Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_IA32
     31 
     32 #include "codegen.h"
     33 #include "deoptimizer.h"
     34 #include "full-codegen.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 
     40 #define __ ACCESS_MASM(masm)
     41 
     42 
     43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
     44                                 CFunctionId id,
     45                                 BuiltinExtraArguments extra_args) {
     46   // ----------- S t a t e -------------
     47   //  -- eax                : number of arguments excluding receiver
     48   //  -- edi                : called function (only guaranteed when
     49   //                          extra_args requires it)
     50   //  -- esi                : context
     51   //  -- esp[0]             : return address
     52   //  -- esp[4]             : last argument
     53   //  -- ...
     54   //  -- esp[4 * argc]      : first argument (argc == eax)
     55   //  -- esp[4 * (argc +1)] : receiver
     56   // -----------------------------------
     57 
     58   // Insert extra arguments.
     59   int num_extra_args = 0;
     60   if (extra_args == NEEDS_CALLED_FUNCTION) {
     61     num_extra_args = 1;
     62     Register scratch = ebx;
     63     __ pop(scratch);  // Save return address.
     64     __ push(edi);
     65     __ push(scratch);  // Restore return address.
     66   } else {
     67     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
     68   }
     69 
     70   // JumpToExternalReference expects eax to contain the number of arguments
     71   // including the receiver and the extra arguments.
     72   __ add(eax, Immediate(num_extra_args + 1));
     73   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
     74 }
     75 
     76 
     77 static void CallRuntimePassFunction(MacroAssembler* masm,
     78                                     Runtime::FunctionId function_id) {
     79   FrameScope scope(masm, StackFrame::INTERNAL);
     80   // Push a copy of the function.
     81   __ push(edi);
     82   // Push call kind information.
     83   __ push(ecx);
     84   // Function is also the parameter to the runtime call.
     85   __ push(edi);
     86 
     87   __ CallRuntime(function_id, 1);
     88   // Restore call kind information.
     89   __ pop(ecx);
     90   // Restore receiver.
     91   __ pop(edi);
     92 }
     93 
     94 
     95 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
     96   __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
     97   __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
     98   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
     99   __ jmp(eax);
    100 }
    101 
    102 
    103 void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
    104   // Checking whether the queued function is ready for install is optional,
    105   // since we come across interrupts and stack checks elsewhere.  However,
    106   // not checking may delay installing ready functions, and always checking
    107   // would be quite expensive.  A good compromise is to first check against
    108   // stack limit as a cue for an interrupt signal.
    109   Label ok;
    110   ExternalReference stack_limit =
    111       ExternalReference::address_of_stack_limit(masm->isolate());
    112   __ cmp(esp, Operand::StaticVariable(stack_limit));
    113   __ j(above_equal, &ok, Label::kNear);
    114 
    115   CallRuntimePassFunction(masm, Runtime::kTryInstallRecompiledCode);
    116   // Tail call to returned code.
    117   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
    118   __ jmp(eax);
    119 
    120   __ bind(&ok);
    121   GenerateTailCallToSharedCode(masm);
    122 }
    123 
    124 
    125 void Builtins::Generate_ConcurrentRecompile(MacroAssembler* masm) {
    126   CallRuntimePassFunction(masm, Runtime::kConcurrentRecompile);
    127   GenerateTailCallToSharedCode(masm);
    128 }
    129 
    130 
    131 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
    132                                            bool is_api_function,
    133                                            bool count_constructions) {
    134   // ----------- S t a t e -------------
    135   //  -- eax: number of arguments
    136   //  -- edi: constructor function
    137   // -----------------------------------
    138 
    139   // Should never count constructions for api objects.
    140   ASSERT(!is_api_function || !count_constructions);
    141 
    142   // Enter a construct frame.
    143   {
    144     FrameScope scope(masm, StackFrame::CONSTRUCT);
    145 
    146     // Store a smi-tagged arguments count on the stack.
    147     __ SmiTag(eax);
    148     __ push(eax);
    149 
    150     // Push the function to invoke on the stack.
    151     __ push(edi);
    152 
    153     // Try to allocate the object without transitioning into C code. If any of
    154     // the preconditions is not met, the code bails out to the runtime call.
    155     Label rt_call, allocated;
    156     if (FLAG_inline_new) {
    157       Label undo_allocation;
    158 #ifdef ENABLE_DEBUGGER_SUPPORT
    159       ExternalReference debug_step_in_fp =
    160           ExternalReference::debug_step_in_fp_address(masm->isolate());
    161       __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
    162       __ j(not_equal, &rt_call);
    163 #endif
    164 
    165       // Verified that the constructor is a JSFunction.
    166       // Load the initial map and verify that it is in fact a map.
    167       // edi: constructor
    168       __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    169       // Will both indicate a NULL and a Smi
    170       __ JumpIfSmi(eax, &rt_call);
    171       // edi: constructor
    172       // eax: initial map (if proven valid below)
    173       __ CmpObjectType(eax, MAP_TYPE, ebx);
    174       __ j(not_equal, &rt_call);
    175 
    176       // Check that the constructor is not constructing a JSFunction (see
    177       // comments in Runtime_NewObject in runtime.cc). In which case the
    178       // initial map's instance type would be JS_FUNCTION_TYPE.
    179       // edi: constructor
    180       // eax: initial map
    181       __ CmpInstanceType(eax, JS_FUNCTION_TYPE);
    182       __ j(equal, &rt_call);
    183 
    184       if (count_constructions) {
    185         Label allocate;
    186         // Decrease generous allocation count.
    187         __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    188         __ dec_b(FieldOperand(ecx,
    189                               SharedFunctionInfo::kConstructionCountOffset));
    190         __ j(not_zero, &allocate);
    191 
    192         __ push(eax);
    193         __ push(edi);
    194 
    195         __ push(edi);  // constructor
    196         // The call will replace the stub, so the countdown is only done once.
    197         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
    198 
    199         __ pop(edi);
    200         __ pop(eax);
    201 
    202         __ bind(&allocate);
    203       }
    204 
    205       // Now allocate the JSObject on the heap.
    206       // edi: constructor
    207       // eax: initial map
    208       __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
    209       __ shl(edi, kPointerSizeLog2);
    210       __ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
    211       // Allocated the JSObject, now initialize the fields.
    212       // eax: initial map
    213       // ebx: JSObject
    214       // edi: start of next object
    215       __ mov(Operand(ebx, JSObject::kMapOffset), eax);
    216       Factory* factory = masm->isolate()->factory();
    217       __ mov(ecx, factory->empty_fixed_array());
    218       __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
    219       __ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
    220       // Set extra fields in the newly allocated object.
    221       // eax: initial map
    222       // ebx: JSObject
    223       // edi: start of next object
    224       __ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
    225       __ mov(edx, factory->undefined_value());
    226       if (count_constructions) {
    227         __ movzx_b(esi,
    228                    FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
    229         __ lea(esi,
    230                Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
    231         // esi: offset of first field after pre-allocated fields
    232         if (FLAG_debug_code) {
    233           __ cmp(esi, edi);
    234           __ Assert(less_equal,
    235                     kUnexpectedNumberOfPreAllocatedPropertyFields);
    236         }
    237         __ InitializeFieldsWithFiller(ecx, esi, edx);
    238         __ mov(edx, factory->one_pointer_filler_map());
    239       }
    240       __ InitializeFieldsWithFiller(ecx, edi, edx);
    241 
    242       // Add the object tag to make the JSObject real, so that we can continue
    243       // and jump into the continuation code at any time from now on. Any
    244       // failures need to undo the allocation, so that the heap is in a
    245       // consistent state and verifiable.
    246       // eax: initial map
    247       // ebx: JSObject
    248       // edi: start of next object
    249       __ or_(ebx, Immediate(kHeapObjectTag));
    250 
    251       // Check if a non-empty properties array is needed.
    252       // Allocate and initialize a FixedArray if it is.
    253       // eax: initial map
    254       // ebx: JSObject
    255       // edi: start of next object
    256       // Calculate the total number of properties described by the map.
    257       __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
    258       __ movzx_b(ecx,
    259                  FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
    260       __ add(edx, ecx);
    261       // Calculate unused properties past the end of the in-object properties.
    262       __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
    263       __ sub(edx, ecx);
    264       // Done if no extra properties are to be allocated.
    265       __ j(zero, &allocated);
    266       __ Assert(positive, kPropertyAllocationCountFailed);
    267 
    268       // Scale the number of elements by pointer size and add the header for
    269       // FixedArrays to the start of the next object calculation from above.
    270       // ebx: JSObject
    271       // edi: start of next object (will be start of FixedArray)
    272       // edx: number of elements in properties array
    273       __ Allocate(FixedArray::kHeaderSize,
    274                   times_pointer_size,
    275                   edx,
    276                   REGISTER_VALUE_IS_INT32,
    277                   edi,
    278                   ecx,
    279                   no_reg,
    280                   &undo_allocation,
    281                   RESULT_CONTAINS_TOP);
    282 
    283       // Initialize the FixedArray.
    284       // ebx: JSObject
    285       // edi: FixedArray
    286       // edx: number of elements
    287       // ecx: start of next object
    288       __ mov(eax, factory->fixed_array_map());
    289       __ mov(Operand(edi, FixedArray::kMapOffset), eax);  // setup the map
    290       __ SmiTag(edx);
    291       __ mov(Operand(edi, FixedArray::kLengthOffset), edx);  // and length
    292 
    293       // Initialize the fields to undefined.
    294       // ebx: JSObject
    295       // edi: FixedArray
    296       // ecx: start of next object
    297       { Label loop, entry;
    298         __ mov(edx, factory->undefined_value());
    299         __ lea(eax, Operand(edi, FixedArray::kHeaderSize));
    300         __ jmp(&entry);
    301         __ bind(&loop);
    302         __ mov(Operand(eax, 0), edx);
    303         __ add(eax, Immediate(kPointerSize));
    304         __ bind(&entry);
    305         __ cmp(eax, ecx);
    306         __ j(below, &loop);
    307       }
    308 
    309       // Store the initialized FixedArray into the properties field of
    310       // the JSObject
    311       // ebx: JSObject
    312       // edi: FixedArray
    313       __ or_(edi, Immediate(kHeapObjectTag));  // add the heap tag
    314       __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
    315 
    316 
    317       // Continue with JSObject being successfully allocated
    318       // ebx: JSObject
    319       __ jmp(&allocated);
    320 
    321       // Undo the setting of the new top so that the heap is verifiable. For
    322       // example, the map's unused properties potentially do not match the
    323       // allocated objects unused properties.
    324       // ebx: JSObject (previous new top)
    325       __ bind(&undo_allocation);
    326       __ UndoAllocationInNewSpace(ebx);
    327     }
    328 
    329     // Allocate the new receiver object using the runtime call.
    330     __ bind(&rt_call);
    331     // Must restore edi (constructor) before calling runtime.
    332     __ mov(edi, Operand(esp, 0));
    333     // edi: function (constructor)
    334     __ push(edi);
    335     __ CallRuntime(Runtime::kNewObject, 1);
    336     __ mov(ebx, eax);  // store result in ebx
    337 
    338     // New object allocated.
    339     // ebx: newly allocated object
    340     __ bind(&allocated);
    341     // Retrieve the function from the stack.
    342     __ pop(edi);
    343 
    344     // Retrieve smi-tagged arguments count from the stack.
    345     __ mov(eax, Operand(esp, 0));
    346     __ SmiUntag(eax);
    347 
    348     // Push the allocated receiver to the stack. We need two copies
    349     // because we may have to return the original one and the calling
    350     // conventions dictate that the called function pops the receiver.
    351     __ push(ebx);
    352     __ push(ebx);
    353 
    354     // Set up pointer to last argument.
    355     __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
    356 
    357     // Copy arguments and receiver to the expression stack.
    358     Label loop, entry;
    359     __ mov(ecx, eax);
    360     __ jmp(&entry);
    361     __ bind(&loop);
    362     __ push(Operand(ebx, ecx, times_4, 0));
    363     __ bind(&entry);
    364     __ dec(ecx);
    365     __ j(greater_equal, &loop);
    366 
    367     // Call the function.
    368     if (is_api_function) {
    369       __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    370       Handle<Code> code =
    371           masm->isolate()->builtins()->HandleApiCallConstruct();
    372       ParameterCount expected(0);
    373       __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
    374                     CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
    375     } else {
    376       ParameterCount actual(eax);
    377       __ InvokeFunction(edi, actual, CALL_FUNCTION,
    378                         NullCallWrapper(), CALL_AS_METHOD);
    379     }
    380 
    381     // Store offset of return address for deoptimizer.
    382     if (!is_api_function && !count_constructions) {
    383       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    384     }
    385 
    386     // Restore context from the frame.
    387     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
    388 
    389     // If the result is an object (in the ECMA sense), we should get rid
    390     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    391     // on page 74.
    392     Label use_receiver, exit;
    393 
    394     // If the result is a smi, it is *not* an object in the ECMA sense.
    395     __ JumpIfSmi(eax, &use_receiver);
    396 
    397     // If the type of the result (stored in its map) is less than
    398     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    399     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
    400     __ j(above_equal, &exit);
    401 
    402     // Throw away the result of the constructor invocation and use the
    403     // on-stack receiver as the result.
    404     __ bind(&use_receiver);
    405     __ mov(eax, Operand(esp, 0));
    406 
    407     // Restore the arguments count and leave the construct frame.
    408     __ bind(&exit);
    409     __ mov(ebx, Operand(esp, kPointerSize));  // Get arguments count.
    410 
    411     // Leave construct frame.
    412   }
    413 
    414   // Remove caller arguments from the stack and return.
    415   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
    416   __ pop(ecx);
    417   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
    418   __ push(ecx);
    419   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
    420   __ ret(0);
    421 }
    422 
    423 
    424 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
    425   Generate_JSConstructStubHelper(masm, false, true);
    426 }
    427 
    428 
    429 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
    430   Generate_JSConstructStubHelper(masm, false, false);
    431 }
    432 
    433 
    434 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
    435   Generate_JSConstructStubHelper(masm, true, false);
    436 }
    437 
    438 
    439 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
    440                                              bool is_construct) {
    441   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    442 
    443   // Clear the context before we push it when entering the internal frame.
    444   __ Set(esi, Immediate(0));
    445 
    446   {
    447     FrameScope scope(masm, StackFrame::INTERNAL);
    448 
    449     // Load the previous frame pointer (ebx) to access C arguments
    450     __ mov(ebx, Operand(ebp, 0));
    451 
    452     // Get the function from the frame and setup the context.
    453     __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
    454     __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
    455 
    456     // Push the function and the receiver onto the stack.
    457     __ push(ecx);
    458     __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
    459 
    460     // Load the number of arguments and setup pointer to the arguments.
    461     __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
    462     __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
    463 
    464     // Copy arguments to the stack in a loop.
    465     Label loop, entry;
    466     __ Set(ecx, Immediate(0));
    467     __ jmp(&entry);
    468     __ bind(&loop);
    469     __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
    470     __ push(Operand(edx, 0));  // dereference handle
    471     __ inc(ecx);
    472     __ bind(&entry);
    473     __ cmp(ecx, eax);
    474     __ j(not_equal, &loop);
    475 
    476     // Get the function from the stack and call it.
    477     // kPointerSize for the receiver.
    478     __ mov(edi, Operand(esp, eax, times_4, kPointerSize));
    479 
    480     // Invoke the code.
    481     if (is_construct) {
    482       // No type feedback cell is available
    483       Handle<Object> undefined_sentinel(
    484           masm->isolate()->heap()->undefined_value(), masm->isolate());
    485       __ mov(ebx, Immediate(undefined_sentinel));
    486       CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
    487       __ CallStub(&stub);
    488     } else {
    489       ParameterCount actual(eax);
    490       __ InvokeFunction(edi, actual, CALL_FUNCTION,
    491                         NullCallWrapper(), CALL_AS_METHOD);
    492     }
    493 
    494     // Exit the internal frame. Notice that this also removes the empty.
    495     // context and the function left on the stack by the code
    496     // invocation.
    497   }
    498   __ ret(kPointerSize);  // Remove receiver.
    499 }
    500 
    501 
    502 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
    503   Generate_JSEntryTrampolineHelper(masm, false);
    504 }
    505 
    506 
    507 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
    508   Generate_JSEntryTrampolineHelper(masm, true);
    509 }
    510 
    511 
    512 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
    513   CallRuntimePassFunction(masm, Runtime::kLazyCompile);
    514   // Do a tail-call of the compiled function.
    515   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
    516   __ jmp(eax);
    517 }
    518 
    519 
    520 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
    521   CallRuntimePassFunction(masm, Runtime::kLazyRecompile);
    522   // Do a tail-call of the compiled function.
    523   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
    524   __ jmp(eax);
    525 }
    526 
    527 
    528 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
    529   // For now, we are relying on the fact that make_code_young doesn't do any
    530   // garbage collection which allows us to save/restore the registers without
    531   // worrying about which of them contain pointers. We also don't build an
    532   // internal frame to make the code faster, since we shouldn't have to do stack
    533   // crawls in MakeCodeYoung. This seems a bit fragile.
    534 
    535   // Re-execute the code that was patched back to the young age when
    536   // the stub returns.
    537   __ sub(Operand(esp, 0), Immediate(5));
    538   __ pushad();
    539   __ mov(eax, Operand(esp, 8 * kPointerSize));
    540   {
    541     FrameScope scope(masm, StackFrame::MANUAL);
    542     __ PrepareCallCFunction(2, ebx);
    543     __ mov(Operand(esp, 1 * kPointerSize),
    544            Immediate(ExternalReference::isolate_address(masm->isolate())));
    545     __ mov(Operand(esp, 0), eax);
    546     __ CallCFunction(
    547         ExternalReference::get_make_code_young_function(masm->isolate()), 2);
    548   }
    549   __ popad();
    550   __ ret(0);
    551 }
    552 
    553 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
    554 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
    555     MacroAssembler* masm) {                                  \
    556   GenerateMakeCodeYoungAgainCommon(masm);                    \
    557 }                                                            \
    558 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
    559     MacroAssembler* masm) {                                  \
    560   GenerateMakeCodeYoungAgainCommon(masm);                    \
    561 }
    562 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
    563 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
    564 
    565 
    566 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
    567   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
    568   // that make_code_young doesn't do any garbage collection which allows us to
    569   // save/restore the registers without worrying about which of them contain
    570   // pointers.
    571   __ pushad();
    572   __ mov(eax, Operand(esp, 8 * kPointerSize));
    573   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
    574   {  // NOLINT
    575     FrameScope scope(masm, StackFrame::MANUAL);
    576     __ PrepareCallCFunction(2, ebx);
    577     __ mov(Operand(esp, 1 * kPointerSize),
    578            Immediate(ExternalReference::isolate_address(masm->isolate())));
    579     __ mov(Operand(esp, 0), eax);
    580     __ CallCFunction(
    581         ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
    582         2);
    583   }
    584   __ popad();
    585 
    586   // Perform prologue operations usually performed by the young code stub.
    587   __ pop(eax);   // Pop return address into scratch register.
    588   __ push(ebp);  // Caller's frame pointer.
    589   __ mov(ebp, esp);
    590   __ push(esi);  // Callee's context.
    591   __ push(edi);  // Callee's JS Function.
    592   __ push(eax);  // Push return address after frame prologue.
    593 
    594   // Jump to point after the code-age stub.
    595   __ ret(0);
    596 }
    597 
    598 
    599 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
    600   GenerateMakeCodeYoungAgainCommon(masm);
    601 }
    602 
    603 
    604 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
    605                                              SaveFPRegsMode save_doubles) {
    606   // Enter an internal frame.
    607   {
    608     FrameScope scope(masm, StackFrame::INTERNAL);
    609 
    610     // Preserve registers across notification, this is important for compiled
    611     // stubs that tail call the runtime on deopts passing their parameters in
    612     // registers.
    613     __ pushad();
    614     __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
    615     __ popad();
    616     // Tear down internal frame.
    617   }
    618 
    619   __ pop(MemOperand(esp, 0));  // Ignore state offset
    620   __ ret(0);  // Return to IC Miss stub, continuation still on stack.
    621 }
    622 
    623 
    624 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
    625   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
    626 }
    627 
    628 
    629 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
    630   if (Serializer::enabled()) {
    631     PlatformFeatureScope sse2(SSE2);
    632     Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
    633   } else {
    634     Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
    635   }
    636 }
    637 
    638 
    639 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
    640                                              Deoptimizer::BailoutType type) {
    641   {
    642     FrameScope scope(masm, StackFrame::INTERNAL);
    643 
    644     // Pass deoptimization type to the runtime system.
    645     __ push(Immediate(Smi::FromInt(static_cast<int>(type))));
    646     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    647 
    648     // Tear down internal frame.
    649   }
    650 
    651   // Get the full codegen state from the stack and untag it.
    652   __ mov(ecx, Operand(esp, 1 * kPointerSize));
    653   __ SmiUntag(ecx);
    654 
    655   // Switch on the state.
    656   Label not_no_registers, not_tos_eax;
    657   __ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
    658   __ j(not_equal, &not_no_registers, Label::kNear);
    659   __ ret(1 * kPointerSize);  // Remove state.
    660 
    661   __ bind(&not_no_registers);
    662   __ mov(eax, Operand(esp, 2 * kPointerSize));
    663   __ cmp(ecx, FullCodeGenerator::TOS_REG);
    664   __ j(not_equal, &not_tos_eax, Label::kNear);
    665   __ ret(2 * kPointerSize);  // Remove state, eax.
    666 
    667   __ bind(&not_tos_eax);
    668   __ Abort(kNoCasesLeft);
    669 }
    670 
    671 
    672 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
    673   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
    674 }
    675 
    676 
    677 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
    678   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
    679 }
    680 
    681 
    682 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
    683   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
    684 }
    685 
    686 
    687 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
    688   Factory* factory = masm->isolate()->factory();
    689 
    690   // 1. Make sure we have at least one argument.
    691   { Label done;
    692     __ test(eax, eax);
    693     __ j(not_zero, &done);
    694     __ pop(ebx);
    695     __ push(Immediate(factory->undefined_value()));
    696     __ push(ebx);
    697     __ inc(eax);
    698     __ bind(&done);
    699   }
    700 
    701   // 2. Get the function to call (passed as receiver) from the stack, check
    702   //    if it is a function.
    703   Label slow, non_function;
    704   // 1 ~ return address.
    705   __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
    706   __ JumpIfSmi(edi, &non_function);
    707   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
    708   __ j(not_equal, &slow);
    709 
    710 
    711   // 3a. Patch the first argument if necessary when calling a function.
    712   Label shift_arguments;
    713   __ Set(edx, Immediate(0));  // indicate regular JS_FUNCTION
    714   { Label convert_to_object, use_global_receiver, patch_receiver;
    715     // Change context eagerly in case we need the global receiver.
    716     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    717 
    718     // Do not transform the receiver for strict mode functions.
    719     __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    720     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
    721               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
    722     __ j(not_equal, &shift_arguments);
    723 
    724     // Do not transform the receiver for natives (shared already in ebx).
    725     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
    726               1 << SharedFunctionInfo::kNativeBitWithinByte);
    727     __ j(not_equal, &shift_arguments);
    728 
    729     // Compute the receiver in non-strict mode.
    730     __ mov(ebx, Operand(esp, eax, times_4, 0));  // First argument.
    731 
    732     // Call ToObject on the receiver if it is not an object, or use the
    733     // global object if it is null or undefined.
    734     __ JumpIfSmi(ebx, &convert_to_object);
    735     __ cmp(ebx, factory->null_value());
    736     __ j(equal, &use_global_receiver);
    737     __ cmp(ebx, factory->undefined_value());
    738     __ j(equal, &use_global_receiver);
    739     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    740     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
    741     __ j(above_equal, &shift_arguments);
    742 
    743     __ bind(&convert_to_object);
    744 
    745     { // In order to preserve argument count.
    746       FrameScope scope(masm, StackFrame::INTERNAL);
    747       __ SmiTag(eax);
    748       __ push(eax);
    749 
    750       __ push(ebx);
    751       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    752       __ mov(ebx, eax);
    753       __ Set(edx, Immediate(0));  // restore
    754 
    755       __ pop(eax);
    756       __ SmiUntag(eax);
    757     }
    758 
    759     // Restore the function to edi.
    760     __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
    761     __ jmp(&patch_receiver);
    762 
    763     // Use the global receiver object from the called function as the
    764     // receiver.
    765     __ bind(&use_global_receiver);
    766     const int kGlobalIndex =
    767         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
    768     __ mov(ebx, FieldOperand(esi, kGlobalIndex));
    769     __ mov(ebx, FieldOperand(ebx, GlobalObject::kNativeContextOffset));
    770     __ mov(ebx, FieldOperand(ebx, kGlobalIndex));
    771     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
    772 
    773     __ bind(&patch_receiver);
    774     __ mov(Operand(esp, eax, times_4, 0), ebx);
    775 
    776     __ jmp(&shift_arguments);
    777   }
    778 
    779   // 3b. Check for function proxy.
    780   __ bind(&slow);
    781   __ Set(edx, Immediate(1));  // indicate function proxy
    782   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
    783   __ j(equal, &shift_arguments);
    784   __ bind(&non_function);
    785   __ Set(edx, Immediate(2));  // indicate non-function
    786 
    787   // 3c. Patch the first argument when calling a non-function.  The
    788   //     CALL_NON_FUNCTION builtin expects the non-function callee as
    789   //     receiver, so overwrite the first argument which will ultimately
    790   //     become the receiver.
    791   __ mov(Operand(esp, eax, times_4, 0), edi);
    792 
    793   // 4. Shift arguments and return address one slot down on the stack
    794   //    (overwriting the original receiver).  Adjust argument count to make
    795   //    the original first argument the new receiver.
    796   __ bind(&shift_arguments);
    797   { Label loop;
    798     __ mov(ecx, eax);
    799     __ bind(&loop);
    800     __ mov(ebx, Operand(esp, ecx, times_4, 0));
    801     __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
    802     __ dec(ecx);
    803     __ j(not_sign, &loop);  // While non-negative (to copy return address).
    804     __ pop(ebx);  // Discard copy of return address.
    805     __ dec(eax);  // One fewer argument (first argument is new receiver).
    806   }
    807 
    808   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
    809   //     or a function proxy via CALL_FUNCTION_PROXY.
    810   { Label function, non_proxy;
    811     __ test(edx, edx);
    812     __ j(zero, &function);
    813     __ Set(ebx, Immediate(0));
    814     __ cmp(edx, Immediate(1));
    815     __ j(not_equal, &non_proxy);
    816 
    817     __ pop(edx);   // return address
    818     __ push(edi);  // re-add proxy object as additional argument
    819     __ push(edx);
    820     __ inc(eax);
    821     __ SetCallKind(ecx, CALL_AS_FUNCTION);
    822     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
    823     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    824            RelocInfo::CODE_TARGET);
    825 
    826     __ bind(&non_proxy);
    827     __ SetCallKind(ecx, CALL_AS_METHOD);
    828     __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
    829     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    830            RelocInfo::CODE_TARGET);
    831     __ bind(&function);
    832   }
    833 
    834   // 5b. Get the code to call from the function and check that the number of
    835   //     expected arguments matches what we're providing.  If so, jump
    836   //     (tail-call) to the code in register edx without checking arguments.
    837   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    838   __ mov(ebx,
    839          FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
    840   __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
    841   __ SmiUntag(ebx);
    842   __ SetCallKind(ecx, CALL_AS_METHOD);
    843   __ cmp(eax, ebx);
    844   __ j(not_equal,
    845        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
    846 
    847   ParameterCount expected(0);
    848   __ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper(),
    849                 CALL_AS_METHOD);
    850 }
    851 
    852 
    853 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
    854   static const int kArgumentsOffset = 2 * kPointerSize;
    855   static const int kReceiverOffset = 3 * kPointerSize;
    856   static const int kFunctionOffset = 4 * kPointerSize;
    857   {
    858     FrameScope frame_scope(masm, StackFrame::INTERNAL);
    859 
    860     __ push(Operand(ebp, kFunctionOffset));  // push this
    861     __ push(Operand(ebp, kArgumentsOffset));  // push arguments
    862     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
    863 
    864     // Check the stack for overflow. We are not trying to catch
    865     // interruptions (e.g. debug break and preemption) here, so the "real stack
    866     // limit" is checked.
    867     Label okay;
    868     ExternalReference real_stack_limit =
    869         ExternalReference::address_of_real_stack_limit(masm->isolate());
    870     __ mov(edi, Operand::StaticVariable(real_stack_limit));
    871     // Make ecx the space we have left. The stack might already be overflowed
    872     // here which will cause ecx to become negative.
    873     __ mov(ecx, esp);
    874     __ sub(ecx, edi);
    875     // Make edx the space we need for the array when it is unrolled onto the
    876     // stack.
    877     __ mov(edx, eax);
    878     __ shl(edx, kPointerSizeLog2 - kSmiTagSize);
    879     // Check if the arguments will overflow the stack.
    880     __ cmp(ecx, edx);
    881     __ j(greater, &okay);  // Signed comparison.
    882 
    883     // Out of stack space.
    884     __ push(Operand(ebp, 4 * kPointerSize));  // push this
    885     __ push(eax);
    886     __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    887     __ bind(&okay);
    888     // End of stack check.
    889 
    890     // Push current index and limit.
    891     const int kLimitOffset =
    892         StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
    893     const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
    894     __ push(eax);  // limit
    895     __ push(Immediate(0));  // index
    896 
    897     // Get the receiver.
    898     __ mov(ebx, Operand(ebp, kReceiverOffset));
    899 
    900     // Check that the function is a JS function (otherwise it must be a proxy).
    901     Label push_receiver;
    902     __ mov(edi, Operand(ebp, kFunctionOffset));
    903     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
    904     __ j(not_equal, &push_receiver);
    905 
    906     // Change context eagerly to get the right global object if necessary.
    907     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    908 
    909     // Compute the receiver.
    910     // Do not transform the receiver for strict mode functions.
    911     Label call_to_object, use_global_receiver;
    912     __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    913     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
    914               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
    915     __ j(not_equal, &push_receiver);
    916 
    917     Factory* factory = masm->isolate()->factory();
    918 
    919     // Do not transform the receiver for natives (shared already in ecx).
    920     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
    921               1 << SharedFunctionInfo::kNativeBitWithinByte);
    922     __ j(not_equal, &push_receiver);
    923 
    924     // Compute the receiver in non-strict mode.
    925     // Call ToObject on the receiver if it is not an object, or use the
    926     // global object if it is null or undefined.
    927     __ JumpIfSmi(ebx, &call_to_object);
    928     __ cmp(ebx, factory->null_value());
    929     __ j(equal, &use_global_receiver);
    930     __ cmp(ebx, factory->undefined_value());
    931     __ j(equal, &use_global_receiver);
    932     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    933     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
    934     __ j(above_equal, &push_receiver);
    935 
    936     __ bind(&call_to_object);
    937     __ push(ebx);
    938     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    939     __ mov(ebx, eax);
    940     __ jmp(&push_receiver);
    941 
    942     // Use the current global receiver object as the receiver.
    943     __ bind(&use_global_receiver);
    944     const int kGlobalOffset =
    945         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
    946     __ mov(ebx, FieldOperand(esi, kGlobalOffset));
    947     __ mov(ebx, FieldOperand(ebx, GlobalObject::kNativeContextOffset));
    948     __ mov(ebx, FieldOperand(ebx, kGlobalOffset));
    949     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
    950 
    951     // Push the receiver.
    952     __ bind(&push_receiver);
    953     __ push(ebx);
    954 
    955     // Copy all arguments from the array to the stack.
    956     Label entry, loop;
    957     __ mov(ecx, Operand(ebp, kIndexOffset));
    958     __ jmp(&entry);
    959     __ bind(&loop);
    960     __ mov(edx, Operand(ebp, kArgumentsOffset));  // load arguments
    961 
    962     // Use inline caching to speed up access to arguments.
    963     Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
    964     __ call(ic, RelocInfo::CODE_TARGET);
    965     // It is important that we do not have a test instruction after the
    966     // call.  A test instruction after the call is used to indicate that
    967     // we have generated an inline version of the keyed load.  In this
    968     // case, we know that we are not generating a test instruction next.
    969 
    970     // Push the nth argument.
    971     __ push(eax);
    972 
    973     // Update the index on the stack and in register eax.
    974     __ mov(ecx, Operand(ebp, kIndexOffset));
    975     __ add(ecx, Immediate(1 << kSmiTagSize));
    976     __ mov(Operand(ebp, kIndexOffset), ecx);
    977 
    978     __ bind(&entry);
    979     __ cmp(ecx, Operand(ebp, kLimitOffset));
    980     __ j(not_equal, &loop);
    981 
    982     // Invoke the function.
    983     Label call_proxy;
    984     __ mov(eax, ecx);
    985     ParameterCount actual(eax);
    986     __ SmiUntag(eax);
    987     __ mov(edi, Operand(ebp, kFunctionOffset));
    988     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
    989     __ j(not_equal, &call_proxy);
    990     __ InvokeFunction(edi, actual, CALL_FUNCTION,
    991                       NullCallWrapper(), CALL_AS_METHOD);
    992 
    993     frame_scope.GenerateLeaveFrame();
    994     __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
    995 
    996     // Invoke the function proxy.
    997     __ bind(&call_proxy);
    998     __ push(edi);  // add function proxy as last argument
    999     __ inc(eax);
   1000     __ Set(ebx, Immediate(0));
   1001     __ SetCallKind(ecx, CALL_AS_METHOD);
   1002     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
   1003     __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1004             RelocInfo::CODE_TARGET);
   1005 
   1006     // Leave internal frame.
   1007   }
   1008   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
   1009 }
   1010 
   1011 
   1012 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
   1013   // ----------- S t a t e -------------
   1014   //  -- eax : argc
   1015   //  -- esp[0] : return address
   1016   //  -- esp[4] : last argument
   1017   // -----------------------------------
   1018   Label generic_array_code;
   1019 
   1020   // Get the InternalArray function.
   1021   __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
   1022 
   1023   if (FLAG_debug_code) {
   1024     // Initial map for the builtin InternalArray function should be a map.
   1025     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   1026     // Will both indicate a NULL and a Smi.
   1027     __ test(ebx, Immediate(kSmiTagMask));
   1028     __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
   1029     __ CmpObjectType(ebx, MAP_TYPE, ecx);
   1030     __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
   1031   }
   1032 
   1033   // Run the native code for the InternalArray function called as a normal
   1034   // function.
   1035   // tail call a stub
   1036   InternalArrayConstructorStub stub(masm->isolate());
   1037   __ TailCallStub(&stub);
   1038 }
   1039 
   1040 
   1041 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
   1042   // ----------- S t a t e -------------
   1043   //  -- eax : argc
   1044   //  -- esp[0] : return address
   1045   //  -- esp[4] : last argument
   1046   // -----------------------------------
   1047   Label generic_array_code;
   1048 
   1049   // Get the Array function.
   1050   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
   1051 
   1052   if (FLAG_debug_code) {
   1053     // Initial map for the builtin Array function should be a map.
   1054     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   1055     // Will both indicate a NULL and a Smi.
   1056     __ test(ebx, Immediate(kSmiTagMask));
   1057     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   1058     __ CmpObjectType(ebx, MAP_TYPE, ecx);
   1059     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   1060   }
   1061 
   1062   // Run the native code for the Array function called as a normal function.
   1063   // tail call a stub
   1064   Handle<Object> undefined_sentinel(
   1065       masm->isolate()->heap()->undefined_value(),
   1066       masm->isolate());
   1067   __ mov(ebx, Immediate(undefined_sentinel));
   1068   ArrayConstructorStub stub(masm->isolate());
   1069   __ TailCallStub(&stub);
   1070 }
   1071 
   1072 
   1073 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
   1074   // ----------- S t a t e -------------
   1075   //  -- eax                 : number of arguments
   1076   //  -- edi                 : constructor function
   1077   //  -- esp[0]              : return address
   1078   //  -- esp[(argc - n) * 4] : arg[n] (zero-based)
   1079   //  -- esp[(argc + 1) * 4] : receiver
   1080   // -----------------------------------
   1081   Counters* counters = masm->isolate()->counters();
   1082   __ IncrementCounter(counters->string_ctor_calls(), 1);
   1083 
   1084   if (FLAG_debug_code) {
   1085     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
   1086     __ cmp(edi, ecx);
   1087     __ Assert(equal, kUnexpectedStringFunction);
   1088   }
   1089 
   1090   // Load the first argument into eax and get rid of the rest
   1091   // (including the receiver).
   1092   Label no_arguments;
   1093   __ test(eax, eax);
   1094   __ j(zero, &no_arguments);
   1095   __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
   1096   __ pop(ecx);
   1097   __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
   1098   __ push(ecx);
   1099   __ mov(eax, ebx);
   1100 
   1101   // Lookup the argument in the number to string cache.
   1102   Label not_cached, argument_is_string;
   1103   __ LookupNumberStringCache(eax,  // Input.
   1104                              ebx,  // Result.
   1105                              ecx,  // Scratch 1.
   1106                              edx,  // Scratch 2.
   1107                              &not_cached);
   1108   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
   1109   __ bind(&argument_is_string);
   1110   // ----------- S t a t e -------------
   1111   //  -- ebx    : argument converted to string
   1112   //  -- edi    : constructor function
   1113   //  -- esp[0] : return address
   1114   // -----------------------------------
   1115 
   1116   // Allocate a JSValue and put the tagged pointer into eax.
   1117   Label gc_required;
   1118   __ Allocate(JSValue::kSize,
   1119               eax,  // Result.
   1120               ecx,  // New allocation top (we ignore it).
   1121               no_reg,
   1122               &gc_required,
   1123               TAG_OBJECT);
   1124 
   1125   // Set the map.
   1126   __ LoadGlobalFunctionInitialMap(edi, ecx);
   1127   if (FLAG_debug_code) {
   1128     __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
   1129             JSValue::kSize >> kPointerSizeLog2);
   1130     __ Assert(equal, kUnexpectedStringWrapperInstanceSize);
   1131     __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
   1132     __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
   1133   }
   1134   __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
   1135 
   1136   // Set properties and elements.
   1137   Factory* factory = masm->isolate()->factory();
   1138   __ Set(ecx, Immediate(factory->empty_fixed_array()));
   1139   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
   1140   __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
   1141 
   1142   // Set the value.
   1143   __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
   1144 
   1145   // Ensure the object is fully initialized.
   1146   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
   1147 
   1148   // We're done. Return.
   1149   __ ret(0);
   1150 
   1151   // The argument was not found in the number to string cache. Check
   1152   // if it's a string already before calling the conversion builtin.
   1153   Label convert_argument;
   1154   __ bind(&not_cached);
   1155   STATIC_ASSERT(kSmiTag == 0);
   1156   __ JumpIfSmi(eax, &convert_argument);
   1157   Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
   1158   __ j(NegateCondition(is_string), &convert_argument);
   1159   __ mov(ebx, eax);
   1160   __ IncrementCounter(counters->string_ctor_string_value(), 1);
   1161   __ jmp(&argument_is_string);
   1162 
   1163   // Invoke the conversion builtin and put the result into ebx.
   1164   __ bind(&convert_argument);
   1165   __ IncrementCounter(counters->string_ctor_conversions(), 1);
   1166   {
   1167     FrameScope scope(masm, StackFrame::INTERNAL);
   1168     __ push(edi);  // Preserve the function.
   1169     __ push(eax);
   1170     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
   1171     __ pop(edi);
   1172   }
   1173   __ mov(ebx, eax);
   1174   __ jmp(&argument_is_string);
   1175 
   1176   // Load the empty string into ebx, remove the receiver from the
   1177   // stack, and jump back to the case where the argument is a string.
   1178   __ bind(&no_arguments);
   1179   __ Set(ebx, Immediate(factory->empty_string()));
   1180   __ pop(ecx);
   1181   __ lea(esp, Operand(esp, kPointerSize));
   1182   __ push(ecx);
   1183   __ jmp(&argument_is_string);
   1184 
   1185   // At this point the argument is already a string. Call runtime to
   1186   // create a string wrapper.
   1187   __ bind(&gc_required);
   1188   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
   1189   {
   1190     FrameScope scope(masm, StackFrame::INTERNAL);
   1191     __ push(ebx);
   1192     __ CallRuntime(Runtime::kNewStringWrapper, 1);
   1193   }
   1194   __ ret(0);
   1195 }
   1196 
   1197 
   1198 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
   1199   __ push(ebp);
   1200   __ mov(ebp, esp);
   1201 
   1202   // Store the arguments adaptor context sentinel.
   1203   __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1204 
   1205   // Push the function on the stack.
   1206   __ push(edi);
   1207 
   1208   // Preserve the number of arguments on the stack. Must preserve eax,
   1209   // ebx and ecx because these registers are used when copying the
   1210   // arguments and the receiver.
   1211   STATIC_ASSERT(kSmiTagSize == 1);
   1212   __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
   1213   __ push(edi);
   1214 }
   1215 
   1216 
   1217 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
   1218   // Retrieve the number of arguments from the stack.
   1219   __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1220 
   1221   // Leave the frame.
   1222   __ leave();
   1223 
   1224   // Remove caller arguments from the stack.
   1225   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   1226   __ pop(ecx);
   1227   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
   1228   __ push(ecx);
   1229 }
   1230 
   1231 
   1232 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
   1233   // ----------- S t a t e -------------
   1234   //  -- eax : actual number of arguments
   1235   //  -- ebx : expected number of arguments
   1236   //  -- ecx : call kind information
   1237   //  -- edx : code entry to call
   1238   // -----------------------------------
   1239 
   1240   Label invoke, dont_adapt_arguments;
   1241   __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
   1242 
   1243   Label enough, too_few;
   1244   __ cmp(eax, ebx);
   1245   __ j(less, &too_few);
   1246   __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
   1247   __ j(equal, &dont_adapt_arguments);
   1248 
   1249   {  // Enough parameters: Actual >= expected.
   1250     __ bind(&enough);
   1251     EnterArgumentsAdaptorFrame(masm);
   1252 
   1253     // Copy receiver and all expected arguments.
   1254     const int offset = StandardFrameConstants::kCallerSPOffset;
   1255     __ lea(eax, Operand(ebp, eax, times_4, offset));
   1256     __ mov(edi, -1);  // account for receiver
   1257 
   1258     Label copy;
   1259     __ bind(&copy);
   1260     __ inc(edi);
   1261     __ push(Operand(eax, 0));
   1262     __ sub(eax, Immediate(kPointerSize));
   1263     __ cmp(edi, ebx);
   1264     __ j(less, &copy);
   1265     __ jmp(&invoke);
   1266   }
   1267 
   1268   {  // Too few parameters: Actual < expected.
   1269     __ bind(&too_few);
   1270     EnterArgumentsAdaptorFrame(masm);
   1271 
   1272     // Copy receiver and all actual arguments.
   1273     const int offset = StandardFrameConstants::kCallerSPOffset;
   1274     __ lea(edi, Operand(ebp, eax, times_4, offset));
   1275     // ebx = expected - actual.
   1276     __ sub(ebx, eax);
   1277     // eax = -actual - 1
   1278     __ neg(eax);
   1279     __ sub(eax, Immediate(1));
   1280 
   1281     Label copy;
   1282     __ bind(&copy);
   1283     __ inc(eax);
   1284     __ push(Operand(edi, 0));
   1285     __ sub(edi, Immediate(kPointerSize));
   1286     __ test(eax, eax);
   1287     __ j(not_zero, &copy);
   1288 
   1289     // Fill remaining expected arguments with undefined values.
   1290     Label fill;
   1291     __ bind(&fill);
   1292     __ inc(eax);
   1293     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   1294     __ cmp(eax, ebx);
   1295     __ j(less, &fill);
   1296   }
   1297 
   1298   // Call the entry point.
   1299   __ bind(&invoke);
   1300   // Restore function pointer.
   1301   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1302   __ call(edx);
   1303 
   1304   // Store offset of return address for deoptimizer.
   1305   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
   1306 
   1307   // Leave frame and return.
   1308   LeaveArgumentsAdaptorFrame(masm);
   1309   __ ret(0);
   1310 
   1311   // -------------------------------------------
   1312   // Dont adapt arguments.
   1313   // -------------------------------------------
   1314   __ bind(&dont_adapt_arguments);
   1315   __ jmp(edx);
   1316 }
   1317 
   1318 
   1319 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
   1320   // Lookup the function in the JavaScript frame.
   1321   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1322   {
   1323     FrameScope scope(masm, StackFrame::INTERNAL);
   1324     // Lookup and calculate pc offset.
   1325     __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerPCOffset));
   1326     __ mov(ebx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
   1327     __ sub(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1328     __ sub(edx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset));
   1329     __ SmiTag(edx);
   1330 
   1331     // Pass both function and pc offset as arguments.
   1332     __ push(eax);
   1333     __ push(edx);
   1334     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 2);
   1335   }
   1336 
   1337   Label skip;
   1338   // If the code object is null, just return to the unoptimized code.
   1339   __ cmp(eax, Immediate(0));
   1340   __ j(not_equal, &skip, Label::kNear);
   1341   __ ret(0);
   1342 
   1343   __ bind(&skip);
   1344 
   1345   // Load deoptimization data from the code object.
   1346   __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
   1347 
   1348   // Load the OSR entrypoint offset from the deoptimization data.
   1349   __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
   1350       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
   1351   __ SmiUntag(ebx);
   1352 
   1353   // Compute the target address = code_obj + header_size + osr_offset
   1354   __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
   1355 
   1356   // Overwrite the return address on the stack.
   1357   __ mov(Operand(esp, 0), eax);
   1358 
   1359   // And "return" to the OSR entry point of the function.
   1360   __ ret(0);
   1361 }
   1362 
   1363 
   1364 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
   1365   // We check the stack limit as indicator that recompilation might be done.
   1366   Label ok;
   1367   ExternalReference stack_limit =
   1368       ExternalReference::address_of_stack_limit(masm->isolate());
   1369   __ cmp(esp, Operand::StaticVariable(stack_limit));
   1370   __ j(above_equal, &ok, Label::kNear);
   1371   {
   1372     FrameScope scope(masm, StackFrame::INTERNAL);
   1373     __ CallRuntime(Runtime::kStackGuard, 0);
   1374   }
   1375   __ jmp(masm->isolate()->builtins()->OnStackReplacement(),
   1376          RelocInfo::CODE_TARGET);
   1377 
   1378   __ bind(&ok);
   1379   __ ret(0);
   1380 }
   1381 
   1382 #undef __
   1383 }
   1384 }  // namespace v8::internal
   1385 
   1386 #endif  // V8_TARGET_ARCH_IA32
   1387