c >= 0x0021 && c <= 0x007E &&
    755                 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
    756                   (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
    757                   (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
    758                 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
    759             }
    760             buf.append(c);
    761             break;
    762         }
    763     }
    764 
    765     return pos;
    766 }
    767 
    768 /**
    769  * Remove context.
    770  */
    771 void RuleHalf::removeContext() {
    772     //text = text.substring(ante < 0 ? 0 : ante,
    773     //                      post < 0 ? text.length() : post);
    774     if (post >= 0) {
    775         text.remove(post);
    776     }
    777     if (ante >= 0) {
    778         text.removeBetween(0, ante);
    779     }
    780     ante = post = -1;
    781     anchorStart = anchorEnd = FALSE;
    782 }
    783 
    784 /**
    785  * Return true if this half looks like valid output, that is, does not
    786  * contain quantifiers or other special input-only elements.
    787  */
    788 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
    789     for (int32_t i=0; i<text.length(); ) {
    790         UChar32 c = text.char32At(i);
    791         i += UTF_CHAR_LENGTH(c);
    792         if (!transParser.parseData->isReplacer(c)) {
    793             return FALSE;
    794         }
    795     }
    796     return TRUE;
    797 }
    798 
    799 /**
    800  * Return true if this half looks like valid input, that is, does not
    801  * contain functions or other special output-only elements.
    802  */
    803 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
    804     for (int32_t i=0; i<text.length(); ) {
    805         UChar32 c = text.char32At(i);
    806         i += UTF_CHAR_LENGTH(c);
    807         if (!transParser.parseData->isMatcher(c)) {
    808             return FALSE;
    809         }
    810     }
    811     return TRUE;
    812 }
    813 
    814 //----------------------------------------------------------------------
    815 // PUBLIC API
    816 //----------------------------------------------------------------------
    817 
    818 /**
    819  * Constructor.
    820  */
    821 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
    822 dataVector(statusReturn),
    823 idBlockVector(statusReturn),
    824 variablesVector(statusReturn),
    825 segmentObjects(statusReturn)
    826 {
    827     idBlockVector.setDeleter(uhash_deleteUnicodeString);
    828     curData = NULL;
    829     compoundFilter = NULL;
    830     parseData = NULL;
    831     variableNames.setValueDeleter(uhash_deleteUnicodeString);
    832 }
    833 
    834 /**
    835  * Destructor.
    836  */
    837 TransliteratorParser::~TransliteratorParser() {
    838     while (!dataVector.isEmpty())
    839         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    840     delete compoundFilter;
    841     delete parseData;
    842     while (!variablesVector.isEmpty())
    843         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
    844 }
    845 
    846 void
    847 TransliteratorParser::parse(const UnicodeString& rules,
    848                             UTransDirection transDirection,
    849                             UParseError& pe,
    850                             UErrorCode& ec) {
    851     if (U_SUCCESS(ec)) {
    852         parseRules(rules, transDirection, ec);
    853         pe = parseError;
    854     }
    855 }
    856 
    857 /**
    858  * Return the compound filter parsed by parse().  Caller owns result.
    859  */
    860 UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
    861     UnicodeSet* f = compoundFilter;
    862     compoundFilter = NULL;
    863     return f;
    864 }
    865 
    866 //----------------------------------------------------------------------
    867 // Private implementation
    868 //----------------------------------------------------------------------
    869 
    870 /**
    871  * Parse the given string as a sequence of rules, separated by newline
    872  * characters ('\n'), and cause this object to implement those rules.  Any
    873  * previous rules are discarded.  Typically this method is called exactly
    874  * once, during construction.
    875  * @exception IllegalArgumentException if there is a syntax error in the
    876  * rules
    877  */
    878 void TransliteratorParser::parseRules(const UnicodeString& rule,
    879                                       UTransDirection theDirection,
    880                                       UErrorCode& status)
    881 {
    882     // Clear error struct
    883     uprv_memset(&parseError, 0, sizeof(parseError));
    884     parseError.line = parseError.offset = -1;
    885 
    886     UBool parsingIDs = TRUE;
    887     int32_t ruleCount = 0;
    888 
    889     while (!dataVector.isEmpty()) {
    890         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    891     }
    892     if (U_FAILURE(status)) {
    893         return;
    894     }
    895 
    896     idBlockVector.removeAllElements();
    897     curData = NULL;
    898     direction = theDirection;
    899     ruleCount = 0;
    900 
    901     delete compoundFilter;
    902     compoundFilter = NULL;
    903 
    904     while (!variablesVector.isEmpty()) {
    905         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
    906     }
    907     variableNames.removeAll();
    908     parseData = new ParseData(0, &variablesVector, &variableNames);
    909     if (parseData == NULL) {
    910         status = U_MEMORY_ALLOCATION_ERROR;
    911         return;
    912     }
    913 
    914     dotStandIn = (UChar) -1;
    915 
    916     UnicodeString *tempstr = NULL; // used for memory allocation error checking
    917     UnicodeString str; // scratch
    918     UnicodeString idBlockResult;
    919     int32_t pos = 0;
    920     int32_t limit = rule.length();
    921 
    922     // The compound filter offset is an index into idBlockResult.
    923     // If it is 0, then the compound filter occurred at the start,
    924     // and it is the offset to the _start_ of the compound filter
    925     // pattern.  Otherwise it is the offset to the _limit_ of the
    926     // compound filter pattern within idBlockResult.
    927     compoundFilter = NULL;
    928     int32_t compoundFilterOffset = -1;
    929 
    930     while (pos < limit && U_SUCCESS(status)) {
    931         UChar c = rule.charAt(pos++);
    932         if (uprv_isRuleWhiteSpace(c)) {
    933             // Ignore leading whitespace.
    934             continue;
    935         }
    936         // Skip lines starting with the comment character
    937         if (c == RULE_COMMENT_CHAR) {
    938             pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
    939             if (pos == 0) {
    940                 break; // No "\n" found; rest of rule is a commnet
    941             }
    942             continue; // Either fall out or restart with next line
    943         }
    944 
    945         // skip empty rules
    946         if (c == END_OF_RULE)
    947             continue;
    948 
    949         // keep track of how many rules we've seen
    950         ++ruleCount;
    951 
    952         // We've found the start of a rule or ID.  c is its first
    953         // character, and pos points past c.
    954         --pos;
    955         // Look for an ID token.  Must have at least ID_TOKEN_LEN + 1
    956         // chars left.
    957         if ((pos + ID_TOKEN_LEN + 1) <= limit &&
    958                 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
    959             pos += ID_TOKEN_LEN;
    960             c = rule.charAt(pos);
    961             while (uprv_isRuleWhiteSpace(c) && pos < limit) {
    962                 ++pos;
    963                 c = rule.charAt(pos);
    964             }
    965 
    966             int32_t p = pos;
    967 
    968             if (!parsingIDs) {
    969                 if (curData != NULL) {
    970                     if (direction == UTRANS_FORWARD)
    971                         dataVector.addElement(curData, status);
    972                     else
    973                         dataVector.insertElementAt(curData, 0, status);
    974                     curData = NULL;
    975                 }
    976                 parsingIDs = TRUE;
    977             }
    978 
    979             TransliteratorIDParser::SingleID* id =
    980                 TransliteratorIDParser::parseSingleID(rule, p, direction, status);
    981             if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
    982                 // Successful ::ID parse.
    983 
    984                 if (direction == UTRANS_FORWARD) {
    985                     idBlockResult.append(id->canonID).append(END_OF_RULE);
    986                 } else {
    987                     idBlockResult.insert(0, END_OF_RULE);
    988                     idBlockResult.insert(0, id->canonID);
    989                 }
    990 
    991             } else {
    992                 // Couldn't parse an ID.  Try to parse a global filter
    993                 int32_t withParens = -1;
    994                 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
    995                 if (f != NULL) {
    996                     if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
    997                         && (direction == UTRANS_FORWARD) == (withParens == 0))
    998                     {
    999                         if (compoundFilter != NULL) {
   1000                             // Multiple compound filters
   1001                             syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
   1002                             delete f;
   1003                         } else {
   1004                             compoundFilter = f;
   1005                             compoundFilterOffset = ruleCount;
   1006                         }
   1007                     } else {
   1008                         delete f;
   1009                     }
   1010                 } else {
   1011                     // Invalid ::id
   1012                     // Can be parsed as neither an ID nor a global filter
   1013                     syntaxError(U_INVALID_ID, rule, pos, status);
   1014                 }
   1015             }
   1016             delete id;
   1017             pos = p;
   1018         } else {
   1019             if (parsingIDs) {
   1020                 tempstr = new UnicodeString(idBlockResult);
   1021                 // NULL pointer check
   1022                 if (tempstr == NULL) {
   1023                     status = U_MEMORY_ALLOCATION_ERROR;
   1024                     return;
   1025                 }
   1026                 if (direction == UTRANS_FORWARD)
   1027                     idBlockVector.addElement(tempstr, status);
   1028                 else
   1029                     idBlockVector.insertElementAt(tempstr, 0, status);
   1030                 idBlockResult.remove();
   1031                 parsingIDs = FALSE;
   1032                 curData = new TransliterationRuleData(status);
   1033                 // NULL pointer check
   1034                 if (curData == NULL) {
   1035                     status = U_MEMORY_ALLOCATION_ERROR;
   1036                     return;
   1037                 }
   1038                 parseData->data = curData;
   1039 
   1040                 // By default, rules use part of the private use area
   1041                 // E000..F8FF for variables and other stand-ins.  Currently
   1042                 // the range F000..F8FF is typically sufficient.  The 'use
   1043                 // variable range' pragma allows rule sets to modify this.
   1044                 setVariableRange(0xF000, 0xF8FF, status);
   1045             }
   1046 
   1047             if (resemblesPragma(rule, pos, limit)) {
   1048                 int32_t ppp = parsePragma(rule, pos, limit, status);
   1049                 if (ppp < 0) {
   1050                     syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
   1051                 }
   1052                 pos = ppp;
   1053             // Parse a rule
   1054             } else {
   1055                 pos = parseRule(rule, pos, limit, status);
   1056             }
   1057         }
   1058     }
   1059 
   1060     if (parsingIDs && idBlockResult.length() > 0) {
   1061         tempstr = new UnicodeString(idBlockResult);
   1062         // NULL pointer check
   1063         if (tempstr == NULL) {
   1064             status = U_MEMORY_ALLOCATION_ERROR;
   1065             return;
   1066         }
   1067         if (direction == UTRANS_FORWARD)
   1068             idBlockVector.addElement(tempstr, status);
   1069         else
   1070             idBlockVector.insertElementAt(tempstr, 0, status);
   1071     }
   1072     else if (!parsingIDs && curData != NULL) {
   1073         if (direction == UTRANS_FORWARD)
   1074             dataVector.addElement(curData, status);
   1075         else
   1076             dataVector.insertElementAt(curData, 0, status);
   1077     }
   1078 
   1079     if (U_SUCCESS(status)) {
   1080         // Convert the set vector to an array
   1081         int32_t i, dataVectorSize = dataVector.size();
   1082         for (i = 0; i < dataVectorSize; i++) {
   1083             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
   1084             data->variablesLength = variablesVector.size();
   1085             if (data->variablesLength == 0) {
   1086                 data->variables = 0;
   1087             } else {
   1088                 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
   1089                 // NULL pointer check
   1090                 if (data->variables == NULL) {
   1091                     status = U_MEMORY_ALLOCATION_ERROR;
   1092                     return;
   1093                 }
   1094                 data->variablesAreOwned = (i == 0);
   1095             }
   1096 
   1097             for (int32_t j = 0; j < data->variablesLength; j++) {
   1098                 data->variables[j] =
   1099                     ((UnicodeSet*)variablesVector.elementAt(j));
   1100             }
   1101 
   1102             data->variableNames.removeAll();
   1103             int32_t pos = -1;
   1104             const UHashElement* he = variableNames.nextElement(pos);
   1105             while (he != NULL) {
   1106                 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
   1107                 if (tempus == NULL) {
   1108                     status = U_MEMORY_ALLOCATION_ERROR;
   1109                     return;
   1110                 }
   1111                 data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
   1112                     tempus, status);
   1113                 he = variableNames.nextElement(pos);
   1114             }
   1115         }
   1116         variablesVector.removeAllElements();   // keeps them from getting deleted when we succeed
   1117 
   1118         // Index the rules
   1119         if (compoundFilter != NULL) {
   1120             if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
   1121                 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
   1122                 status = U_MISPLACED_COMPOUND_FILTER;
   1123             }
   1124         }
   1125 
   1126         for (i = 0; i < dataVectorSize; i++) {
   1127             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
   1128             data->ruleSet.freeze(parseError, status);
   1129         }
   1130         if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
   1131             idBlockVector.removeElementAt(0);
   1132         }
   1133     }
   1134 }
   1135 
   1136 /**
   1137  * Set the variable range to [start, end] (inclusive).
   1138  */
   1139 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
   1140     if (start > end || start < 0 || end > 0xFFFF) {
   1141         status = U_MALFORMED_PRAGMA;
   1142         return;
   1143     }
   1144 
   1145     curData->variablesBase = (UChar) start;
   1146     if (dataVector.size() == 0) {
   1147         variableNext = (UChar) start;
   1148         variableLimit = (UChar) (end + 1);
   1149     }
   1150 }
   1151 
   1152 /**
   1153  * Assert that the given character is NOT within the variable range.
   1154  * If it is, return FALSE.  This is neccesary to ensure that the
   1155  * variable range does not overlap characters used in a rule.
   1156  */
   1157 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
   1158     return !(ch >= curData->variablesBase && ch < variableLimit);
   1159 }
   1160 
   1161 /**
   1162  * Set the maximum backup to 'backup', in response to a pragma
   1163  * statement.
   1164  */
   1165 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
   1166     //TODO Finish
   1167 }
   1168 
   1169 /**
   1170  * Begin normalizing all rules using the given mode, in response
   1171  * to a pragma statement.
   1172  */
   1173 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
   1174     //TODO Finish
   1175 }
   1176 
   1177 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "
   1178 
   1179 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
   1180 
   1181 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
   1182 
   1183 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
   1184 
   1185 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
   1186 
   1187 /**
   1188  * Return true if the given rule looks like a pragma.
   1189  * @param pos offset to the first non-whitespace character
   1190  * of the rule.
   1191  * @param limit pointer past the last character of the rule.
   1192  */
   1193 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
   1194     // Must start with /use\s/i
   1195     return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0;
   1196 }
   1197 
   1198 /**
   1199  * Parse a pragma.  This method assumes resemblesPragma() has
   1200  * already returned true.
   1201  * @param pos offset to the first non-whitespace character
   1202  * of the rule.
   1203  * @param limit pointer past the last character of the rule.
   1204  * @return the position index after the final ';' of the pragma,
   1205  * or -1 on failure.
   1206  */
   1207 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
   1208     int32_t array[2];
   1209 
   1210     // resemblesPragma() has already returned true, so we
   1211     // know that pos points to /use\s/i; we can skip 4 characters
   1212     // immediately
   1213     pos += 4;
   1214 
   1215     // Here are the pragmas we recognize:
   1216     // use variable range 0xE000 0xEFFF;
   1217     // use maximum backup 16;
   1218     // use nfd rules;
   1219     // use nfc rules;
   1220     int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array);
   1221     if (p >= 0) {
   1222         setVariableRange(array[0], array[1], status);
   1223         return p;
   1224     }
   1225 
   1226     p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array);
   1227     if (p >= 0) {
   1228         pragmaMaximumBackup(array[0]);
   1229         return p;
   1230     }
   1231 
   1232     p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL);
   1233     if (p >= 0) {
   1234         pragmaNormalizeRules(UNORM_NFD);
   1235         return p;
   1236     }
   1237 
   1238     p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL);
   1239     if (p >= 0) {
   1240         pragmaNormalizeRules(UNORM_NFC);
   1241         return p;
   1242     }
   1243 
   1244     // Syntax error: unable to parse pragma
   1245     return -1;
   1246 }
   1247 
   1248 /**
   1249  * MAIN PARSER.  Parse the next rule in the given rule string, starting
   1250  * at pos.  Return the index after the last character parsed.  Do not
   1251  * parse characters at or after limit.
   1252  *
   1253  * Important:  The character at pos must be a non-whitespace character
   1254  * that is not the comment character.
   1255  *
   1256  * This method handles quoting, escaping, and whitespace removal.  It
   1257  * parses the end-of-rule character.  It recognizes context and cursor
   1258  * indicators.  Once it does a lexical breakdown of the rule at pos, it
   1259  * creates a rule object and adds it to our rule list.
   1260  */
   1261 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
   1262     // Locate the left side, operator, and right side
   1263     int32_t start = pos;
   1264     UChar op = 0;
   1265     int32_t i;
   1266 
   1267     // Set up segments data
   1268     segmentStandins.truncate(0);
   1269     segmentObjects.removeAllElements();
   1270 
   1271     // Use pointers to automatics to make swapping possible.
   1272     RuleHalf _left(*this), _right(*this);
   1273     RuleHalf* left = &_left;
   1274     RuleHalf* right = &_right;
   1275 
   1276     undefinedVariableName.remove();
   1277     pos = left->parse(rule, pos, limit, status);
   1278     if (U_FAILURE(status)) {
   1279         return start;
   1280     }
   1281 
   1282     if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
   1283         return syntaxError(U_MISSING_OPERATOR, rule, start, status);
   1284     }
   1285     ++pos;
   1286 
   1287     // Found an operator char.  Check for forward-reverse operator.
   1288     if (op == REVERSE_RULE_OP &&
   1289         (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
   1290         ++pos;
   1291         op = FWDREV_RULE_OP;
   1292     }
   1293 
   1294     // Translate alternate op characters.
   1295     switch (op) {
   1296     case ALT_FORWARD_RULE_OP:
   1297         op = FORWARD_RULE_OP;
   1298         break;
   1299     case ALT_REVERSE_RULE_OP:
   1300         op = REVERSE_RULE_OP;
   1301         break;
   1302     case ALT_FWDREV_RULE_OP:
   1303         op = FWDREV_RULE_OP;
   1304         break;
   1305     }
   1306 
   1307     pos = right->parse(rule, pos, limit, status);
   1308     if (U_FAILURE(status)) {
   1309         return start;
   1310     }
   1311 
   1312     if (pos < limit) {
   1313         if (rule.charAt(--pos) == END_OF_RULE) {
   1314             ++pos;
   1315         } else {
   1316             // RuleHalf parser must have terminated at an operator
   1317             return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
   1318         }
   1319     }
   1320 
   1321     if (op == VARIABLE_DEF_OP) {
   1322         // LHS is the name.  RHS is a single character, either a literal
   1323         // or a set (already parsed).  If RHS is longer than one
   1324         // character, it is either a multi-character string, or multiple
   1325         // sets, or a mixture of chars and sets -- syntax error.
   1326 
   1327         // We expect to see a single undefined variable (the one being
   1328         // defined).
   1329         if (undefinedVariableName.length() == 0) {
   1330             // "Missing '$' or duplicate definition"
   1331             return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
   1332         }
   1333         if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
   1334             // "Malformed LHS"
   1335             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
   1336         }
   1337         if (left->anchorStart || left->anchorEnd ||
   1338             right->anchorStart || right->anchorEnd) {
   1339             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
   1340         }
   1341         // We allow anything on the right, including an empty string.
   1342         UnicodeString* value = new UnicodeString(right->text);
   1343         // NULL pointer check
   1344         if (value == NULL) {
   1345             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1346         }
   1347         variableNames.put(undefinedVariableName, value, status);
   1348         ++variableLimit;
   1349         return pos;
   1350     }
   1351 
   1352     // If this is not a variable definition rule, we shouldn't have
   1353     // any undefined variable names.
   1354     if (undefinedVariableName.length() != 0) {
   1355         return syntaxError(// "Undefined variable $" + undefinedVariableName,
   1356                     U_UNDEFINED_VARIABLE,
   1357                     rule, start, status);
   1358     }
   1359 
   1360     // Verify segments
   1361     if (segmentStandins.length() > segmentObjects.size()) {
   1362         syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
   1363     }
   1364     for (i=0; i<segmentStandins.length(); ++i) {
   1365         if (segmentStandins.charAt(i) == 0) {
   1366             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
   1367         }
   1368     }
   1369     for (i=0; i<segmentObjects.size(); ++i) {
   1370         if (segmentObjects.elementAt(i) == NULL) {
   1371             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
   1372         }
   1373     }
   1374 
   1375     // If the direction we want doesn't match the rule
   1376     // direction, do nothing.
   1377     if (op != FWDREV_RULE_OP &&
   1378         ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
   1379         return pos;
   1380     }
   1381 
   1382     // Transform the rule into a forward rule by swapping the
   1383     // sides if necessary.
   1384     if (direction == UTRANS_REVERSE) {
   1385         left = &_right;
   1386         right = &_left;
   1387     }
   1388 
   1389     // Remove non-applicable elements in forward-reverse
   1390     // rules.  Bidirectional rules ignore elements that do not
   1391     // apply.
   1392     if (op == FWDREV_RULE_OP) {
   1393         right->removeContext();
   1394         left->cursor = -1;
   1395         left->cursorOffset = 0;
   1396     }
   1397 
   1398     // Normalize context
   1399     if (left->ante < 0) {
   1400         left->ante = 0;
   1401     }
   1402     if (left->post < 0) {
   1403         left->post = left->text.length();
   1404     }
   1405 
   1406     // Context is only allowed on the input side.  Cursors are only
   1407     // allowed on the output side.  Segment delimiters can only appear
   1408     // on the left, and references on the right.  Cursor offset
   1409     // cannot appear without an explicit cursor.  Cursor offset
   1410     // cannot place the cursor outside the limits of the context.
   1411     // Anchors are only allowed on the input side.
   1412     if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
   1413         (right->cursorOffset != 0 && right->cursor < 0) ||
   1414         // - The following two checks were used to ensure that the
   1415         // - the cursor offset stayed within the ante- or postcontext.
   1416         // - However, with the addition of quantifiers, we have to
   1417         // - allow arbitrary cursor offsets and do runtime checking.
   1418         //(right->cursorOffset > (left->text.length() - left->post)) ||
   1419         //(-right->cursorOffset > left->ante) ||
   1420         right->anchorStart || right->anchorEnd ||
   1421         !left->isValidInput(*this) || !right->isValidOutput(*this) ||
   1422         left->ante > left->post) {
   1423 
   1424         return syntaxError(U_MALFORMED_RULE, rule, start, status);
   1425     }
   1426 
   1427     // Flatten segment objects vector to an array
   1428     UnicodeFunctor** segmentsArray = NULL;
   1429     if (segmentObjects.size() > 0) {
   1430         segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
   1431         // Null pointer check
   1432         if (segmentsArray == NULL) {
   1433             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1434         }
   1435         segmentObjects.toArray((void**) segmentsArray);
   1436     }
   1437     TransliterationRule* temptr = new TransliterationRule(
   1438             left->text, left->ante, left->post,
   1439             right->text, right->cursor, right->cursorOffset,
   1440             segmentsArray,
   1441             segmentObjects.size(),
   1442             left->anchorStart, left->anchorEnd,
   1443             curData,
   1444             status);
   1445     //Null pointer check
   1446     if (temptr == NULL) {
   1447         uprv_free(segmentsArray);
   1448         return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1449     }
   1450 
   1451     curData->ruleSet.addRule(temptr, status);
   1452 
   1453     return pos;
   1454 }
   1455 
   1456 /**
   1457  * Called by main parser upon syntax error.  Search the rule string
   1458  * for the probable end of the rule.  Of course, if the error is that
   1459  * the end of rule marker is missing, then the rule end will not be found.
   1460  * In any case the rule start will be correctly reported.
   1461  * @param msg error description
   1462  * @param rule pattern string
   1463  * @param start position of first character of current rule
   1464  */
   1465 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
   1466                                           const UnicodeString& rule,
   1467                                           int32_t pos,
   1468                                           UErrorCode& status)
   1469 {
   1470     parseError.offset = pos;
   1471     parseError.line = 0 ; /* we are not using line numbers */
   1472 
   1473     // for pre-context
   1474     const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
   1475     int32_t start = uprv_max(pos - LEN, 0);
   1476     int32_t stop  = pos;
   1477 
   1478     rule.extract(start,stop-start,parseError.preContext);
   1479     //null terminate the buffer
   1480     parseError.preContext[stop-start] = 0;
   1481 
   1482     //for post-context
   1483     start = pos;
   1484     stop  = uprv_min(pos + LEN, rule.length());
   1485 
   1486     rule.extract(start,stop-start,parseError.postContext);
   1487     //null terminate the buffer
   1488     parseError.postContext[stop-start]= 0;
   1489 
   1490     status = (UErrorCode)parseErrorCode;
   1491     return pos;
   1492 
   1493 }
   1494 
   1495 /**
   1496  * Parse a UnicodeSet out, store it, and return the stand-in character
   1497  * used to represent it.
   1498  */
   1499 UChar TransliteratorParser::parseSet(const UnicodeString& rule,
   1500                                           ParsePosition& pos,
   1501                                           UErrorCode& status) {
   1502     UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
   1503     // Null pointer check
   1504     if (set == NULL) {
   1505         status = U_MEMORY_ALLOCATION_ERROR;
   1506         return (UChar)0x0000; // Return empty character with error.
   1507     }
   1508     set->compact();
   1509     return generateStandInFor(set, status);
   1510 }
   1511 
   1512 /**
   1513  * Generate and return a stand-in for a new UnicodeFunctor.  Store
   1514  * the matcher (adopt it).
   1515  */
   1516 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
   1517     // assert(obj != null);
   1518 
   1519     // Look up previous stand-in, if any.  This is a short list
   1520     // (typical n is 0, 1, or 2); linear search is optimal.
   1521     for (int32_t i=0; i<variablesVector.size(); ++i) {
   1522         if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
   1523             return (UChar) (curData->variablesBase + i);
   1524         }
   1525     }
   1526 
   1527     if (variableNext >= variableLimit) {
   1528         delete adopted;
   1529         status = U_VARIABLE_RANGE_EXHAUSTED;
   1530         return 0;
   1531     }
   1532     variablesVector.addElement(adopted, status);
   1533     return variableNext++;
   1534 }
   1535 
   1536 /**
   1537  * Return the standin for segment seg (1-based).
   1538  */
   1539 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
   1540     // Special character used to indicate an empty spot
   1541     UChar empty = curData->variablesBase - 1;
   1542     while (segmentStandins.length() < seg) {
   1543         segmentStandins.append(empty);
   1544     }
   1545     UChar c = segmentStandins.charAt(seg-1);
   1546     if (c == empty) {
   1547         if (variableNext >= variableLimit) {
   1548             status = U_VARIABLE_RANGE_EXHAUSTED;
   1549             return 0;
   1550         }
   1551         c = variableNext++;
   1552         // Set a placeholder in the master variables vector that will be
   1553         // filled in later by setSegmentObject().  We know that we will get
   1554         // called first because setSegmentObject() will call us.
   1555         variablesVector.addElement((void*) NULL, status);
   1556         segmentStandins.setCharAt(seg-1, c);
   1557     }
   1558     return c;
   1559 }
   1560 
   1561 /**
   1562  * Set the object for segment seg (1-based).
   1563  */
   1564 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
   1565     // Since we call parseSection() recursively, nested
   1566     // segments will result in segment i+1 getting parsed
   1567     // and stored before segment i; be careful with the
   1568     // vector handling here.
   1569     if (segmentObjects.size() < seg) {
   1570         segmentObjects.setSize(seg, status);
   1571     }
   1572     int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
   1573     if (segmentObjects.elementAt(seg-1) != NULL ||
   1574         variablesVector.elementAt(index) != NULL) {
   1575         // should never happen
   1576         status = U_INTERNAL_TRANSLITERATOR_ERROR;
   1577         return;
   1578     }
   1579     segmentObjects.setElementAt(adopted, seg-1);
   1580     variablesVector.setElementAt(adopted, index);
   1581 }
   1582 
   1583 /**
   1584  * Return the stand-in for the dot set.  It is allocated the first
   1585  * time and reused thereafter.
   1586  */
   1587 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
   1588     if (dotStandIn == (UChar) -1) {
   1589         UnicodeSet* tempus = new UnicodeSet(DOT_SET, status);
   1590         // Null pointer check.
   1591         if (tempus == NULL) {
   1592             status = U_MEMORY_ALLOCATION_ERROR;
   1593             return (UChar)0x0000;
   1594         }
   1595         dotStandIn = generateStandInFor(tempus, status);
   1596     }
   1597     return dotStandIn;
   1598 }
   1599 
   1600 /**
   1601  * Append the value of the given variable name to the given
   1602  * UnicodeString.
   1603  */
   1604 void TransliteratorParser::appendVariableDef(const UnicodeString& name,
   1605                                                   UnicodeString& buf,
   1606                                                   UErrorCode& status) {
   1607     const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
   1608     if (s == NULL) {
   1609         // We allow one undefined variable so that variable definition
   1610         // statements work.  For the first undefined variable we return
   1611         // the special placeholder variableLimit-1, and save the variable
   1612         // name.
   1613         if (undefinedVariableName.length() == 0) {
   1614             undefinedVariableName = name;
   1615             if (variableNext >= variableLimit) {
   1616                 // throw new RuntimeException("Private use variables exhausted");
   1617                 status = U_ILLEGAL_ARGUMENT_ERROR;
   1618                 return;
   1619             }
   1620             buf.append((UChar) --variableLimit);
   1621         } else {
   1622             //throw new IllegalArgumentException("Undefined variable $"
   1623             //                                   + name);
   1624             status = U_ILLEGAL_ARGUMENT_ERROR;
   1625             return;
   1626         }
   1627     } else {
   1628         buf.append(*s);
   1629     }
   1630 }
   1631 
   1632 /**
   1633  * Glue method to get around access restrictions in C++.
   1634  */
   1635 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
   1636     return Transliterator::createBasicInstance(id, canonID);
   1637 }*/
   1638 
   1639 U_NAMESPACE_END
   1640 
   1641 U_CAPI int32_t
   1642 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
   1643     U_NAMESPACE_USE
   1644 
   1645     //const UChar *sourceStart = source;
   1646     const UChar *targetStart = target;
   1647     const UChar *sourceLimit = source+sourceLen;
   1648     UChar *targetLimit = target+sourceLen;
   1649     UChar32 c = 0;
   1650     UBool quoted = FALSE;
   1651     int32_t index;
   1652 
   1653     uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);
   1654 
   1655     /* read the rules into the buffer */
   1656     while (source < sourceLimit)
   1657     {
   1658         index=0;
   1659         U16_NEXT_UNSAFE(source, index, c);
   1660         source+=index;
   1661         if(c == QUOTE) {
   1662             quoted = (UBool)!quoted;
   1663         }
   1664         else if (!quoted) {
   1665             if (c == RULE_COMMENT_CHAR) {
   1666                 /* skip comments and all preceding spaces */
   1667                 while (targetStart < target && *(target - 1) == 0x0020) {
   1668                     target--;
   1669                 }
   1670                 do {
   1671                     c = *(source++);
   1672                 }
   1673                 while (c != CR && c != LF);
   1674             }
   1675             else if (c == ESCAPE) {
   1676                 UChar32   c2 = *source;
   1677                 if (c2 == CR || c2 == LF) {
   1678                     /* A backslash at the end of a line. */
   1679                     /* Since we're stripping lines, ignore the backslash. */
   1680                     source++;
   1681                     continue;
   1682                 }
   1683                 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
   1684                     int32_t escapeOffset = 0;
   1685                     UnicodeString escapedStr(source, 5);
   1686                     c2 = escapedStr.unescapeAt(escapeOffset);
   1687 
   1688                     if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
   1689                     {
   1690                         *status = U_PARSE_ERROR;
   1691                         return 0;
   1692                     }
   1693                     if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
   1694                         /* It was escaped for a reason. Write what it was suppose to be. */
   1695                         source+=5;
   1696                         c = c2;
   1697                     }
   1698                 }
   1699                 else if (c2 == QUOTE) {
   1700                     /* \' seen. Make sure we don't do anything when we see it again. */
   1701                     quoted = (UBool)!quoted;
   1702                 }
   1703             }
   1704         }
   1705         if (c == CR || c == LF)
   1706         {
   1707             /* ignore spaces carriage returns, and all leading spaces on the next line.
   1708             * and line feed unless in the form \uXXXX
   1709             */
   1710             quoted = FALSE;
   1711             while (source < sourceLimit) {
   1712                 c = *(source);
   1713                 if (c != CR && c != LF && c != 0x0020) {
   1714                     break;
   1715                 }
   1716                 source++;
   1717             }
   1718             continue;
   1719         }
   1720 
   1721         /* Append UChar * after dissembling if c > 0xffff*/
   1722         index=0;
   1723         U16_APPEND_UNSAFE(target, index, c);
   1724         target+=index;
   1725     }
   1726     if (target < targetLimit) {
   1727         *target = 0;
   1728     }
   1729     return (int32_t)(target-targetStart);
   1730 }
   1731 
   1732 #endif /* #if !UCONFIG_NO_TRANSLITERATION */
   1733