1 /* 2 ********************************************************************** 3 * Copyright (C) 1999-2008, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ********************************************************************** 6 * Date Name Description 7 * 11/17/99 aliu Creation. 8 ********************************************************************** 9 */ 10 11 #include "unicode/utypes.h" 12 13 #if !UCONFIG_NO_TRANSLITERATION 14 15 #include "unicode/uobject.h" 16 #include "unicode/parseerr.h" 17 #include "unicode/parsepos.h" 18 #include "unicode/putil.h" 19 #include "unicode/uchar.h" 20 #include "unicode/ustring.h" 21 #include "unicode/uniset.h" 22 #include "cstring.h" 23 #include "funcrepl.h" 24 #include "hash.h" 25 #include "quant.h" 26 #include "rbt.h" 27 #include "rbt_data.h" 28 #include "rbt_pars.h" 29 #include "rbt_rule.h" 30 #include "strmatch.h" 31 #include "strrepl.h" 32 #include "unicode/symtable.h" 33 #include "tridpars.h" 34 #include "uvector.h" 35 #include "hash.h" 36 #include "util.h" 37 #include "cmemory.h" 38 #include "uprops.h" 39 #include "putilimp.h" 40 41 // Operators 42 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ 43 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ 44 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ 45 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op 46 47 // Other special characters 48 #define QUOTE ((UChar)0x0027) /*'*/ 49 #define ESCAPE ((UChar)0x005C) /*\*/ 50 #define END_OF_RULE ((UChar)0x003B) /*;*/ 51 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ 52 53 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ 54 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ 55 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ 56 #define CONTEXT_POST ((UChar)0x007D) /*}*/ 57 #define CURSOR_POS ((UChar)0x007C) /*|*/ 58 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ 59 #define ANCHOR_START ((UChar)0x005E) /*^*/ 60 #define KLEENE_STAR ((UChar)0x002A) /***/ 61 #define ONE_OR_MORE ((UChar)0x002B) /*+*/ 62 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ 63 64 #define DOT ((UChar)46) /*.*/ 65 66 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; 67 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, 68 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 69 }; 70 71 // A function is denoted &Source-Target/Variant(text) 72 #define FUNCTION ((UChar)38) /*&*/ 73 74 // Aliases for some of the syntax characters. These are provided so 75 // transliteration rules can be expressed in XML without clashing with 76 // XML syntax characters '<', '>', and '&'. 77 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow 78 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow 79 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow 80 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) 81 82 // Special characters disallowed at the top level 83 static const UChar ILLEGAL_TOP[] = {41,0}; // ")" 84 85 // Special characters disallowed within a segment 86 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" 87 88 // Special characters disallowed within a function argument 89 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" 90 91 // By definition, the ANCHOR_END special character is a 92 // trailing SymbolTable.SYMBOL_REF character. 93 // private static final char ANCHOR_END = '$'; 94 95 static const UChar gOPERATORS[] = { // "=><" 96 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, 97 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, 98 0 99 }; 100 101 static const UChar HALF_ENDERS[] = { // "=><;" 102 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, 103 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, 104 END_OF_RULE, 105 0 106 }; 107 108 // These are also used in Transliterator::toRules() 109 static const int32_t ID_TOKEN_LEN = 2; 110 static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' 111 112 /* 113 commented out until we do real ::BEGIN/::END functionality 114 static const int32_t BEGIN_TOKEN_LEN = 5; 115 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' 116 117 static const int32_t END_TOKEN_LEN = 3; 118 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' 119 */ 120 121 U_NAMESPACE_BEGIN 122 123 //---------------------------------------------------------------------- 124 // BEGIN ParseData 125 //---------------------------------------------------------------------- 126 127 /** 128 * This class implements the SymbolTable interface. It is used 129 * during parsing to give UnicodeSet access to variables that 130 * have been defined so far. Note that it uses variablesVector, 131 * _not_ data.setVariables. 132 */ 133 class ParseData : public UMemory, public SymbolTable { 134 public: 135 const TransliterationRuleData* data; // alias 136 137 const UVector* variablesVector; // alias 138 139 const Hashtable* variableNames; // alias 140 141 ParseData(const TransliterationRuleData* data = 0, 142 const UVector* variablesVector = 0, 143 const Hashtable* variableNames = 0); 144 145 virtual const UnicodeString* lookup(const UnicodeString& s) const; 146 147 virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; 148 149 virtual UnicodeString parseReference(const UnicodeString& text, 150 ParsePosition& pos, int32_t limit) const; 151 /** 152 * Return true if the given character is a matcher standin or a plain 153 * character (non standin). 154 */ 155 UBool isMatcher(UChar32 ch); 156 157 /** 158 * Return true if the given character is a replacer standin or a plain 159 * character (non standin). 160 */ 161 UBool isReplacer(UChar32 ch); 162 163 private: 164 ParseData(const ParseData &other); // forbid copying of this class 165 ParseData &operator=(const ParseData &other); // forbid copying of this class 166 }; 167 168 ParseData::ParseData(const TransliterationRuleData* d, 169 const UVector* sets, 170 const Hashtable* vNames) : 171 data(d), variablesVector(sets), variableNames(vNames) {} 172 173 /** 174 * Implement SymbolTable API. 175 */ 176 const UnicodeString* ParseData::lookup(const UnicodeString& name) const { 177 return (const UnicodeString*) variableNames->get(name); 178 } 179 180 /** 181 * Implement SymbolTable API. 182 */ 183 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { 184 // Note that we cannot use data.lookupSet() because the 185 // set array has not been constructed yet. 186 const UnicodeFunctor* set = NULL; 187 int32_t i = ch - data->variablesBase; 188 if (i >= 0 && i < variablesVector->size()) { 189 int32_t i = ch - data->variablesBase; 190 set = (i < variablesVector->size()) ? 191 (UnicodeFunctor*) variablesVector->elementAt(i) : 0; 192 } 193 return set; 194 } 195 196 /** 197 * Implement SymbolTable API. Parse out a symbol reference 198 * name. 199 */ 200 UnicodeString ParseData::parseReference(const UnicodeString& text, 201 ParsePosition& pos, int32_t limit) const { 202 int32_t start = pos.getIndex(); 203 int32_t i = start; 204 UnicodeString result; 205 while (i < limit) { 206 UChar c = text.charAt(i); 207 if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { 208 break; 209 } 210 ++i; 211 } 212 if (i == start) { // No valid name chars 213 return result; // Indicate failure with empty string 214 } 215 pos.setIndex(i); 216 text.extractBetween(start, i, result); 217 return result; 218 } 219 220 UBool ParseData::isMatcher(UChar32 ch) { 221 // Note that we cannot use data.lookup() because the 222 // set array has not been constructed yet. 223 int32_t i = ch - data->variablesBase; 224 if (i >= 0 && i < variablesVector->size()) { 225 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); 226 return f != NULL && f->toMatcher() != NULL; 227 } 228 return TRUE; 229 } 230 231 /** 232 * Return true if the given character is a replacer standin or a plain 233 * character (non standin). 234 */ 235 UBool ParseData::isReplacer(UChar32 ch) { 236 // Note that we cannot use data.lookup() because the 237 // set array has not been constructed yet. 238 int i = ch - data->variablesBase; 239 if (i >= 0 && i < variablesVector->size()) { 240 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); 241 return f != NULL && f->toReplacer() != NULL; 242 } 243 return TRUE; 244 } 245 246 //---------------------------------------------------------------------- 247 // BEGIN RuleHalf 248 //---------------------------------------------------------------------- 249 250 /** 251 * A class representing one side of a rule. This class knows how to 252 * parse half of a rule. It is tightly coupled to the method 253 * RuleBasedTransliterator.Parser.parseRule(). 254 */ 255 class RuleHalf : public UMemory { 256 257 public: 258 259 UnicodeString text; 260 261 int32_t cursor; // position of cursor in text 262 int32_t ante; // position of ante context marker '{' in text 263 int32_t post; // position of post context marker '}' in text 264 265 // Record the offset to the cursor either to the left or to the 266 // right of the key. This is indicated by characters on the output 267 // side that allow the cursor to be positioned arbitrarily within 268 // the matching text. For example, abc{def} > | @@@ xyz; changes 269 // def to xyz and moves the cursor to before abc. Offset characters 270 // must be at the start or end, and they cannot move the cursor past 271 // the ante- or postcontext text. Placeholders are only valid in 272 // output text. The length of the ante and post context is 273 // determined at runtime, because of supplementals and quantifiers. 274 int32_t cursorOffset; // only nonzero on output side 275 276 // Position of first CURSOR_OFFSET on _right_. This will be -1 277 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. 278 int32_t cursorOffsetPos; 279 280 UBool anchorStart; 281 UBool anchorEnd; 282 283 /** 284 * The segment number from 1..n of the next '(' we see 285 * during parsing; 1-based. 286 */ 287 int32_t nextSegmentNumber; 288 289 TransliteratorParser& parser; 290 291 //-------------------------------------------------- 292 // Methods 293 294 RuleHalf(TransliteratorParser& parser); 295 ~RuleHalf(); 296 297 int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); 298 299 int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, 300 UnicodeString& buf, 301 const UnicodeString& illegal, 302 UBool isSegment, 303 UErrorCode& status); 304 305 /** 306 * Remove context. 307 */ 308 void removeContext(); 309 310 /** 311 * Return true if this half looks like valid output, that is, does not 312 * contain quantifiers or other special input-only elements. 313 */ 314 UBool isValidOutput(TransliteratorParser& parser); 315 316 /** 317 * Return true if this half looks like valid input, that is, does not 318 * contain functions or other special output-only elements. 319 */ 320 UBool isValidInput(TransliteratorParser& parser); 321 322 int syntaxError(UErrorCode code, 323 const UnicodeString& rule, 324 int32_t start, 325 UErrorCode& status) { 326 return parser.syntaxError(code, rule, start, status); 327 } 328 329 private: 330 // Disallowed methods; no impl. 331 RuleHalf(const RuleHalf&); 332 RuleHalf& operator=(const RuleHalf&); 333 }; 334 335 RuleHalf::RuleHalf(TransliteratorParser& p) : 336 parser(p) 337 { 338 cursor = -1; 339 ante = -1; 340 post = -1; 341 cursorOffset = 0; 342 cursorOffsetPos = 0; 343 anchorStart = anchorEnd = FALSE; 344 nextSegmentNumber = 1; 345 } 346 347 RuleHalf::~RuleHalf() { 348 } 349 350 /** 351 * Parse one side of a rule, stopping at either the limit, 352 * the END_OF_RULE character, or an operator. 353 * @return the index after the terminating character, or 354 * if limit was reached, limit 355 */ 356 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 357 int32_t start = pos; 358 text.truncate(0); 359 pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status); 360 361 if (cursorOffset > 0 && cursor != cursorOffsetPos) { 362 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 363 } 364 365 return pos; 366 } 367 368 /** 369 * Parse a section of one side of a rule, stopping at either 370 * the limit, the END_OF_RULE character, an operator, or a 371 * segment close character. This method parses both a 372 * top-level rule half and a segment within such a rule half. 373 * It calls itself recursively to parse segments and nested 374 * segments. 375 * @param buf buffer into which to accumulate the rule pattern 376 * characters, either literal characters from the rule or 377 * standins for UnicodeMatcher objects including segments. 378 * @param illegal the set of special characters that is illegal during 379 * this parse. 380 * @param isSegment if true, then we've already seen a '(' and 381 * pos on entry points right after it. Accumulate everything 382 * up to the closing ')', put it in a segment matcher object, 383 * generate a standin for it, and add the standin to buf. As 384 * a side effect, update the segments vector with a reference 385 * to the segment matcher. This works recursively for nested 386 * segments. If isSegment is false, just accumulate 387 * characters into buf. 388 * @return the index after the terminating character, or 389 * if limit was reached, limit 390 */ 391 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, 392 UnicodeString& buf, 393 const UnicodeString& illegal, 394 UBool isSegment, UErrorCode& status) { 395 int32_t start = pos; 396 ParsePosition pp; 397 UnicodeString scratch; 398 UBool done = FALSE; 399 int32_t quoteStart = -1; // Most recent 'single quoted string' 400 int32_t quoteLimit = -1; 401 int32_t varStart = -1; // Most recent $variableReference 402 int32_t varLimit = -1; 403 int32_t bufStart = buf.length(); 404 405 while (pos < limit && !done) { 406 // Since all syntax characters are in the BMP, fetching 407 // 16-bit code units suffices here. 408 UChar c = rule.charAt(pos++); 409 if (uprv_isRuleWhiteSpace(c)) { 410 // Ignore whitespace. Note that this is not Unicode 411 // spaces, but Java spaces -- a subset, representing 412 // whitespace likely to be seen in code. 413 continue; 414 } 415 if (u_strchr(HALF_ENDERS, c) != NULL) { 416 if (isSegment) { 417 // Unclosed segment 418 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); 419 } 420 break; 421 } 422 if (anchorEnd) { 423 // Text after a presumed end anchor is a syntax err 424 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); 425 } 426 if (UnicodeSet::resemblesPattern(rule, pos-1)) { 427 pp.setIndex(pos-1); // Backup to opening '[' 428 buf.append(parser.parseSet(rule, pp, status)); 429 if (U_FAILURE(status)) { 430 return syntaxError(U_MALFORMED_SET, rule, start, status); 431 } 432 pos = pp.getIndex(); 433 continue; 434 } 435 // Handle escapes 436 if (c == ESCAPE) { 437 if (pos == limit) { 438 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); 439 } 440 UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' 441 if (escaped == (UChar32) -1) { 442 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); 443 } 444 if (!parser.checkVariableRange(escaped)) { 445 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 446 } 447 buf.append(escaped); 448 continue; 449 } 450 // Handle quoted matter 451 if (c == QUOTE) { 452 int32_t iq = rule.indexOf(QUOTE, pos); 453 if (iq == pos) { 454 buf.append(c); // Parse [''] outside quotes as ['] 455 ++pos; 456 } else { 457 /* This loop picks up a run of quoted text of the 458 * form 'aaaa' each time through. If this run 459 * hasn't really ended ('aaaa''bbbb') then it keeps 460 * looping, each time adding on a new run. When it 461 * reaches the final quote it breaks. 462 */ 463 quoteStart = buf.length(); 464 for (;;) { 465 if (iq < 0) { 466 return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); 467 } 468 scratch.truncate(0); 469 rule.extractBetween(pos, iq, scratch); 470 buf.append(scratch); 471 pos = iq+1; 472 if (pos < limit && rule.charAt(pos) == QUOTE) { 473 // Parse [''] inside quotes as ['] 474 iq = rule.indexOf(QUOTE, pos+1); 475 // Continue looping 476 } else { 477 break; 478 } 479 } 480 quoteLimit = buf.length(); 481 482 for (iq=quoteStart; iq<quoteLimit; ++iq) { 483 if (!parser.checkVariableRange(buf.charAt(iq))) { 484 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 485 } 486 } 487 } 488 continue; 489 } 490 491 if (!parser.checkVariableRange(c)) { 492 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); 493 } 494 495 if (illegal.indexOf(c) >= 0) { 496 syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); 497 } 498 499 switch (c) { 500 501 //------------------------------------------------------ 502 // Elements allowed within and out of segments 503 //------------------------------------------------------ 504 case ANCHOR_START: 505 if (buf.length() == 0 && !anchorStart) { 506 anchorStart = TRUE; 507 } else { 508 return syntaxError(U_MISPLACED_ANCHOR_START, 509 rule, start, status); 510 } 511 break; 512 case SEGMENT_OPEN: 513 { 514 // bufSegStart is the offset in buf to the first 515 // character of the segment we are parsing. 516 int32_t bufSegStart = buf.length(); 517 518 // Record segment number now, since nextSegmentNumber 519 // will be incremented during the call to parseSection 520 // if there are nested segments. 521 int32_t segmentNumber = nextSegmentNumber++; // 1-based 522 523 // Parse the segment 524 pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, status); 525 526 // After parsing a segment, the relevant characters are 527 // in buf, starting at offset bufSegStart. Extract them 528 // into a string matcher, and replace them with a 529 // standin for that matcher. 530 StringMatcher* m = 531 new StringMatcher(buf, bufSegStart, buf.length(), 532 segmentNumber, *parser.curData); 533 if (m == NULL) { 534 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 535 } 536 537 // Record and associate object and segment number 538 parser.setSegmentObject(segmentNumber, m, status); 539 buf.truncate(bufSegStart); 540 buf.append(parser.getSegmentStandin(segmentNumber, status)); 541 } 542 break; 543 case FUNCTION: 544 case ALT_FUNCTION: 545 { 546 int32_t iref = pos; 547 TransliteratorIDParser::SingleID* single = 548 TransliteratorIDParser::parseFilterID(rule, iref); 549 // The next character MUST be a segment open 550 if (single == NULL || 551 !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { 552 return syntaxError(U_INVALID_FUNCTION, rule, start, status); 553 } 554 555 Transliterator *t = single->createInstance(); 556 delete single; 557 if (t == NULL) { 558 return syntaxError(U_INVALID_FUNCTION, rule, start, status); 559 } 560 561 // bufSegStart is the offset in buf to the first 562 // character of the segment we are parsing. 563 int32_t bufSegStart = buf.length(); 564 565 // Parse the segment 566 pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, status); 567 568 // After parsing a segment, the relevant characters are 569 // in buf, starting at offset bufSegStart. 570 UnicodeString output; 571 buf.extractBetween(bufSegStart, buf.length(), output); 572 FunctionReplacer *r = 573 new FunctionReplacer(t, new StringReplacer(output, parser.curData)); 574 if (r == NULL) { 575 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 576 } 577 578 // Replace the buffer contents with a stand-in 579 buf.truncate(bufSegStart); 580 buf.append(parser.generateStandInFor(r, status)); 581 } 582 break; 583 case SymbolTable::SYMBOL_REF: 584 // Handle variable references and segment references "$1" .. "$9" 585 { 586 // A variable reference must be followed immediately 587 // by a Unicode identifier start and zero or more 588 // Unicode identifier part characters, or by a digit 589 // 1..9 if it is a segment reference. 590 if (pos == limit) { 591 // A variable ref character at the end acts as 592 // an anchor to the context limit, as in perl. 593 anchorEnd = TRUE; 594 break; 595 } 596 // Parse "$1" "$2" .. "$9" .. (no upper limit) 597 c = rule.charAt(pos); 598 int32_t r = u_digit(c, 10); 599 if (r >= 1 && r <= 9) { 600 r = ICU_Utility::parseNumber(rule, pos, 10); 601 if (r < 0) { 602 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, 603 rule, start, status); 604 } 605 buf.append(parser.getSegmentStandin(r, status)); 606 } else { 607 pp.setIndex(pos); 608 UnicodeString name = parser.parseData-> 609 parseReference(rule, pp, limit); 610 if (name.length() == 0) { 611 // This means the '$' was not followed by a 612 // valid name. Try to interpret it as an 613 // end anchor then. If this also doesn't work 614 // (if we see a following character) then signal 615 // an error. 616 anchorEnd = TRUE; 617 break; 618 } 619 pos = pp.getIndex(); 620 // If this is a variable definition statement, 621 // then the LHS variable will be undefined. In 622 // that case appendVariableDef() will append the 623 // special placeholder char variableLimit-1. 624 varStart = buf.length(); 625 parser.appendVariableDef(name, buf, status); 626 varLimit = buf.length(); 627 } 628 } 629 break; 630 case DOT: 631 buf.append(parser.getDotStandIn(status)); 632 break; 633 case KLEENE_STAR: 634 case ONE_OR_MORE: 635 case ZERO_OR_ONE: 636 // Quantifiers. We handle single characters, quoted strings, 637 // variable references, and segments. 638 // a+ matches aaa 639 // 'foo'+ matches foofoofoo 640 // $v+ matches xyxyxy if $v == xy 641 // (seg)+ matches segsegseg 642 { 643 if (isSegment && buf.length() == bufStart) { 644 // The */+ immediately follows '(' 645 return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); 646 } 647 648 int32_t qstart, qlimit; 649 // The */+ follows an isolated character or quote 650 // or variable reference 651 if (buf.length() == quoteLimit) { 652 // The */+ follows a 'quoted string' 653 qstart = quoteStart; 654 qlimit = quoteLimit; 655 } else if (buf.length() == varLimit) { 656 // The */+ follows a $variableReference 657 qstart = varStart; 658 qlimit = varLimit; 659 } else { 660 // The */+ follows a single character, possibly 661 // a segment standin 662 qstart = buf.length() - 1; 663 qlimit = qstart + 1; 664 } 665 666 UnicodeFunctor *m = 667 new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); 668 if (m == NULL) { 669 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 670 } 671 int32_t min = 0; 672 int32_t max = Quantifier::MAX; 673 switch (c) { 674 case ONE_OR_MORE: 675 min = 1; 676 break; 677 case ZERO_OR_ONE: 678 min = 0; 679 max = 1; 680 break; 681 // case KLEENE_STAR: 682 // do nothing -- min, max already set 683 } 684 m = new Quantifier(m, min, max); 685 if (m == NULL) { 686 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 687 } 688 buf.truncate(qstart); 689 buf.append(parser.generateStandInFor(m, status)); 690 } 691 break; 692 693 //------------------------------------------------------ 694 // Elements allowed ONLY WITHIN segments 695 //------------------------------------------------------ 696 case SEGMENT_CLOSE: 697 // assert(isSegment); 698 // We're done parsing a segment. 699 done = TRUE; 700 break; 701 702 //------------------------------------------------------ 703 // Elements allowed ONLY OUTSIDE segments 704 //------------------------------------------------------ 705 case CONTEXT_ANTE: 706 if (ante >= 0) { 707 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); 708 } 709 ante = buf.length(); 710 break; 711 case CONTEXT_POST: 712 if (post >= 0) { 713 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); 714 } 715 post = buf.length(); 716 break; 717 case CURSOR_POS: 718 if (cursor >= 0) { 719 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); 720 } 721 cursor = buf.length(); 722 break; 723 case CURSOR_OFFSET: 724 if (cursorOffset < 0) { 725 if (buf.length() > 0) { 726 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 727 } 728 --cursorOffset; 729 } else if (cursorOffset > 0) { 730 if (buf.length() != cursorOffsetPos || cursor >= 0) { 731 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 732 } 733 ++cursorOffset; 734 } else { 735 if (cursor == 0 && buf.length() == 0) { 736 cursorOffset = -1; 737 } else if (cursor < 0) { 738 cursorOffsetPos = buf.length(); 739 cursorOffset = 1; 740 } else { 741 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); 742 } 743 } 744 break; 745 746 747 //------------------------------------------------------ 748 // Non-special characters 749 //------------------------------------------------------ 750 default: 751 // Disallow unquoted characters other than [0-9A-Za-z] 752 // in the printable ASCII range. These characters are 753 // reserved for possible future use. 754 if (c >= 0x0021 && c <= 0x007E && 755 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || 756 (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || 757 (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { 758 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); 759 } 760 buf.append(c); 761 break; 762 } 763 } 764 765 return pos; 766 } 767 768 /** 769 * Remove context. 770 */ 771 void RuleHalf::removeContext() { 772 //text = text.substring(ante < 0 ? 0 : ante, 773 // post < 0 ? text.length() : post); 774 if (post >= 0) { 775 text.remove(post); 776 } 777 if (ante >= 0) { 778 text.removeBetween(0, ante); 779 } 780 ante = post = -1; 781 anchorStart = anchorEnd = FALSE; 782 } 783 784 /** 785 * Return true if this half looks like valid output, that is, does not 786 * contain quantifiers or other special input-only elements. 787 */ 788 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { 789 for (int32_t i=0; i<text.length(); ) { 790 UChar32 c = text.char32At(i); 791 i += UTF_CHAR_LENGTH(c); 792 if (!transParser.parseData->isReplacer(c)) { 793 return FALSE; 794 } 795 } 796 return TRUE; 797 } 798 799 /** 800 * Return true if this half looks like valid input, that is, does not 801 * contain functions or other special output-only elements. 802 */ 803 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { 804 for (int32_t i=0; i<text.length(); ) { 805 UChar32 c = text.char32At(i); 806 i += UTF_CHAR_LENGTH(c); 807 if (!transParser.parseData->isMatcher(c)) { 808 return FALSE; 809 } 810 } 811 return TRUE; 812 } 813 814 //---------------------------------------------------------------------- 815 // PUBLIC API 816 //---------------------------------------------------------------------- 817 818 /** 819 * Constructor. 820 */ 821 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : 822 dataVector(statusReturn), 823 idBlockVector(statusReturn), 824 variablesVector(statusReturn), 825 segmentObjects(statusReturn) 826 { 827 idBlockVector.setDeleter(uhash_deleteUnicodeString); 828 curData = NULL; 829 compoundFilter = NULL; 830 parseData = NULL; 831 variableNames.setValueDeleter(uhash_deleteUnicodeString); 832 } 833 834 /** 835 * Destructor. 836 */ 837 TransliteratorParser::~TransliteratorParser() { 838 while (!dataVector.isEmpty()) 839 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); 840 delete compoundFilter; 841 delete parseData; 842 while (!variablesVector.isEmpty()) 843 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); 844 } 845 846 void 847 TransliteratorParser::parse(const UnicodeString& rules, 848 UTransDirection transDirection, 849 UParseError& pe, 850 UErrorCode& ec) { 851 if (U_SUCCESS(ec)) { 852 parseRules(rules, transDirection, ec); 853 pe = parseError; 854 } 855 } 856 857 /** 858 * Return the compound filter parsed by parse(). Caller owns result. 859 */ 860 UnicodeSet* TransliteratorParser::orphanCompoundFilter() { 861 UnicodeSet* f = compoundFilter; 862 compoundFilter = NULL; 863 return f; 864 } 865 866 //---------------------------------------------------------------------- 867 // Private implementation 868 //---------------------------------------------------------------------- 869 870 /** 871 * Parse the given string as a sequence of rules, separated by newline 872 * characters ('\n'), and cause this object to implement those rules. Any 873 * previous rules are discarded. Typically this method is called exactly 874 * once, during construction. 875 * @exception IllegalArgumentException if there is a syntax error in the 876 * rules 877 */ 878 void TransliteratorParser::parseRules(const UnicodeString& rule, 879 UTransDirection theDirection, 880 UErrorCode& status) 881 { 882 // Clear error struct 883 uprv_memset(&parseError, 0, sizeof(parseError)); 884 parseError.line = parseError.offset = -1; 885 886 UBool parsingIDs = TRUE; 887 int32_t ruleCount = 0; 888 889 while (!dataVector.isEmpty()) { 890 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); 891 } 892 if (U_FAILURE(status)) { 893 return; 894 } 895 896 idBlockVector.removeAllElements(); 897 curData = NULL; 898 direction = theDirection; 899 ruleCount = 0; 900 901 delete compoundFilter; 902 compoundFilter = NULL; 903 904 while (!variablesVector.isEmpty()) { 905 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); 906 } 907 variableNames.removeAll(); 908 parseData = new ParseData(0, &variablesVector, &variableNames); 909 if (parseData == NULL) { 910 status = U_MEMORY_ALLOCATION_ERROR; 911 return; 912 } 913 914 dotStandIn = (UChar) -1; 915 916 UnicodeString *tempstr = NULL; // used for memory allocation error checking 917 UnicodeString str; // scratch 918 UnicodeString idBlockResult; 919 int32_t pos = 0; 920 int32_t limit = rule.length(); 921 922 // The compound filter offset is an index into idBlockResult. 923 // If it is 0, then the compound filter occurred at the start, 924 // and it is the offset to the _start_ of the compound filter 925 // pattern. Otherwise it is the offset to the _limit_ of the 926 // compound filter pattern within idBlockResult. 927 compoundFilter = NULL; 928 int32_t compoundFilterOffset = -1; 929 930 while (pos < limit && U_SUCCESS(status)) { 931 UChar c = rule.charAt(pos++); 932 if (uprv_isRuleWhiteSpace(c)) { 933 // Ignore leading whitespace. 934 continue; 935 } 936 // Skip lines starting with the comment character 937 if (c == RULE_COMMENT_CHAR) { 938 pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; 939 if (pos == 0) { 940 break; // No "\n" found; rest of rule is a commnet 941 } 942 continue; // Either fall out or restart with next line 943 } 944 945 // skip empty rules 946 if (c == END_OF_RULE) 947 continue; 948 949 // keep track of how many rules we've seen 950 ++ruleCount; 951 952 // We've found the start of a rule or ID. c is its first 953 // character, and pos points past c. 954 --pos; 955 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 956 // chars left. 957 if ((pos + ID_TOKEN_LEN + 1) <= limit && 958 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { 959 pos += ID_TOKEN_LEN; 960 c = rule.charAt(pos); 961 while (uprv_isRuleWhiteSpace(c) && pos < limit) { 962 ++pos; 963 c = rule.charAt(pos); 964 } 965 966 int32_t p = pos; 967 968 if (!parsingIDs) { 969 if (curData != NULL) { 970 if (direction == UTRANS_FORWARD) 971 dataVector.addElement(curData, status); 972 else 973 dataVector.insertElementAt(curData, 0, status); 974 curData = NULL; 975 } 976 parsingIDs = TRUE; 977 } 978 979 TransliteratorIDParser::SingleID* id = 980 TransliteratorIDParser::parseSingleID(rule, p, direction, status); 981 if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { 982 // Successful ::ID parse. 983 984 if (direction == UTRANS_FORWARD) { 985 idBlockResult.append(id->canonID).append(END_OF_RULE); 986 } else { 987 idBlockResult.insert(0, END_OF_RULE); 988 idBlockResult.insert(0, id->canonID); 989 } 990 991 } else { 992 // Couldn't parse an ID. Try to parse a global filter 993 int32_t withParens = -1; 994 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); 995 if (f != NULL) { 996 if (ICU_Utility::parseChar(rule, p, END_OF_RULE) 997 && (direction == UTRANS_FORWARD) == (withParens == 0)) 998 { 999 if (compoundFilter != NULL) { 1000 // Multiple compound filters 1001 syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); 1002 delete f; 1003 } else { 1004 compoundFilter = f; 1005 compoundFilterOffset = ruleCount; 1006 } 1007 } else { 1008 delete f; 1009 } 1010 } else { 1011 // Invalid ::id 1012 // Can be parsed as neither an ID nor a global filter 1013 syntaxError(U_INVALID_ID, rule, pos, status); 1014 } 1015 } 1016 delete id; 1017 pos = p; 1018 } else { 1019 if (parsingIDs) { 1020 tempstr = new UnicodeString(idBlockResult); 1021 // NULL pointer check 1022 if (tempstr == NULL) { 1023 status = U_MEMORY_ALLOCATION_ERROR; 1024 return; 1025 } 1026 if (direction == UTRANS_FORWARD) 1027 idBlockVector.addElement(tempstr, status); 1028 else 1029 idBlockVector.insertElementAt(tempstr, 0, status); 1030 idBlockResult.remove(); 1031 parsingIDs = FALSE; 1032 curData = new TransliterationRuleData(status); 1033 // NULL pointer check 1034 if (curData == NULL) { 1035 status = U_MEMORY_ALLOCATION_ERROR; 1036 return; 1037 } 1038 parseData->data = curData; 1039 1040 // By default, rules use part of the private use area 1041 // E000..F8FF for variables and other stand-ins. Currently 1042 // the range F000..F8FF is typically sufficient. The 'use 1043 // variable range' pragma allows rule sets to modify this. 1044 setVariableRange(0xF000, 0xF8FF, status); 1045 } 1046 1047 if (resemblesPragma(rule, pos, limit)) { 1048 int32_t ppp = parsePragma(rule, pos, limit, status); 1049 if (ppp < 0) { 1050 syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); 1051 } 1052 pos = ppp; 1053 // Parse a rule 1054 } else { 1055 pos = parseRule(rule, pos, limit, status); 1056 } 1057 } 1058 } 1059 1060 if (parsingIDs && idBlockResult.length() > 0) { 1061 tempstr = new UnicodeString(idBlockResult); 1062 // NULL pointer check 1063 if (tempstr == NULL) { 1064 status = U_MEMORY_ALLOCATION_ERROR; 1065 return; 1066 } 1067 if (direction == UTRANS_FORWARD) 1068 idBlockVector.addElement(tempstr, status); 1069 else 1070 idBlockVector.insertElementAt(tempstr, 0, status); 1071 } 1072 else if (!parsingIDs && curData != NULL) { 1073 if (direction == UTRANS_FORWARD) 1074 dataVector.addElement(curData, status); 1075 else 1076 dataVector.insertElementAt(curData, 0, status); 1077 } 1078 1079 if (U_SUCCESS(status)) { 1080 // Convert the set vector to an array 1081 int32_t i, dataVectorSize = dataVector.size(); 1082 for (i = 0; i < dataVectorSize; i++) { 1083 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); 1084 data->variablesLength = variablesVector.size(); 1085 if (data->variablesLength == 0) { 1086 data->variables = 0; 1087 } else { 1088 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); 1089 // NULL pointer check 1090 if (data->variables == NULL) { 1091 status = U_MEMORY_ALLOCATION_ERROR; 1092 return; 1093 } 1094 data->variablesAreOwned = (i == 0); 1095 } 1096 1097 for (int32_t j = 0; j < data->variablesLength; j++) { 1098 data->variables[j] = 1099 ((UnicodeSet*)variablesVector.elementAt(j)); 1100 } 1101 1102 data->variableNames.removeAll(); 1103 int32_t pos = -1; 1104 const UHashElement* he = variableNames.nextElement(pos); 1105 while (he != NULL) { 1106 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone()); 1107 if (tempus == NULL) { 1108 status = U_MEMORY_ALLOCATION_ERROR; 1109 return; 1110 } 1111 data->variableNames.put(*((UnicodeString*)(he->key.pointer)), 1112 tempus, status); 1113 he = variableNames.nextElement(pos); 1114 } 1115 } 1116 variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed 1117 1118 // Index the rules 1119 if (compoundFilter != NULL) { 1120 if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || 1121 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { 1122 status = U_MISPLACED_COMPOUND_FILTER; 1123 } 1124 } 1125 1126 for (i = 0; i < dataVectorSize; i++) { 1127 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); 1128 data->ruleSet.freeze(parseError, status); 1129 } 1130 if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { 1131 idBlockVector.removeElementAt(0); 1132 } 1133 } 1134 } 1135 1136 /** 1137 * Set the variable range to [start, end] (inclusive). 1138 */ 1139 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { 1140 if (start > end || start < 0 || end > 0xFFFF) { 1141 status = U_MALFORMED_PRAGMA; 1142 return; 1143 } 1144 1145 curData->variablesBase = (UChar) start; 1146 if (dataVector.size() == 0) { 1147 variableNext = (UChar) start; 1148 variableLimit = (UChar) (end + 1); 1149 } 1150 } 1151 1152 /** 1153 * Assert that the given character is NOT within the variable range. 1154 * If it is, return FALSE. This is neccesary to ensure that the 1155 * variable range does not overlap characters used in a rule. 1156 */ 1157 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { 1158 return !(ch >= curData->variablesBase && ch < variableLimit); 1159 } 1160 1161 /** 1162 * Set the maximum backup to 'backup', in response to a pragma 1163 * statement. 1164 */ 1165 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { 1166 //TODO Finish 1167 } 1168 1169 /** 1170 * Begin normalizing all rules using the given mode, in response 1171 * to a pragma statement. 1172 */ 1173 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { 1174 //TODO Finish 1175 } 1176 1177 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " 1178 1179 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" 1180 1181 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" 1182 1183 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" 1184 1185 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" 1186 1187 /** 1188 * Return true if the given rule looks like a pragma. 1189 * @param pos offset to the first non-whitespace character 1190 * of the rule. 1191 * @param limit pointer past the last character of the rule. 1192 */ 1193 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { 1194 // Must start with /use\s/i 1195 return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0; 1196 } 1197 1198 /** 1199 * Parse a pragma. This method assumes resemblesPragma() has 1200 * already returned true. 1201 * @param pos offset to the first non-whitespace character 1202 * of the rule. 1203 * @param limit pointer past the last character of the rule. 1204 * @return the position index after the final ';' of the pragma, 1205 * or -1 on failure. 1206 */ 1207 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 1208 int32_t array[2]; 1209 1210 // resemblesPragma() has already returned true, so we 1211 // know that pos points to /use\s/i; we can skip 4 characters 1212 // immediately 1213 pos += 4; 1214 1215 // Here are the pragmas we recognize: 1216 // use variable range 0xE000 0xEFFF; 1217 // use maximum backup 16; 1218 // use nfd rules; 1219 // use nfc rules; 1220 int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array); 1221 if (p >= 0) { 1222 setVariableRange(array[0], array[1], status); 1223 return p; 1224 } 1225 1226 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array); 1227 if (p >= 0) { 1228 pragmaMaximumBackup(array[0]); 1229 return p; 1230 } 1231 1232 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL); 1233 if (p >= 0) { 1234 pragmaNormalizeRules(UNORM_NFD); 1235 return p; 1236 } 1237 1238 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL); 1239 if (p >= 0) { 1240 pragmaNormalizeRules(UNORM_NFC); 1241 return p; 1242 } 1243 1244 // Syntax error: unable to parse pragma 1245 return -1; 1246 } 1247 1248 /** 1249 * MAIN PARSER. Parse the next rule in the given rule string, starting 1250 * at pos. Return the index after the last character parsed. Do not 1251 * parse characters at or after limit. 1252 * 1253 * Important: The character at pos must be a non-whitespace character 1254 * that is not the comment character. 1255 * 1256 * This method handles quoting, escaping, and whitespace removal. It 1257 * parses the end-of-rule character. It recognizes context and cursor 1258 * indicators. Once it does a lexical breakdown of the rule at pos, it 1259 * creates a rule object and adds it to our rule list. 1260 */ 1261 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { 1262 // Locate the left side, operator, and right side 1263 int32_t start = pos; 1264 UChar op = 0; 1265 int32_t i; 1266 1267 // Set up segments data 1268 segmentStandins.truncate(0); 1269 segmentObjects.removeAllElements(); 1270 1271 // Use pointers to automatics to make swapping possible. 1272 RuleHalf _left(*this), _right(*this); 1273 RuleHalf* left = &_left; 1274 RuleHalf* right = &_right; 1275 1276 undefinedVariableName.remove(); 1277 pos = left->parse(rule, pos, limit, status); 1278 if (U_FAILURE(status)) { 1279 return start; 1280 } 1281 1282 if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { 1283 return syntaxError(U_MISSING_OPERATOR, rule, start, status); 1284 } 1285 ++pos; 1286 1287 // Found an operator char. Check for forward-reverse operator. 1288 if (op == REVERSE_RULE_OP && 1289 (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { 1290 ++pos; 1291 op = FWDREV_RULE_OP; 1292 } 1293 1294 // Translate alternate op characters. 1295 switch (op) { 1296 case ALT_FORWARD_RULE_OP: 1297 op = FORWARD_RULE_OP; 1298 break; 1299 case ALT_REVERSE_RULE_OP: 1300 op = REVERSE_RULE_OP; 1301 break; 1302 case ALT_FWDREV_RULE_OP: 1303 op = FWDREV_RULE_OP; 1304 break; 1305 } 1306 1307 pos = right->parse(rule, pos, limit, status); 1308 if (U_FAILURE(status)) { 1309 return start; 1310 } 1311 1312 if (pos < limit) { 1313 if (rule.charAt(--pos) == END_OF_RULE) { 1314 ++pos; 1315 } else { 1316 // RuleHalf parser must have terminated at an operator 1317 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); 1318 } 1319 } 1320 1321 if (op == VARIABLE_DEF_OP) { 1322 // LHS is the name. RHS is a single character, either a literal 1323 // or a set (already parsed). If RHS is longer than one 1324 // character, it is either a multi-character string, or multiple 1325 // sets, or a mixture of chars and sets -- syntax error. 1326 1327 // We expect to see a single undefined variable (the one being 1328 // defined). 1329 if (undefinedVariableName.length() == 0) { 1330 // "Missing '$' or duplicate definition" 1331 return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); 1332 } 1333 if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { 1334 // "Malformed LHS" 1335 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); 1336 } 1337 if (left->anchorStart || left->anchorEnd || 1338 right->anchorStart || right->anchorEnd) { 1339 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); 1340 } 1341 // We allow anything on the right, including an empty string. 1342 UnicodeString* value = new UnicodeString(right->text); 1343 // NULL pointer check 1344 if (value == NULL) { 1345 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1346 } 1347 variableNames.put(undefinedVariableName, value, status); 1348 ++variableLimit; 1349 return pos; 1350 } 1351 1352 // If this is not a variable definition rule, we shouldn't have 1353 // any undefined variable names. 1354 if (undefinedVariableName.length() != 0) { 1355 return syntaxError(// "Undefined variable $" + undefinedVariableName, 1356 U_UNDEFINED_VARIABLE, 1357 rule, start, status); 1358 } 1359 1360 // Verify segments 1361 if (segmentStandins.length() > segmentObjects.size()) { 1362 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); 1363 } 1364 for (i=0; i<segmentStandins.length(); ++i) { 1365 if (segmentStandins.charAt(i) == 0) { 1366 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen 1367 } 1368 } 1369 for (i=0; i<segmentObjects.size(); ++i) { 1370 if (segmentObjects.elementAt(i) == NULL) { 1371 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen 1372 } 1373 } 1374 1375 // If the direction we want doesn't match the rule 1376 // direction, do nothing. 1377 if (op != FWDREV_RULE_OP && 1378 ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { 1379 return pos; 1380 } 1381 1382 // Transform the rule into a forward rule by swapping the 1383 // sides if necessary. 1384 if (direction == UTRANS_REVERSE) { 1385 left = &_right; 1386 right = &_left; 1387 } 1388 1389 // Remove non-applicable elements in forward-reverse 1390 // rules. Bidirectional rules ignore elements that do not 1391 // apply. 1392 if (op == FWDREV_RULE_OP) { 1393 right->removeContext(); 1394 left->cursor = -1; 1395 left->cursorOffset = 0; 1396 } 1397 1398 // Normalize context 1399 if (left->ante < 0) { 1400 left->ante = 0; 1401 } 1402 if (left->post < 0) { 1403 left->post = left->text.length(); 1404 } 1405 1406 // Context is only allowed on the input side. Cursors are only 1407 // allowed on the output side. Segment delimiters can only appear 1408 // on the left, and references on the right. Cursor offset 1409 // cannot appear without an explicit cursor. Cursor offset 1410 // cannot place the cursor outside the limits of the context. 1411 // Anchors are only allowed on the input side. 1412 if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || 1413 (right->cursorOffset != 0 && right->cursor < 0) || 1414 // - The following two checks were used to ensure that the 1415 // - the cursor offset stayed within the ante- or postcontext. 1416 // - However, with the addition of quantifiers, we have to 1417 // - allow arbitrary cursor offsets and do runtime checking. 1418 //(right->cursorOffset > (left->text.length() - left->post)) || 1419 //(-right->cursorOffset > left->ante) || 1420 right->anchorStart || right->anchorEnd || 1421 !left->isValidInput(*this) || !right->isValidOutput(*this) || 1422 left->ante > left->post) { 1423 1424 return syntaxError(U_MALFORMED_RULE, rule, start, status); 1425 } 1426 1427 // Flatten segment objects vector to an array 1428 UnicodeFunctor** segmentsArray = NULL; 1429 if (segmentObjects.size() > 0) { 1430 segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); 1431 // Null pointer check 1432 if (segmentsArray == NULL) { 1433 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1434 } 1435 segmentObjects.toArray((void**) segmentsArray); 1436 } 1437 TransliterationRule* temptr = new TransliterationRule( 1438 left->text, left->ante, left->post, 1439 right->text, right->cursor, right->cursorOffset, 1440 segmentsArray, 1441 segmentObjects.size(), 1442 left->anchorStart, left->anchorEnd, 1443 curData, 1444 status); 1445 //Null pointer check 1446 if (temptr == NULL) { 1447 uprv_free(segmentsArray); 1448 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); 1449 } 1450 1451 curData->ruleSet.addRule(temptr, status); 1452 1453 return pos; 1454 } 1455 1456 /** 1457 * Called by main parser upon syntax error. Search the rule string 1458 * for the probable end of the rule. Of course, if the error is that 1459 * the end of rule marker is missing, then the rule end will not be found. 1460 * In any case the rule start will be correctly reported. 1461 * @param msg error description 1462 * @param rule pattern string 1463 * @param start position of first character of current rule 1464 */ 1465 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, 1466 const UnicodeString& rule, 1467 int32_t pos, 1468 UErrorCode& status) 1469 { 1470 parseError.offset = pos; 1471 parseError.line = 0 ; /* we are not using line numbers */ 1472 1473 // for pre-context 1474 const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; 1475 int32_t start = uprv_max(pos - LEN, 0); 1476 int32_t stop = pos; 1477 1478 rule.extract(start,stop-start,parseError.preContext); 1479 //null terminate the buffer 1480 parseError.preContext[stop-start] = 0; 1481 1482 //for post-context 1483 start = pos; 1484 stop = uprv_min(pos + LEN, rule.length()); 1485 1486 rule.extract(start,stop-start,parseError.postContext); 1487 //null terminate the buffer 1488 parseError.postContext[stop-start]= 0; 1489 1490 status = (UErrorCode)parseErrorCode; 1491 return pos; 1492 1493 } 1494 1495 /** 1496 * Parse a UnicodeSet out, store it, and return the stand-in character 1497 * used to represent it. 1498 */ 1499 UChar TransliteratorParser::parseSet(const UnicodeString& rule, 1500 ParsePosition& pos, 1501 UErrorCode& status) { 1502 UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); 1503 // Null pointer check 1504 if (set == NULL) { 1505 status = U_MEMORY_ALLOCATION_ERROR; 1506 return (UChar)0x0000; // Return empty character with error. 1507 } 1508 set->compact(); 1509 return generateStandInFor(set, status); 1510 } 1511 1512 /** 1513 * Generate and return a stand-in for a new UnicodeFunctor. Store 1514 * the matcher (adopt it). 1515 */ 1516 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { 1517 // assert(obj != null); 1518 1519 // Look up previous stand-in, if any. This is a short list 1520 // (typical n is 0, 1, or 2); linear search is optimal. 1521 for (int32_t i=0; i<variablesVector.size(); ++i) { 1522 if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison 1523 return (UChar) (curData->variablesBase + i); 1524 } 1525 } 1526 1527 if (variableNext >= variableLimit) { 1528 delete adopted; 1529 status = U_VARIABLE_RANGE_EXHAUSTED; 1530 return 0; 1531 } 1532 variablesVector.addElement(adopted, status); 1533 return variableNext++; 1534 } 1535 1536 /** 1537 * Return the standin for segment seg (1-based). 1538 */ 1539 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { 1540 // Special character used to indicate an empty spot 1541 UChar empty = curData->variablesBase - 1; 1542 while (segmentStandins.length() < seg) { 1543 segmentStandins.append(empty); 1544 } 1545 UChar c = segmentStandins.charAt(seg-1); 1546 if (c == empty) { 1547 if (variableNext >= variableLimit) { 1548 status = U_VARIABLE_RANGE_EXHAUSTED; 1549 return 0; 1550 } 1551 c = variableNext++; 1552 // Set a placeholder in the master variables vector that will be 1553 // filled in later by setSegmentObject(). We know that we will get 1554 // called first because setSegmentObject() will call us. 1555 variablesVector.addElement((void*) NULL, status); 1556 segmentStandins.setCharAt(seg-1, c); 1557 } 1558 return c; 1559 } 1560 1561 /** 1562 * Set the object for segment seg (1-based). 1563 */ 1564 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { 1565 // Since we call parseSection() recursively, nested 1566 // segments will result in segment i+1 getting parsed 1567 // and stored before segment i; be careful with the 1568 // vector handling here. 1569 if (segmentObjects.size() < seg) { 1570 segmentObjects.setSize(seg, status); 1571 } 1572 int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; 1573 if (segmentObjects.elementAt(seg-1) != NULL || 1574 variablesVector.elementAt(index) != NULL) { 1575 // should never happen 1576 status = U_INTERNAL_TRANSLITERATOR_ERROR; 1577 return; 1578 } 1579 segmentObjects.setElementAt(adopted, seg-1); 1580 variablesVector.setElementAt(adopted, index); 1581 } 1582 1583 /** 1584 * Return the stand-in for the dot set. It is allocated the first 1585 * time and reused thereafter. 1586 */ 1587 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { 1588 if (dotStandIn == (UChar) -1) { 1589 UnicodeSet* tempus = new UnicodeSet(DOT_SET, status); 1590 // Null pointer check. 1591 if (tempus == NULL) { 1592 status = U_MEMORY_ALLOCATION_ERROR; 1593 return (UChar)0x0000; 1594 } 1595 dotStandIn = generateStandInFor(tempus, status); 1596 } 1597 return dotStandIn; 1598 } 1599 1600 /** 1601 * Append the value of the given variable name to the given 1602 * UnicodeString. 1603 */ 1604 void TransliteratorParser::appendVariableDef(const UnicodeString& name, 1605 UnicodeString& buf, 1606 UErrorCode& status) { 1607 const UnicodeString* s = (const UnicodeString*) variableNames.get(name); 1608 if (s == NULL) { 1609 // We allow one undefined variable so that variable definition 1610 // statements work. For the first undefined variable we return 1611 // the special placeholder variableLimit-1, and save the variable 1612 // name. 1613 if (undefinedVariableName.length() == 0) { 1614 undefinedVariableName = name; 1615 if (variableNext >= variableLimit) { 1616 // throw new RuntimeException("Private use variables exhausted"); 1617 status = U_ILLEGAL_ARGUMENT_ERROR; 1618 return; 1619 } 1620 buf.append((UChar) --variableLimit); 1621 } else { 1622 //throw new IllegalArgumentException("Undefined variable $" 1623 // + name); 1624 status = U_ILLEGAL_ARGUMENT_ERROR; 1625 return; 1626 } 1627 } else { 1628 buf.append(*s); 1629 } 1630 } 1631 1632 /** 1633 * Glue method to get around access restrictions in C++. 1634 */ 1635 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { 1636 return Transliterator::createBasicInstance(id, canonID); 1637 }*/ 1638 1639 U_NAMESPACE_END 1640 1641 U_CAPI int32_t 1642 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { 1643 U_NAMESPACE_USE 1644 1645 //const UChar *sourceStart = source; 1646 const UChar *targetStart = target; 1647 const UChar *sourceLimit = source+sourceLen; 1648 UChar *targetLimit = target+sourceLen; 1649 UChar32 c = 0; 1650 UBool quoted = FALSE; 1651 int32_t index; 1652 1653 uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); 1654 1655 /* read the rules into the buffer */ 1656 while (source < sourceLimit) 1657 { 1658 index=0; 1659 U16_NEXT_UNSAFE(source, index, c); 1660 source+=index; 1661 if(c == QUOTE) { 1662 quoted = (UBool)!quoted; 1663 } 1664 else if (!quoted) { 1665 if (c == RULE_COMMENT_CHAR) { 1666 /* skip comments and all preceding spaces */ 1667 while (targetStart < target && *(target - 1) == 0x0020) { 1668 target--; 1669 } 1670 do { 1671 c = *(source++); 1672 } 1673 while (c != CR && c != LF); 1674 } 1675 else if (c == ESCAPE) { 1676 UChar32 c2 = *source; 1677 if (c2 == CR || c2 == LF) { 1678 /* A backslash at the end of a line. */ 1679 /* Since we're stripping lines, ignore the backslash. */ 1680 source++; 1681 continue; 1682 } 1683 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ 1684 int32_t escapeOffset = 0; 1685 UnicodeString escapedStr(source, 5); 1686 c2 = escapedStr.unescapeAt(escapeOffset); 1687 1688 if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) 1689 { 1690 *status = U_PARSE_ERROR; 1691 return 0; 1692 } 1693 if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { 1694 /* It was escaped for a reason. Write what it was suppose to be. */ 1695 source+=5; 1696 c = c2; 1697 } 1698 } 1699 else if (c2 == QUOTE) { 1700 /* \' seen. Make sure we don't do anything when we see it again. */ 1701 quoted = (UBool)!quoted; 1702 } 1703 } 1704 } 1705 if (c == CR || c == LF) 1706 { 1707 /* ignore spaces carriage returns, and all leading spaces on the next line. 1708 * and line feed unless in the form \uXXXX 1709 */ 1710 quoted = FALSE; 1711 while (source < sourceLimit) { 1712 c = *(source); 1713 if (c != CR && c != LF && c != 0x0020) { 1714 break; 1715 } 1716 source++; 1717 } 1718 continue; 1719 } 1720 1721 /* Append UChar * after dissembling if c > 0xffff*/ 1722 index=0; 1723 U16_APPEND_UNSAFE(target, index, c); 1724 target+=index; 1725 } 1726 if (target < targetLimit) { 1727 *target = 0; 1728 } 1729 return (int32_t)(target-targetStart); 1730 } 1731 1732 #endif /* #if !UCONFIG_NO_TRANSLITERATION */ 1733