1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as Julian Day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implemention requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the Julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBM 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** On recent Windows platforms, the localtime_s() function is available 55 ** as part of the "Secure CRT". It is essentially equivalent to 56 ** localtime_r() available under most POSIX platforms, except that the 57 ** order of the parameters is reversed. 58 ** 59 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 60 ** 61 ** If the user has not indicated to use localtime_r() or localtime_s() 62 ** already, check for an MSVC build environment that provides 63 ** localtime_s(). 64 */ 65 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ 66 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 67 #define HAVE_LOCALTIME_S 1 68 #endif 69 70 /* 71 ** A structure for holding a single date and time. 72 */ 73 typedef struct DateTime DateTime; 74 struct DateTime { 75 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 76 int Y, M, D; /* Year, month, and day */ 77 int h, m; /* Hour and minutes */ 78 int tz; /* Timezone offset in minutes */ 79 double s; /* Seconds */ 80 char validYMD; /* True (1) if Y,M,D are valid */ 81 char validHMS; /* True (1) if h,m,s are valid */ 82 char validJD; /* True (1) if iJD is valid */ 83 char validTZ; /* True (1) if tz is valid */ 84 }; 85 86 87 /* 88 ** Convert zDate into one or more integers. Additional arguments 89 ** come in groups of 5 as follows: 90 ** 91 ** N number of digits in the integer 92 ** min minimum allowed value of the integer 93 ** max maximum allowed value of the integer 94 ** nextC first character after the integer 95 ** pVal where to write the integers value. 96 ** 97 ** Conversions continue until one with nextC==0 is encountered. 98 ** The function returns the number of successful conversions. 99 */ 100 static int getDigits(const char *zDate, ...){ 101 va_list ap; 102 int val; 103 int N; 104 int min; 105 int max; 106 int nextC; 107 int *pVal; 108 int cnt = 0; 109 va_start(ap, zDate); 110 do{ 111 N = va_arg(ap, int); 112 min = va_arg(ap, int); 113 max = va_arg(ap, int); 114 nextC = va_arg(ap, int); 115 pVal = va_arg(ap, int*); 116 val = 0; 117 while( N-- ){ 118 if( !sqlite3Isdigit(*zDate) ){ 119 goto end_getDigits; 120 } 121 val = val*10 + *zDate - '0'; 122 zDate++; 123 } 124 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ 125 goto end_getDigits; 126 } 127 *pVal = val; 128 zDate++; 129 cnt++; 130 }while( nextC ); 131 end_getDigits: 132 va_end(ap); 133 return cnt; 134 } 135 136 /* 137 ** Parse a timezone extension on the end of a date-time. 138 ** The extension is of the form: 139 ** 140 ** (+/-)HH:MM 141 ** 142 ** Or the "zulu" notation: 143 ** 144 ** Z 145 ** 146 ** If the parse is successful, write the number of minutes 147 ** of change in p->tz and return 0. If a parser error occurs, 148 ** return non-zero. 149 ** 150 ** A missing specifier is not considered an error. 151 */ 152 static int parseTimezone(const char *zDate, DateTime *p){ 153 int sgn = 0; 154 int nHr, nMn; 155 int c; 156 while( sqlite3Isspace(*zDate) ){ zDate++; } 157 p->tz = 0; 158 c = *zDate; 159 if( c=='-' ){ 160 sgn = -1; 161 }else if( c=='+' ){ 162 sgn = +1; 163 }else if( c=='Z' || c=='z' ){ 164 zDate++; 165 goto zulu_time; 166 }else{ 167 return c!=0; 168 } 169 zDate++; 170 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ 171 return 1; 172 } 173 zDate += 5; 174 p->tz = sgn*(nMn + nHr*60); 175 zulu_time: 176 while( sqlite3Isspace(*zDate) ){ zDate++; } 177 return *zDate!=0; 178 } 179 180 /* 181 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 182 ** The HH, MM, and SS must each be exactly 2 digits. The 183 ** fractional seconds FFFF can be one or more digits. 184 ** 185 ** Return 1 if there is a parsing error and 0 on success. 186 */ 187 static int parseHhMmSs(const char *zDate, DateTime *p){ 188 int h, m, s; 189 double ms = 0.0; 190 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ 191 return 1; 192 } 193 zDate += 5; 194 if( *zDate==':' ){ 195 zDate++; 196 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ 197 return 1; 198 } 199 zDate += 2; 200 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 201 double rScale = 1.0; 202 zDate++; 203 while( sqlite3Isdigit(*zDate) ){ 204 ms = ms*10.0 + *zDate - '0'; 205 rScale *= 10.0; 206 zDate++; 207 } 208 ms /= rScale; 209 } 210 }else{ 211 s = 0; 212 } 213 p->validJD = 0; 214 p->validHMS = 1; 215 p->h = h; 216 p->m = m; 217 p->s = s + ms; 218 if( parseTimezone(zDate, p) ) return 1; 219 p->validTZ = (p->tz!=0)?1:0; 220 return 0; 221 } 222 223 /* 224 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 225 ** that the YYYY-MM-DD is according to the Gregorian calendar. 226 ** 227 ** Reference: Meeus page 61 228 */ 229 static void computeJD(DateTime *p){ 230 int Y, M, D, A, B, X1, X2; 231 232 if( p->validJD ) return; 233 if( p->validYMD ){ 234 Y = p->Y; 235 M = p->M; 236 D = p->D; 237 }else{ 238 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 239 M = 1; 240 D = 1; 241 } 242 if( M<=2 ){ 243 Y--; 244 M += 12; 245 } 246 A = Y/100; 247 B = 2 - A + (A/4); 248 X1 = 36525*(Y+4716)/100; 249 X2 = 306001*(M+1)/10000; 250 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 251 p->validJD = 1; 252 if( p->validHMS ){ 253 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 254 if( p->validTZ ){ 255 p->iJD -= p->tz*60000; 256 p->validYMD = 0; 257 p->validHMS = 0; 258 p->validTZ = 0; 259 } 260 } 261 } 262 263 /* 264 ** Parse dates of the form 265 ** 266 ** YYYY-MM-DD HH:MM:SS.FFF 267 ** YYYY-MM-DD HH:MM:SS 268 ** YYYY-MM-DD HH:MM 269 ** YYYY-MM-DD 270 ** 271 ** Write the result into the DateTime structure and return 0 272 ** on success and 1 if the input string is not a well-formed 273 ** date. 274 */ 275 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 276 int Y, M, D, neg; 277 278 if( zDate[0]=='-' ){ 279 zDate++; 280 neg = 1; 281 }else{ 282 neg = 0; 283 } 284 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ 285 return 1; 286 } 287 zDate += 10; 288 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 289 if( parseHhMmSs(zDate, p)==0 ){ 290 /* We got the time */ 291 }else if( *zDate==0 ){ 292 p->validHMS = 0; 293 }else{ 294 return 1; 295 } 296 p->validJD = 0; 297 p->validYMD = 1; 298 p->Y = neg ? -Y : Y; 299 p->M = M; 300 p->D = D; 301 if( p->validTZ ){ 302 computeJD(p); 303 } 304 return 0; 305 } 306 307 /* 308 ** Set the time to the current time reported by the VFS 309 */ 310 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 311 sqlite3 *db = sqlite3_context_db_handle(context); 312 sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD); 313 p->validJD = 1; 314 } 315 316 /* 317 ** Attempt to parse the given string into a Julian Day Number. Return 318 ** the number of errors. 319 ** 320 ** The following are acceptable forms for the input string: 321 ** 322 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 323 ** DDDD.DD 324 ** now 325 ** 326 ** In the first form, the +/-HH:MM is always optional. The fractional 327 ** seconds extension (the ".FFF") is optional. The seconds portion 328 ** (":SS.FFF") is option. The year and date can be omitted as long 329 ** as there is a time string. The time string can be omitted as long 330 ** as there is a year and date. 331 */ 332 static int parseDateOrTime( 333 sqlite3_context *context, 334 const char *zDate, 335 DateTime *p 336 ){ 337 double r; 338 if( parseYyyyMmDd(zDate,p)==0 ){ 339 return 0; 340 }else if( parseHhMmSs(zDate, p)==0 ){ 341 return 0; 342 }else if( sqlite3StrICmp(zDate,"now")==0){ 343 setDateTimeToCurrent(context, p); 344 return 0; 345 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ 346 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 347 p->validJD = 1; 348 return 0; 349 } 350 return 1; 351 } 352 353 /* 354 ** Compute the Year, Month, and Day from the julian day number. 355 */ 356 static void computeYMD(DateTime *p){ 357 int Z, A, B, C, D, E, X1; 358 if( p->validYMD ) return; 359 if( !p->validJD ){ 360 p->Y = 2000; 361 p->M = 1; 362 p->D = 1; 363 }else{ 364 Z = (int)((p->iJD + 43200000)/86400000); 365 A = (int)((Z - 1867216.25)/36524.25); 366 A = Z + 1 + A - (A/4); 367 B = A + 1524; 368 C = (int)((B - 122.1)/365.25); 369 D = (36525*C)/100; 370 E = (int)((B-D)/30.6001); 371 X1 = (int)(30.6001*E); 372 p->D = B - D - X1; 373 p->M = E<14 ? E-1 : E-13; 374 p->Y = p->M>2 ? C - 4716 : C - 4715; 375 } 376 p->validYMD = 1; 377 } 378 379 /* 380 ** Compute the Hour, Minute, and Seconds from the julian day number. 381 */ 382 static void computeHMS(DateTime *p){ 383 int s; 384 if( p->validHMS ) return; 385 computeJD(p); 386 s = (int)((p->iJD + 43200000) % 86400000); 387 p->s = s/1000.0; 388 s = (int)p->s; 389 p->s -= s; 390 p->h = s/3600; 391 s -= p->h*3600; 392 p->m = s/60; 393 p->s += s - p->m*60; 394 p->validHMS = 1; 395 } 396 397 /* 398 ** Compute both YMD and HMS 399 */ 400 static void computeYMD_HMS(DateTime *p){ 401 computeYMD(p); 402 computeHMS(p); 403 } 404 405 /* 406 ** Clear the YMD and HMS and the TZ 407 */ 408 static void clearYMD_HMS_TZ(DateTime *p){ 409 p->validYMD = 0; 410 p->validHMS = 0; 411 p->validTZ = 0; 412 } 413 414 #ifndef SQLITE_OMIT_LOCALTIME 415 /* 416 ** Compute the difference (in milliseconds) 417 ** between localtime and UTC (a.k.a. GMT) 418 ** for the time value p where p is in UTC. 419 */ 420 static sqlite3_int64 localtimeOffset(DateTime *p){ 421 DateTime x, y; 422 time_t t; 423 x = *p; 424 computeYMD_HMS(&x); 425 if( x.Y<1971 || x.Y>=2038 ){ 426 x.Y = 2000; 427 x.M = 1; 428 x.D = 1; 429 x.h = 0; 430 x.m = 0; 431 x.s = 0.0; 432 } else { 433 int s = (int)(x.s + 0.5); 434 x.s = s; 435 } 436 x.tz = 0; 437 x.validJD = 0; 438 computeJD(&x); 439 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 440 #ifdef HAVE_LOCALTIME_R 441 { 442 struct tm sLocal; 443 localtime_r(&t, &sLocal); 444 y.Y = sLocal.tm_year + 1900; 445 y.M = sLocal.tm_mon + 1; 446 y.D = sLocal.tm_mday; 447 y.h = sLocal.tm_hour; 448 y.m = sLocal.tm_min; 449 y.s = sLocal.tm_sec; 450 } 451 #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S 452 { 453 struct tm sLocal; 454 localtime_s(&sLocal, &t); 455 y.Y = sLocal.tm_year + 1900; 456 y.M = sLocal.tm_mon + 1; 457 y.D = sLocal.tm_mday; 458 y.h = sLocal.tm_hour; 459 y.m = sLocal.tm_min; 460 y.s = sLocal.tm_sec; 461 } 462 #else 463 { 464 struct tm *pTm; 465 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 466 pTm = localtime(&t); 467 y.Y = pTm->tm_year + 1900; 468 y.M = pTm->tm_mon + 1; 469 y.D = pTm->tm_mday; 470 y.h = pTm->tm_hour; 471 y.m = pTm->tm_min; 472 y.s = pTm->tm_sec; 473 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 474 } 475 #endif 476 y.validYMD = 1; 477 y.validHMS = 1; 478 y.validJD = 0; 479 y.validTZ = 0; 480 computeJD(&y); 481 return y.iJD - x.iJD; 482 } 483 #endif /* SQLITE_OMIT_LOCALTIME */ 484 485 /* 486 ** Process a modifier to a date-time stamp. The modifiers are 487 ** as follows: 488 ** 489 ** NNN days 490 ** NNN hours 491 ** NNN minutes 492 ** NNN.NNNN seconds 493 ** NNN months 494 ** NNN years 495 ** start of month 496 ** start of year 497 ** start of week 498 ** start of day 499 ** weekday N 500 ** unixepoch 501 ** localtime 502 ** utc 503 ** 504 ** Return 0 on success and 1 if there is any kind of error. 505 */ 506 static int parseModifier(const char *zMod, DateTime *p){ 507 int rc = 1; 508 int n; 509 double r; 510 char *z, zBuf[30]; 511 z = zBuf; 512 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ 513 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; 514 } 515 z[n] = 0; 516 switch( z[0] ){ 517 #ifndef SQLITE_OMIT_LOCALTIME 518 case 'l': { 519 /* localtime 520 ** 521 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 522 ** show local time. 523 */ 524 if( strcmp(z, "localtime")==0 ){ 525 computeJD(p); 526 p->iJD += localtimeOffset(p); 527 clearYMD_HMS_TZ(p); 528 rc = 0; 529 } 530 break; 531 } 532 #endif 533 case 'u': { 534 /* 535 ** unixepoch 536 ** 537 ** Treat the current value of p->iJD as the number of 538 ** seconds since 1970. Convert to a real julian day number. 539 */ 540 if( strcmp(z, "unixepoch")==0 && p->validJD ){ 541 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; 542 clearYMD_HMS_TZ(p); 543 rc = 0; 544 } 545 #ifndef SQLITE_OMIT_LOCALTIME 546 else if( strcmp(z, "utc")==0 ){ 547 sqlite3_int64 c1; 548 computeJD(p); 549 c1 = localtimeOffset(p); 550 p->iJD -= c1; 551 clearYMD_HMS_TZ(p); 552 p->iJD += c1 - localtimeOffset(p); 553 rc = 0; 554 } 555 #endif 556 break; 557 } 558 case 'w': { 559 /* 560 ** weekday N 561 ** 562 ** Move the date to the same time on the next occurrence of 563 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 564 ** date is already on the appropriate weekday, this is a no-op. 565 */ 566 if( strncmp(z, "weekday ", 8)==0 567 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) 568 && (n=(int)r)==r && n>=0 && r<7 ){ 569 sqlite3_int64 Z; 570 computeYMD_HMS(p); 571 p->validTZ = 0; 572 p->validJD = 0; 573 computeJD(p); 574 Z = ((p->iJD + 129600000)/86400000) % 7; 575 if( Z>n ) Z -= 7; 576 p->iJD += (n - Z)*86400000; 577 clearYMD_HMS_TZ(p); 578 rc = 0; 579 } 580 break; 581 } 582 case 's': { 583 /* 584 ** start of TTTTT 585 ** 586 ** Move the date backwards to the beginning of the current day, 587 ** or month or year. 588 */ 589 if( strncmp(z, "start of ", 9)!=0 ) break; 590 z += 9; 591 computeYMD(p); 592 p->validHMS = 1; 593 p->h = p->m = 0; 594 p->s = 0.0; 595 p->validTZ = 0; 596 p->validJD = 0; 597 if( strcmp(z,"month")==0 ){ 598 p->D = 1; 599 rc = 0; 600 }else if( strcmp(z,"year")==0 ){ 601 computeYMD(p); 602 p->M = 1; 603 p->D = 1; 604 rc = 0; 605 }else if( strcmp(z,"day")==0 ){ 606 rc = 0; 607 } 608 break; 609 } 610 case '+': 611 case '-': 612 case '0': 613 case '1': 614 case '2': 615 case '3': 616 case '4': 617 case '5': 618 case '6': 619 case '7': 620 case '8': 621 case '9': { 622 double rRounder; 623 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 624 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ 625 rc = 1; 626 break; 627 } 628 if( z[n]==':' ){ 629 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 630 ** specified number of hours, minutes, seconds, and fractional seconds 631 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 632 ** omitted. 633 */ 634 const char *z2 = z; 635 DateTime tx; 636 sqlite3_int64 day; 637 if( !sqlite3Isdigit(*z2) ) z2++; 638 memset(&tx, 0, sizeof(tx)); 639 if( parseHhMmSs(z2, &tx) ) break; 640 computeJD(&tx); 641 tx.iJD -= 43200000; 642 day = tx.iJD/86400000; 643 tx.iJD -= day*86400000; 644 if( z[0]=='-' ) tx.iJD = -tx.iJD; 645 computeJD(p); 646 clearYMD_HMS_TZ(p); 647 p->iJD += tx.iJD; 648 rc = 0; 649 break; 650 } 651 z += n; 652 while( sqlite3Isspace(*z) ) z++; 653 n = sqlite3Strlen30(z); 654 if( n>10 || n<3 ) break; 655 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } 656 computeJD(p); 657 rc = 0; 658 rRounder = r<0 ? -0.5 : +0.5; 659 if( n==3 && strcmp(z,"day")==0 ){ 660 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); 661 }else if( n==4 && strcmp(z,"hour")==0 ){ 662 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); 663 }else if( n==6 && strcmp(z,"minute")==0 ){ 664 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); 665 }else if( n==6 && strcmp(z,"second")==0 ){ 666 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); 667 }else if( n==5 && strcmp(z,"month")==0 ){ 668 int x, y; 669 computeYMD_HMS(p); 670 p->M += (int)r; 671 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 672 p->Y += x; 673 p->M -= x*12; 674 p->validJD = 0; 675 computeJD(p); 676 y = (int)r; 677 if( y!=r ){ 678 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); 679 } 680 }else if( n==4 && strcmp(z,"year")==0 ){ 681 int y = (int)r; 682 computeYMD_HMS(p); 683 p->Y += y; 684 p->validJD = 0; 685 computeJD(p); 686 if( y!=r ){ 687 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); 688 } 689 }else{ 690 rc = 1; 691 } 692 clearYMD_HMS_TZ(p); 693 break; 694 } 695 default: { 696 break; 697 } 698 } 699 return rc; 700 } 701 702 /* 703 ** Process time function arguments. argv[0] is a date-time stamp. 704 ** argv[1] and following are modifiers. Parse them all and write 705 ** the resulting time into the DateTime structure p. Return 0 706 ** on success and 1 if there are any errors. 707 ** 708 ** If there are zero parameters (if even argv[0] is undefined) 709 ** then assume a default value of "now" for argv[0]. 710 */ 711 static int isDate( 712 sqlite3_context *context, 713 int argc, 714 sqlite3_value **argv, 715 DateTime *p 716 ){ 717 int i; 718 const unsigned char *z; 719 int eType; 720 memset(p, 0, sizeof(*p)); 721 if( argc==0 ){ 722 setDateTimeToCurrent(context, p); 723 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 724 || eType==SQLITE_INTEGER ){ 725 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); 726 p->validJD = 1; 727 }else{ 728 z = sqlite3_value_text(argv[0]); 729 if( !z || parseDateOrTime(context, (char*)z, p) ){ 730 return 1; 731 } 732 } 733 for(i=1; i<argc; i++){ 734 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ 735 return 1; 736 } 737 } 738 return 0; 739 } 740 741 742 /* 743 ** The following routines implement the various date and time functions 744 ** of SQLite. 745 */ 746 747 /* 748 ** julianday( TIMESTRING, MOD, MOD, ...) 749 ** 750 ** Return the julian day number of the date specified in the arguments 751 */ 752 static void juliandayFunc( 753 sqlite3_context *context, 754 int argc, 755 sqlite3_value **argv 756 ){ 757 DateTime x; 758 if( isDate(context, argc, argv, &x)==0 ){ 759 computeJD(&x); 760 sqlite3_result_double(context, x.iJD/86400000.0); 761 } 762 } 763 764 /* 765 ** datetime( TIMESTRING, MOD, MOD, ...) 766 ** 767 ** Return YYYY-MM-DD HH:MM:SS 768 */ 769 static void datetimeFunc( 770 sqlite3_context *context, 771 int argc, 772 sqlite3_value **argv 773 ){ 774 DateTime x; 775 if( isDate(context, argc, argv, &x)==0 ){ 776 char zBuf[100]; 777 computeYMD_HMS(&x); 778 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 779 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 780 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 781 } 782 } 783 784 /* 785 ** time( TIMESTRING, MOD, MOD, ...) 786 ** 787 ** Return HH:MM:SS 788 */ 789 static void timeFunc( 790 sqlite3_context *context, 791 int argc, 792 sqlite3_value **argv 793 ){ 794 DateTime x; 795 if( isDate(context, argc, argv, &x)==0 ){ 796 char zBuf[100]; 797 computeHMS(&x); 798 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 799 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 800 } 801 } 802 803 /* 804 ** date( TIMESTRING, MOD, MOD, ...) 805 ** 806 ** Return YYYY-MM-DD 807 */ 808 static void dateFunc( 809 sqlite3_context *context, 810 int argc, 811 sqlite3_value **argv 812 ){ 813 DateTime x; 814 if( isDate(context, argc, argv, &x)==0 ){ 815 char zBuf[100]; 816 computeYMD(&x); 817 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 818 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 819 } 820 } 821 822 /* 823 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 824 ** 825 ** Return a string described by FORMAT. Conversions as follows: 826 ** 827 ** %d day of month 828 ** %f ** fractional seconds SS.SSS 829 ** %H hour 00-24 830 ** %j day of year 000-366 831 ** %J ** Julian day number 832 ** %m month 01-12 833 ** %M minute 00-59 834 ** %s seconds since 1970-01-01 835 ** %S seconds 00-59 836 ** %w day of week 0-6 sunday==0 837 ** %W week of year 00-53 838 ** %Y year 0000-9999 839 ** %% % 840 */ 841 static void strftimeFunc( 842 sqlite3_context *context, 843 int argc, 844 sqlite3_value **argv 845 ){ 846 DateTime x; 847 u64 n; 848 size_t i,j; 849 char *z; 850 sqlite3 *db; 851 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); 852 char zBuf[100]; 853 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 854 db = sqlite3_context_db_handle(context); 855 for(i=0, n=1; zFmt[i]; i++, n++){ 856 if( zFmt[i]=='%' ){ 857 switch( zFmt[i+1] ){ 858 case 'd': 859 case 'H': 860 case 'm': 861 case 'M': 862 case 'S': 863 case 'W': 864 n++; 865 /* fall thru */ 866 case 'w': 867 case '%': 868 break; 869 case 'f': 870 n += 8; 871 break; 872 case 'j': 873 n += 3; 874 break; 875 case 'Y': 876 n += 8; 877 break; 878 case 's': 879 case 'J': 880 n += 50; 881 break; 882 default: 883 return; /* ERROR. return a NULL */ 884 } 885 i++; 886 } 887 } 888 testcase( n==sizeof(zBuf)-1 ); 889 testcase( n==sizeof(zBuf) ); 890 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 891 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 892 if( n<sizeof(zBuf) ){ 893 z = zBuf; 894 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 895 sqlite3_result_error_toobig(context); 896 return; 897 }else{ 898 z = sqlite3DbMallocRaw(db, (int)n); 899 if( z==0 ){ 900 sqlite3_result_error_nomem(context); 901 return; 902 } 903 } 904 computeJD(&x); 905 computeYMD_HMS(&x); 906 for(i=j=0; zFmt[i]; i++){ 907 if( zFmt[i]!='%' ){ 908 z[j++] = zFmt[i]; 909 }else{ 910 i++; 911 switch( zFmt[i] ){ 912 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 913 case 'f': { 914 double s = x.s; 915 if( s>59.999 ) s = 59.999; 916 sqlite3_snprintf(7, &z[j],"%06.3f", s); 917 j += sqlite3Strlen30(&z[j]); 918 break; 919 } 920 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 921 case 'W': /* Fall thru */ 922 case 'j': { 923 int nDay; /* Number of days since 1st day of year */ 924 DateTime y = x; 925 y.validJD = 0; 926 y.M = 1; 927 y.D = 1; 928 computeJD(&y); 929 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 930 if( zFmt[i]=='W' ){ 931 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 932 wd = (int)(((x.iJD+43200000)/86400000)%7); 933 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 934 j += 2; 935 }else{ 936 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 937 j += 3; 938 } 939 break; 940 } 941 case 'J': { 942 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 943 j+=sqlite3Strlen30(&z[j]); 944 break; 945 } 946 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 947 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 948 case 's': { 949 sqlite3_snprintf(30,&z[j],"%lld", 950 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 951 j += sqlite3Strlen30(&z[j]); 952 break; 953 } 954 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 955 case 'w': { 956 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 957 break; 958 } 959 case 'Y': { 960 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 961 break; 962 } 963 default: z[j++] = '%'; break; 964 } 965 } 966 } 967 z[j] = 0; 968 sqlite3_result_text(context, z, -1, 969 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 970 } 971 972 /* 973 ** current_time() 974 ** 975 ** This function returns the same value as time('now'). 976 */ 977 static void ctimeFunc( 978 sqlite3_context *context, 979 int NotUsed, 980 sqlite3_value **NotUsed2 981 ){ 982 UNUSED_PARAMETER2(NotUsed, NotUsed2); 983 timeFunc(context, 0, 0); 984 } 985 986 /* 987 ** current_date() 988 ** 989 ** This function returns the same value as date('now'). 990 */ 991 static void cdateFunc( 992 sqlite3_context *context, 993 int NotUsed, 994 sqlite3_value **NotUsed2 995 ){ 996 UNUSED_PARAMETER2(NotUsed, NotUsed2); 997 dateFunc(context, 0, 0); 998 } 999 1000 /* 1001 ** current_timestamp() 1002 ** 1003 ** This function returns the same value as datetime('now'). 1004 */ 1005 static void ctimestampFunc( 1006 sqlite3_context *context, 1007 int NotUsed, 1008 sqlite3_value **NotUsed2 1009 ){ 1010 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1011 datetimeFunc(context, 0, 0); 1012 } 1013 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1014 1015 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1016 /* 1017 ** If the library is compiled to omit the full-scale date and time 1018 ** handling (to get a smaller binary), the following minimal version 1019 ** of the functions current_time(), current_date() and current_timestamp() 1020 ** are included instead. This is to support column declarations that 1021 ** include "DEFAULT CURRENT_TIME" etc. 1022 ** 1023 ** This function uses the C-library functions time(), gmtime() 1024 ** and strftime(). The format string to pass to strftime() is supplied 1025 ** as the user-data for the function. 1026 */ 1027 static void currentTimeFunc( 1028 sqlite3_context *context, 1029 int argc, 1030 sqlite3_value **argv 1031 ){ 1032 time_t t; 1033 char *zFormat = (char *)sqlite3_user_data(context); 1034 sqlite3 *db; 1035 sqlite3_int64 iT; 1036 char zBuf[20]; 1037 1038 UNUSED_PARAMETER(argc); 1039 UNUSED_PARAMETER(argv); 1040 1041 db = sqlite3_context_db_handle(context); 1042 sqlite3OsCurrentTimeInt64(db->pVfs, &iT); 1043 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1044 #ifdef HAVE_GMTIME_R 1045 { 1046 struct tm sNow; 1047 gmtime_r(&t, &sNow); 1048 strftime(zBuf, 20, zFormat, &sNow); 1049 } 1050 #else 1051 { 1052 struct tm *pTm; 1053 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1054 pTm = gmtime(&t); 1055 strftime(zBuf, 20, zFormat, pTm); 1056 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1057 } 1058 #endif 1059 1060 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1061 } 1062 #endif 1063 1064 /* 1065 ** This function registered all of the above C functions as SQL 1066 ** functions. This should be the only routine in this file with 1067 ** external linkage. 1068 */ 1069 void sqlite3RegisterDateTimeFunctions(void){ 1070 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { 1071 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1072 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1073 FUNCTION(date, -1, 0, 0, dateFunc ), 1074 FUNCTION(time, -1, 0, 0, timeFunc ), 1075 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1076 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1077 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1078 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1079 FUNCTION(current_date, 0, 0, 0, cdateFunc ), 1080 #else 1081 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1082 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1083 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1084 #endif 1085 }; 1086 int i; 1087 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1088 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); 1089 1090 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ 1091 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1092 } 1093 } 1094