Home | History | Annotate | Download | only in pathops
      1 // Another approach is to start with the implicit form of one curve and solve
      2 // (seek implicit coefficients in QuadraticParameter.cpp
      3 // by substituting in the parametric form of the other.
      4 // The downside of this approach is that early rejects are difficult to come by.
      5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
      6 
      7 
      8 #include "SkDQuadImplicit.h"
      9 #include "SkIntersections.h"
     10 #include "SkPathOpsLine.h"
     11 #include "SkQuarticRoot.h"
     12 #include "SkTArray.h"
     13 #include "SkTSort.h"
     14 
     15 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
     16  * and given x = at^2 + bt + c  (the parameterized form)
     17  *           y = dt^2 + et + f
     18  * then
     19  * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
     20  */
     21 
     22 static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4],
     23         bool oneHint, bool flip, int firstCubicRoot) {
     24     SkDQuad flipped;
     25     const SkDQuad& q = flip ? (flipped = quad.flip()) : quad;
     26     double a, b, c;
     27     SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
     28     double d, e, f;
     29     SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
     30     const double t4 =     i.x2() *  a * a
     31                     +     i.xy() *  a * d
     32                     +     i.y2() *  d * d;
     33     const double t3 = 2 * i.x2() *  a * b
     34                     +     i.xy() * (a * e +     b * d)
     35                     + 2 * i.y2() *  d * e;
     36     const double t2 =     i.x2() * (b * b + 2 * a * c)
     37                     +     i.xy() * (c * d +     b * e + a * f)
     38                     +     i.y2() * (e * e + 2 * d * f)
     39                     +     i.x()  *  a
     40                     +     i.y()  *  d;
     41     const double t1 = 2 * i.x2() *  b * c
     42                     +     i.xy() * (c * e + b * f)
     43                     + 2 * i.y2() *  e * f
     44                     +     i.x()  *  b
     45                     +     i.y()  *  e;
     46     const double t0 =     i.x2() *  c * c
     47                     +     i.xy() *  c * f
     48                     +     i.y2() *  f * f
     49                     +     i.x()  *  c
     50                     +     i.y()  *  f
     51                     +     i.c();
     52     int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
     53     if (rootCount < 0) {
     54         rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
     55     }
     56     if (flip) {
     57         for (int index = 0; index < rootCount; ++index) {
     58             roots[index] = 1 - roots[index];
     59         }
     60     }
     61     return rootCount;
     62 }
     63 
     64 static int addValidRoots(const double roots[4], const int count, double valid[4]) {
     65     int result = 0;
     66     int index;
     67     for (index = 0; index < count; ++index) {
     68         if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
     69             continue;
     70         }
     71         double t = 1 - roots[index];
     72         if (approximately_less_than_zero(t)) {
     73             t = 0;
     74         } else if (approximately_greater_than_one(t)) {
     75             t = 1;
     76         }
     77         valid[result++] = t;
     78     }
     79     return result;
     80 }
     81 
     82 static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) {
     83 // the idea here is to see at minimum do a quick reject by rotating all points
     84 // to either side of the line formed by connecting the endpoints
     85 // if the opposite curves points are on the line or on the other side, the
     86 // curves at most intersect at the endpoints
     87     for (int oddMan = 0; oddMan < 3; ++oddMan) {
     88         const SkDPoint* endPt[2];
     89         for (int opp = 1; opp < 3; ++opp) {
     90             int end = oddMan ^ opp;  // choose a value not equal to oddMan
     91             if (3 == end) {  // and correct so that largest value is 1 or 2
     92                 end = opp;
     93             }
     94             endPt[opp - 1] = &q1[end];
     95         }
     96         double origX = endPt[0]->fX;
     97         double origY = endPt[0]->fY;
     98         double adj = endPt[1]->fX - origX;
     99         double opp = endPt[1]->fY - origY;
    100         double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
    101         if (approximately_zero(sign)) {
    102             goto tryNextHalfPlane;
    103         }
    104         for (int n = 0; n < 3; ++n) {
    105             double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
    106             if (test * sign > 0 && !precisely_zero(test)) {
    107                 goto tryNextHalfPlane;
    108             }
    109         }
    110         return true;
    111 tryNextHalfPlane:
    112         ;
    113     }
    114     return false;
    115 }
    116 
    117 // returns false if there's more than one intercept or the intercept doesn't match the point
    118 // returns true if the intercept was successfully added or if the
    119 // original quads need to be subdivided
    120 static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
    121                           SkIntersections* i, bool* subDivide) {
    122     double tMid = (tMin + tMax) / 2;
    123     SkDPoint mid = q2.ptAtT(tMid);
    124     SkDLine line;
    125     line[0] = line[1] = mid;
    126     SkDVector dxdy = q2.dxdyAtT(tMid);
    127     line[0] -= dxdy;
    128     line[1] += dxdy;
    129     SkIntersections rootTs;
    130     rootTs.allowNear(false);
    131     int roots = rootTs.intersect(q1, line);
    132     if (roots == 0) {
    133         if (subDivide) {
    134             *subDivide = true;
    135         }
    136         return true;
    137     }
    138     if (roots == 2) {
    139         return false;
    140     }
    141     SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
    142     if (!pt2.approximatelyEqual(mid)) {
    143         return false;
    144     }
    145     i->insertSwap(rootTs[0][0], tMid, pt2);
    146     return true;
    147 }
    148 
    149 static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
    150                             double t2s, double t2e, SkIntersections* i, bool* subDivide) {
    151     SkDQuad hull = q1.subDivide(t1s, t1e);
    152     SkDLine line = {{hull[2], hull[0]}};
    153     const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
    154     const size_t kTestCount = SK_ARRAY_COUNT(testLines);
    155     SkSTArray<kTestCount * 2, double, true> tsFound;
    156     for (size_t index = 0; index < kTestCount; ++index) {
    157         SkIntersections rootTs;
    158         rootTs.allowNear(false);
    159         int roots = rootTs.intersect(q2, *testLines[index]);
    160         for (int idx2 = 0; idx2 < roots; ++idx2) {
    161             double t = rootTs[0][idx2];
    162 #ifdef SK_DEBUG
    163             SkDPoint qPt = q2.ptAtT(t);
    164             SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
    165             SkASSERT(qPt.approximatelyPEqual(lPt));
    166 #endif
    167             if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
    168                 continue;
    169             }
    170             tsFound.push_back(rootTs[0][idx2]);
    171         }
    172     }
    173     int tCount = tsFound.count();
    174     if (tCount <= 0) {
    175         return true;
    176     }
    177     double tMin, tMax;
    178     if (tCount == 1) {
    179         tMin = tMax = tsFound[0];
    180     } else {
    181         SkASSERT(tCount > 1);
    182         SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
    183         tMin = tsFound[0];
    184         tMax = tsFound[tsFound.count() - 1];
    185     }
    186     SkDPoint end = q2.ptAtT(t2s);
    187     bool startInTriangle = hull.pointInHull(end);
    188     if (startInTriangle) {
    189         tMin = t2s;
    190     }
    191     end = q2.ptAtT(t2e);
    192     bool endInTriangle = hull.pointInHull(end);
    193     if (endInTriangle) {
    194         tMax = t2e;
    195     }
    196     int split = 0;
    197     SkDVector dxy1, dxy2;
    198     if (tMin != tMax || tCount > 2) {
    199         dxy2 = q2.dxdyAtT(tMin);
    200         for (int index = 1; index < tCount; ++index) {
    201             dxy1 = dxy2;
    202             dxy2 = q2.dxdyAtT(tsFound[index]);
    203             double dot = dxy1.dot(dxy2);
    204             if (dot < 0) {
    205                 split = index - 1;
    206                 break;
    207             }
    208         }
    209     }
    210     if (split == 0) {  // there's one point
    211         if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
    212             return true;
    213         }
    214         i->swap();
    215         return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
    216     }
    217     // At this point, we have two ranges of t values -- treat each separately at the split
    218     bool result;
    219     if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
    220         result = true;
    221     } else {
    222         i->swap();
    223         result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
    224     }
    225     if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
    226         result = true;
    227     } else {
    228         i->swap();
    229         result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
    230     }
    231     return result;
    232 }
    233 
    234 static double flat_measure(const SkDQuad& q) {
    235     SkDVector mid = q[1] - q[0];
    236     SkDVector dxy = q[2] - q[0];
    237     double length = dxy.length();  // OPTIMIZE: get rid of sqrt
    238     return fabs(mid.cross(dxy) / length);
    239 }
    240 
    241 // FIXME ? should this measure both and then use the quad that is the flattest as the line?
    242 static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
    243     double measure = flat_measure(q1);
    244     // OPTIMIZE: (get rid of sqrt) use approximately_zero
    245     if (!approximately_zero_sqrt(measure)) {
    246         return false;
    247     }
    248     return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
    249 }
    250 
    251 // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
    252 // avoid imprecision incurred with chopAt
    253 static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2,
    254         double s2, double e2, SkIntersections* i) {
    255     double m1 = flat_measure(*q1);
    256     double m2 = flat_measure(*q2);
    257     i->reset();
    258     const SkDQuad* rounder, *flatter;
    259     double sf, midf, ef, sr, er;
    260     if (m2 < m1) {
    261         rounder = q1;
    262         sr = s1;
    263         er = e1;
    264         flatter = q2;
    265         sf = s2;
    266         midf = (s2 + e2) / 2;
    267         ef = e2;
    268     } else {
    269         rounder = q2;
    270         sr = s2;
    271         er = e2;
    272         flatter = q1;
    273         sf = s1;
    274         midf = (s1 + e1) / 2;
    275         ef = e1;
    276     }
    277     bool subDivide = false;
    278     is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide);
    279     if (subDivide) {
    280         relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i);
    281         relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i);
    282     }
    283     if (m2 < m1) {
    284         i->swapPts();
    285     }
    286 }
    287 
    288 // each time through the loop, this computes values it had from the last loop
    289 // if i == j == 1, the center values are still good
    290 // otherwise, for i != 1 or j != 1, four of the values are still good
    291 // and if i == 1 ^ j == 1, an additional value is good
    292 static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
    293                           double* t2Seed, SkDPoint* pt) {
    294     double tStep = ROUGH_EPSILON;
    295     SkDPoint t1[3], t2[3];
    296     int calcMask = ~0;
    297     do {
    298         if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed);
    299         if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed);
    300         if (t1[1].approximatelyEqual(t2[1])) {
    301             *pt = t1[1];
    302     #if ONE_OFF_DEBUG
    303             SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
    304                     t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY);
    305     #endif
    306             return true;
    307         }
    308         if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(*t1Seed - tStep);
    309         if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(*t1Seed + tStep);
    310         if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(*t2Seed - tStep);
    311         if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(*t2Seed + tStep);
    312         double dist[3][3];
    313         // OPTIMIZE: using calcMask value permits skipping some distance calcuations
    314         //   if prior loop's results are moved to correct slot for reuse
    315         dist[1][1] = t1[1].distanceSquared(t2[1]);
    316         int best_i = 1, best_j = 1;
    317         for (int i = 0; i < 3; ++i) {
    318             for (int j = 0; j < 3; ++j) {
    319                 if (i == 1 && j == 1) {
    320                     continue;
    321                 }
    322                 dist[i][j] = t1[i].distanceSquared(t2[j]);
    323                 if (dist[best_i][best_j] > dist[i][j]) {
    324                     best_i = i;
    325                     best_j = j;
    326                 }
    327             }
    328         }
    329         if (best_i == 1 && best_j == 1) {
    330             tStep /= 2;
    331             if (tStep < FLT_EPSILON_HALF) {
    332                 break;
    333             }
    334             calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
    335             continue;
    336         }
    337         if (best_i == 0) {
    338             *t1Seed -= tStep;
    339             t1[2] = t1[1];
    340             t1[1] = t1[0];
    341             calcMask = 1 << 0;
    342         } else if (best_i == 2) {
    343             *t1Seed += tStep;
    344             t1[0] = t1[1];
    345             t1[1] = t1[2];
    346             calcMask = 1 << 2;
    347         } else {
    348             calcMask = 0;
    349         }
    350         if (best_j == 0) {
    351             *t2Seed -= tStep;
    352             t2[2] = t2[1];
    353             t2[1] = t2[0];
    354             calcMask |= 1 << 3;
    355         } else if (best_j == 2) {
    356             *t2Seed += tStep;
    357             t2[0] = t2[1];
    358             t2[1] = t2[2];
    359             calcMask |= 1 << 5;
    360         }
    361     } while (true);
    362 #if ONE_OFF_DEBUG
    363     SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
    364         t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
    365 #endif
    366     return false;
    367 }
    368 
    369 static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
    370         const SkIntersections& orig, bool swap, SkIntersections* i) {
    371     if (orig.used() == 1 && orig[!swap][0] == testT) {
    372         return;
    373     }
    374     if (orig.used() == 2 && orig[!swap][1] == testT) {
    375         return;
    376     }
    377     SkDLine tmpLine;
    378     int testTIndex = testT << 1;
    379     tmpLine[0] = tmpLine[1] = q2[testTIndex];
    380     tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
    381     tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
    382     SkIntersections impTs;
    383     impTs.intersectRay(q1, tmpLine);
    384     for (int index = 0; index < impTs.used(); ++index) {
    385         SkDPoint realPt = impTs.pt(index);
    386         if (!tmpLine[0].approximatelyEqual(realPt)) {
    387             continue;
    388         }
    389         if (swap) {
    390             i->insert(testT, impTs[0][index], tmpLine[0]);
    391         } else {
    392             i->insert(impTs[0][index], testT, tmpLine[0]);
    393         }
    394     }
    395 }
    396 
    397 int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
    398     fMax = 4;
    399     // if the quads share an end point, check to see if they overlap
    400     for (int i1 = 0; i1 < 3; i1 += 2) {
    401         for (int i2 = 0; i2 < 3; i2 += 2) {
    402             if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) {
    403                 insert(i1 >> 1, i2 >> 1, q1[i1]);
    404             }
    405         }
    406     }
    407     SkASSERT(fUsed < 3);
    408     if (only_end_pts_in_common(q1, q2)) {
    409         return fUsed;
    410     }
    411     if (only_end_pts_in_common(q2, q1)) {
    412         return fUsed;
    413     }
    414     // see if either quad is really a line
    415     // FIXME: figure out why reduce step didn't find this earlier
    416     if (is_linear(q1, q2, this)) {
    417         return fUsed;
    418     }
    419     SkIntersections swapped;
    420     swapped.setMax(fMax);
    421     if (is_linear(q2, q1, &swapped)) {
    422         swapped.swapPts();
    423         set(swapped);
    424         return fUsed;
    425     }
    426     SkIntersections copyI(*this);
    427     lookNearEnd(q1, q2, 0, *this, false, &copyI);
    428     lookNearEnd(q1, q2, 1, *this, false, &copyI);
    429     lookNearEnd(q2, q1, 0, *this, true, &copyI);
    430     lookNearEnd(q2, q1, 1, *this, true, &copyI);
    431     int innerEqual = 0;
    432     if (copyI.fUsed >= 2) {
    433         SkASSERT(copyI.fUsed <= 4);
    434         double width = copyI[0][1] - copyI[0][0];
    435         int midEnd = 1;
    436         for (int index = 2; index < copyI.fUsed; ++index) {
    437             double testWidth = copyI[0][index] - copyI[0][index - 1];
    438             if (testWidth <= width) {
    439                 continue;
    440             }
    441             midEnd = index;
    442         }
    443         for (int index = 0; index < 2; ++index) {
    444             double testT = (copyI[0][midEnd] * (index + 1)
    445                     + copyI[0][midEnd - 1] * (2 - index)) / 3;
    446             SkDPoint testPt1 = q1.ptAtT(testT);
    447             testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3;
    448             SkDPoint testPt2 = q2.ptAtT(testT);
    449             innerEqual += testPt1.approximatelyEqual(testPt2);
    450         }
    451     }
    452     bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2;
    453     if (expectCoincident) {
    454         reset();
    455         insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]);
    456         int last = copyI.fUsed - 1;
    457         insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]);
    458         return fUsed;
    459     }
    460     SkDQuadImplicit i1(q1);
    461     SkDQuadImplicit i2(q2);
    462     int index;
    463     bool flip1 = q1[2] == q2[0];
    464     bool flip2 = q1[0] == q2[2];
    465     bool useCubic = q1[0] == q2[0];
    466     double roots1[4];
    467     int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0);
    468     // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
    469     double roots1Copy[4];
    470     int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
    471     SkDPoint pts1[4];
    472     for (index = 0; index < r1Count; ++index) {
    473         pts1[index] = q1.ptAtT(roots1Copy[index]);
    474     }
    475     double roots2[4];
    476     int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0);
    477     double roots2Copy[4];
    478     int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
    479     SkDPoint pts2[4];
    480     for (index = 0; index < r2Count; ++index) {
    481         pts2[index] = q2.ptAtT(roots2Copy[index]);
    482     }
    483     if (r1Count == r2Count && r1Count <= 1) {
    484         if (r1Count == 1 && used() == 0) {
    485             if (pts1[0].approximatelyEqual(pts2[0])) {
    486                 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
    487             } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
    488                 // experiment: try to find intersection by chasing t
    489                 if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
    490                     insert(roots1Copy[0], roots2Copy[0], pts1[0]);
    491                 }
    492             }
    493         }
    494         return fUsed;
    495     }
    496     int closest[4];
    497     double dist[4];
    498     bool foundSomething = false;
    499     for (index = 0; index < r1Count; ++index) {
    500         dist[index] = DBL_MAX;
    501         closest[index] = -1;
    502         for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
    503             if (!pts2[ndex2].approximatelyEqual(pts1[index])) {
    504                 continue;
    505             }
    506             double dx = pts2[ndex2].fX - pts1[index].fX;
    507             double dy = pts2[ndex2].fY - pts1[index].fY;
    508             double distance = dx * dx + dy * dy;
    509             if (dist[index] <= distance) {
    510                 continue;
    511             }
    512             for (int outer = 0; outer < index; ++outer) {
    513                 if (closest[outer] != ndex2) {
    514                     continue;
    515                 }
    516                 if (dist[outer] < distance) {
    517                     goto next;
    518                 }
    519                 closest[outer] = -1;
    520             }
    521             dist[index] = distance;
    522             closest[index] = ndex2;
    523             foundSomething = true;
    524         next:
    525             ;
    526         }
    527     }
    528     if (r1Count && r2Count && !foundSomething) {
    529         relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this);
    530         return fUsed;
    531     }
    532     int used = 0;
    533     do {
    534         double lowest = DBL_MAX;
    535         int lowestIndex = -1;
    536         for (index = 0; index < r1Count; ++index) {
    537             if (closest[index] < 0) {
    538                 continue;
    539             }
    540             if (roots1Copy[index] < lowest) {
    541                 lowestIndex = index;
    542                 lowest = roots1Copy[index];
    543             }
    544         }
    545         if (lowestIndex < 0) {
    546             break;
    547         }
    548         insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
    549                 pts1[lowestIndex]);
    550         closest[lowestIndex] = -1;
    551     } while (++used < r1Count);
    552     return fUsed;
    553 }
    554