1 /* 2 ** 2008 February 16 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an object that represents a fixed-length 13 ** bitmap. Bits are numbered starting with 1. 14 ** 15 ** A bitmap is used to record which pages of a database file have been 16 ** journalled during a transaction, or which pages have the "dont-write" 17 ** property. Usually only a few pages are meet either condition. 18 ** So the bitmap is usually sparse and has low cardinality. 19 ** But sometimes (for example when during a DROP of a large table) most 20 ** or all of the pages in a database can get journalled. In those cases, 21 ** the bitmap becomes dense with high cardinality. The algorithm needs 22 ** to handle both cases well. 23 ** 24 ** The size of the bitmap is fixed when the object is created. 25 ** 26 ** All bits are clear when the bitmap is created. Individual bits 27 ** may be set or cleared one at a time. 28 ** 29 ** Test operations are about 100 times more common that set operations. 30 ** Clear operations are exceedingly rare. There are usually between 31 ** 5 and 500 set operations per Bitvec object, though the number of sets can 32 ** sometimes grow into tens of thousands or larger. The size of the 33 ** Bitvec object is the number of pages in the database file at the 34 ** start of a transaction, and is thus usually less than a few thousand, 35 ** but can be as large as 2 billion for a really big database. 36 */ 37 #include "sqliteInt.h" 38 39 /* Size of the Bitvec structure in bytes. */ 40 #define BITVEC_SZ 512 41 42 /* Round the union size down to the nearest pointer boundary, since that's how 43 ** it will be aligned within the Bitvec struct. */ 44 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) 45 46 /* Type of the array "element" for the bitmap representation. 47 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 48 ** Setting this to the "natural word" size of your CPU may improve 49 ** performance. */ 50 #define BITVEC_TELEM u8 51 /* Size, in bits, of the bitmap element. */ 52 #define BITVEC_SZELEM 8 53 /* Number of elements in a bitmap array. */ 54 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) 55 /* Number of bits in the bitmap array. */ 56 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) 57 58 /* Number of u32 values in hash table. */ 59 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) 60 /* Maximum number of entries in hash table before 61 ** sub-dividing and re-hashing. */ 62 #define BITVEC_MXHASH (BITVEC_NINT/2) 63 /* Hashing function for the aHash representation. 64 ** Empirical testing showed that the *37 multiplier 65 ** (an arbitrary prime)in the hash function provided 66 ** no fewer collisions than the no-op *1. */ 67 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) 68 69 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) 70 71 72 /* 73 ** A bitmap is an instance of the following structure. 74 ** 75 ** This bitmap records the existance of zero or more bits 76 ** with values between 1 and iSize, inclusive. 77 ** 78 ** There are three possible representations of the bitmap. 79 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight 80 ** bitmap. The least significant bit is bit 1. 81 ** 82 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is 83 ** a hash table that will hold up to BITVEC_MXHASH distinct values. 84 ** 85 ** Otherwise, the value i is redirected into one of BITVEC_NPTR 86 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap 87 ** handles up to iDivisor separate values of i. apSub[0] holds 88 ** values between 1 and iDivisor. apSub[1] holds values between 89 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between 90 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized 91 ** to hold deal with values between 1 and iDivisor. 92 */ 93 struct Bitvec { 94 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ 95 u32 nSet; /* Number of bits that are set - only valid for aHash 96 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, 97 ** this would be 125. */ 98 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ 99 /* Should >=0 for apSub element. */ 100 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ 101 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ 102 union { 103 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ 104 u32 aHash[BITVEC_NINT]; /* Hash table representation */ 105 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ 106 } u; 107 }; 108 109 /* 110 ** Create a new bitmap object able to handle bits between 0 and iSize, 111 ** inclusive. Return a pointer to the new object. Return NULL if 112 ** malloc fails. 113 */ 114 Bitvec *sqlite3BitvecCreate(u32 iSize){ 115 Bitvec *p; 116 assert( sizeof(*p)==BITVEC_SZ ); 117 p = sqlite3MallocZero( sizeof(*p) ); 118 if( p ){ 119 p->iSize = iSize; 120 } 121 return p; 122 } 123 124 /* 125 ** Check to see if the i-th bit is set. Return true or false. 126 ** If p is NULL (if the bitmap has not been created) or if 127 ** i is out of range, then return false. 128 */ 129 int sqlite3BitvecTest(Bitvec *p, u32 i){ 130 if( p==0 ) return 0; 131 if( i>p->iSize || i==0 ) return 0; 132 i--; 133 while( p->iDivisor ){ 134 u32 bin = i/p->iDivisor; 135 i = i%p->iDivisor; 136 p = p->u.apSub[bin]; 137 if (!p) { 138 return 0; 139 } 140 } 141 if( p->iSize<=BITVEC_NBIT ){ 142 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; 143 } else{ 144 u32 h = BITVEC_HASH(i++); 145 while( p->u.aHash[h] ){ 146 if( p->u.aHash[h]==i ) return 1; 147 h = (h+1) % BITVEC_NINT; 148 } 149 return 0; 150 } 151 } 152 153 /* 154 ** Set the i-th bit. Return 0 on success and an error code if 155 ** anything goes wrong. 156 ** 157 ** This routine might cause sub-bitmaps to be allocated. Failing 158 ** to get the memory needed to hold the sub-bitmap is the only 159 ** that can go wrong with an insert, assuming p and i are valid. 160 ** 161 ** The calling function must ensure that p is a valid Bitvec object 162 ** and that the value for "i" is within range of the Bitvec object. 163 ** Otherwise the behavior is undefined. 164 */ 165 int sqlite3BitvecSet(Bitvec *p, u32 i){ 166 u32 h; 167 if( p==0 ) return SQLITE_OK; 168 assert( i>0 ); 169 assert( i<=p->iSize ); 170 i--; 171 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { 172 u32 bin = i/p->iDivisor; 173 i = i%p->iDivisor; 174 if( p->u.apSub[bin]==0 ){ 175 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); 176 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; 177 } 178 p = p->u.apSub[bin]; 179 } 180 if( p->iSize<=BITVEC_NBIT ){ 181 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); 182 return SQLITE_OK; 183 } 184 h = BITVEC_HASH(i++); 185 /* if there wasn't a hash collision, and this doesn't */ 186 /* completely fill the hash, then just add it without */ 187 /* worring about sub-dividing and re-hashing. */ 188 if( !p->u.aHash[h] ){ 189 if (p->nSet<(BITVEC_NINT-1)) { 190 goto bitvec_set_end; 191 } else { 192 goto bitvec_set_rehash; 193 } 194 } 195 /* there was a collision, check to see if it's already */ 196 /* in hash, if not, try to find a spot for it */ 197 do { 198 if( p->u.aHash[h]==i ) return SQLITE_OK; 199 h++; 200 if( h>=BITVEC_NINT ) h = 0; 201 } while( p->u.aHash[h] ); 202 /* we didn't find it in the hash. h points to the first */ 203 /* available free spot. check to see if this is going to */ 204 /* make our hash too "full". */ 205 bitvec_set_rehash: 206 if( p->nSet>=BITVEC_MXHASH ){ 207 unsigned int j; 208 int rc; 209 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); 210 if( aiValues==0 ){ 211 return SQLITE_NOMEM; 212 }else{ 213 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 214 memset(p->u.apSub, 0, sizeof(p->u.apSub)); 215 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; 216 rc = sqlite3BitvecSet(p, i); 217 for(j=0; j<BITVEC_NINT; j++){ 218 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); 219 } 220 sqlite3StackFree(0, aiValues); 221 return rc; 222 } 223 } 224 bitvec_set_end: 225 p->nSet++; 226 p->u.aHash[h] = i; 227 return SQLITE_OK; 228 } 229 230 /* 231 ** Clear the i-th bit. 232 ** 233 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage 234 ** that BitvecClear can use to rebuilt its hash table. 235 */ 236 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ 237 if( p==0 ) return; 238 assert( i>0 ); 239 i--; 240 while( p->iDivisor ){ 241 u32 bin = i/p->iDivisor; 242 i = i%p->iDivisor; 243 p = p->u.apSub[bin]; 244 if (!p) { 245 return; 246 } 247 } 248 if( p->iSize<=BITVEC_NBIT ){ 249 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); 250 }else{ 251 unsigned int j; 252 u32 *aiValues = pBuf; 253 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 254 memset(p->u.aHash, 0, sizeof(p->u.aHash)); 255 p->nSet = 0; 256 for(j=0; j<BITVEC_NINT; j++){ 257 if( aiValues[j] && aiValues[j]!=(i+1) ){ 258 u32 h = BITVEC_HASH(aiValues[j]-1); 259 p->nSet++; 260 while( p->u.aHash[h] ){ 261 h++; 262 if( h>=BITVEC_NINT ) h = 0; 263 } 264 p->u.aHash[h] = aiValues[j]; 265 } 266 } 267 } 268 } 269 270 /* 271 ** Destroy a bitmap object. Reclaim all memory used. 272 */ 273 void sqlite3BitvecDestroy(Bitvec *p){ 274 if( p==0 ) return; 275 if( p->iDivisor ){ 276 unsigned int i; 277 for(i=0; i<BITVEC_NPTR; i++){ 278 sqlite3BitvecDestroy(p->u.apSub[i]); 279 } 280 } 281 sqlite3_free(p); 282 } 283 284 /* 285 ** Return the value of the iSize parameter specified when Bitvec *p 286 ** was created. 287 */ 288 u32 sqlite3BitvecSize(Bitvec *p){ 289 return p->iSize; 290 } 291 292 #ifndef SQLITE_OMIT_BUILTIN_TEST 293 /* 294 ** Let V[] be an array of unsigned characters sufficient to hold 295 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. 296 ** Then the following macros can be used to set, clear, or test 297 ** individual bits within V. 298 */ 299 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) 300 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) 301 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 302 303 /* 304 ** This routine runs an extensive test of the Bitvec code. 305 ** 306 ** The input is an array of integers that acts as a program 307 ** to test the Bitvec. The integers are opcodes followed 308 ** by 0, 1, or 3 operands, depending on the opcode. Another 309 ** opcode follows immediately after the last operand. 310 ** 311 ** There are 6 opcodes numbered from 0 through 5. 0 is the 312 ** "halt" opcode and causes the test to end. 313 ** 314 ** 0 Halt and return the number of errors 315 ** 1 N S X Set N bits beginning with S and incrementing by X 316 ** 2 N S X Clear N bits beginning with S and incrementing by X 317 ** 3 N Set N randomly chosen bits 318 ** 4 N Clear N randomly chosen bits 319 ** 5 N S X Set N bits from S increment X in array only, not in bitvec 320 ** 321 ** The opcodes 1 through 4 perform set and clear operations are performed 322 ** on both a Bitvec object and on a linear array of bits obtained from malloc. 323 ** Opcode 5 works on the linear array only, not on the Bitvec. 324 ** Opcode 5 is used to deliberately induce a fault in order to 325 ** confirm that error detection works. 326 ** 327 ** At the conclusion of the test the linear array is compared 328 ** against the Bitvec object. If there are any differences, 329 ** an error is returned. If they are the same, zero is returned. 330 ** 331 ** If a memory allocation error occurs, return -1. 332 */ 333 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ 334 Bitvec *pBitvec = 0; 335 unsigned char *pV = 0; 336 int rc = -1; 337 int i, nx, pc, op; 338 void *pTmpSpace; 339 340 /* Allocate the Bitvec to be tested and a linear array of 341 ** bits to act as the reference */ 342 pBitvec = sqlite3BitvecCreate( sz ); 343 pV = sqlite3_malloc( (sz+7)/8 + 1 ); 344 pTmpSpace = sqlite3_malloc(BITVEC_SZ); 345 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; 346 memset(pV, 0, (sz+7)/8 + 1); 347 348 /* NULL pBitvec tests */ 349 sqlite3BitvecSet(0, 1); 350 sqlite3BitvecClear(0, 1, pTmpSpace); 351 352 /* Run the program */ 353 pc = 0; 354 while( (op = aOp[pc])!=0 ){ 355 switch( op ){ 356 case 1: 357 case 2: 358 case 5: { 359 nx = 4; 360 i = aOp[pc+2] - 1; 361 aOp[pc+2] += aOp[pc+3]; 362 break; 363 } 364 case 3: 365 case 4: 366 default: { 367 nx = 2; 368 sqlite3_randomness(sizeof(i), &i); 369 break; 370 } 371 } 372 if( (--aOp[pc+1]) > 0 ) nx = 0; 373 pc += nx; 374 i = (i & 0x7fffffff)%sz; 375 if( (op & 1)!=0 ){ 376 SETBIT(pV, (i+1)); 377 if( op!=5 ){ 378 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; 379 } 380 }else{ 381 CLEARBIT(pV, (i+1)); 382 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); 383 } 384 } 385 386 /* Test to make sure the linear array exactly matches the 387 ** Bitvec object. Start with the assumption that they do 388 ** match (rc==0). Change rc to non-zero if a discrepancy 389 ** is found. 390 */ 391 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) 392 + sqlite3BitvecTest(pBitvec, 0) 393 + (sqlite3BitvecSize(pBitvec) - sz); 394 for(i=1; i<=sz; i++){ 395 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ 396 rc = i; 397 break; 398 } 399 } 400 401 /* Free allocated structure */ 402 bitvec_end: 403 sqlite3_free(pTmpSpace); 404 sqlite3_free(pV); 405 sqlite3BitvecDestroy(pBitvec); 406 return rc; 407 } 408 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 409