1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <title>Checker Developer Manual</title> 6 <link type="text/css" rel="stylesheet" href="menu.css"> 7 <link type="text/css" rel="stylesheet" href="content.css"> 8 <script type="text/javascript" src="scripts/menu.js"></script> 9 </head> 10 <body> 11 12 <div id="page"> 13 <!--#include virtual="menu.html.incl"--> 14 15 <div id="content"> 16 17 <h3 style="color:red">This Page Is Under Construction</h3> 18 19 <h1>Checker Developer Manual</h1> 20 21 <p>The static analyzer engine performs path-sensitive exploration of the program and 22 relies on a set of checkers to implement the logic for detecting and 23 constructing specific bug reports. Anyone who is interested in implementing their own 24 checker, should check out the Building a Checker in 24 Hours talk 25 (<a href="http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">slides</a> 26 <a href="http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4">video</a>) 27 and refer to this page for additional information on writing a checker. The static analyzer is a 28 part of the Clang project, so consult <a href="http://clang.llvm.org/hacking.html">Hacking on Clang</a> 29 and <a href="http://llvm.org/docs/ProgrammersManual.html">LLVM Programmer's Manual</a> 30 for developer guidelines and send your questions and proposals to 31 <a href=http://lists.cs.uiuc.edu/mailman/listinfo/cfe-dev>cfe-dev mailing list</a>. 32 </p> 33 34 <ul> 35 <li><a href="#start">Getting Started</a></li> 36 <li><a href="#analyzer">Static Analyzer Overview</a> 37 <ul> 38 <li><a href="#interaction">Interaction with Checkers</a></li> 39 <li><a href="#values">Representing Values</a></li> 40 </ul></li> 41 <li><a href="#idea">Idea for a Checker</a></li> 42 <li><a href="#registration">Checker Registration</a></li> 43 <li><a href="#events_callbacks">Events, Callbacks, and Checker Class Structure</a></li> 44 <li><a href="#extendingstates">Custom Program States</a></li> 45 <li><a href="#bugs">Bug Reports</a></li> 46 <li><a href="#ast">AST Visitors</a></li> 47 <li><a href="#testing">Testing</a></li> 48 <li><a href="#commands">Useful Commands/Debugging Hints</a></li> 49 <li><a href="#additioninformation">Additional Sources of Information</a></li> 50 </ul> 51 52 <h2 id=start>Getting Started</h2> 53 <ul> 54 <li>To check out the source code and build the project, follow steps 1-4 of 55 the <a href="http://clang.llvm.org/get_started.html">Clang Getting Started</a> 56 page.</li> 57 58 <li>The analyzer source code is located under the Clang source tree: 59 <br><tt> 60 $ <b>cd llvm/tools/clang</b> 61 </tt> 62 <br>See: <tt>include/clang/StaticAnalyzer</tt>, <tt>lib/StaticAnalyzer</tt>, 63 <tt>test/Analysis</tt>.</li> 64 65 <li>The analyzer regression tests can be executed from the Clang's build 66 directory: 67 <br><tt> 68 $ <b>cd ../../../; cd build/tools/clang; TESTDIRS=Analysis make test</b> 69 </tt></li> 70 71 <li>Analyze a file with the specified checker: 72 <br><tt> 73 $ <b>clang -cc1 -analyze -analyzer-checker=core.DivideZero test.c</b> 74 </tt></li> 75 76 <li>List the available checkers: 77 <br><tt> 78 $ <b>clang -cc1 -analyzer-checker-help</b> 79 </tt></li> 80 81 <li>See the analyzer help for different output formats, fine tuning, and 82 debug options: 83 <br><tt> 84 $ <b>clang -cc1 -help | grep "analyzer"</b> 85 </tt></li> 86 87 </ul> 88 89 <h2 id=analyzer>Static Analyzer Overview</h2> 90 The analyzer core performs symbolic execution of the given program. All the 91 input values are represented with symbolic values; further, the engine deduces 92 the values of all the expressions in the program based on the input symbols 93 and the path. The execution is path sensitive and every possible path through 94 the program is explored. The explored execution traces are represented with 95 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedGraph.html">ExplodedGraph</a> object. 96 Each node of the graph is 97 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedNode.html">ExplodedNode</a>, 98 which consists of a <tt>ProgramPoint</tt> and a <tt>ProgramState</tt>. 99 <p> 100 <a href="http://clang.llvm.org/doxygen/classclang_1_1ProgramPoint.html">ProgramPoint</a> 101 represents the corresponding location in the program (or the CFG graph). 102 <tt>ProgramPoint</tt> is also used to record additional information on 103 when/how the state was added. For example, <tt>PostPurgeDeadSymbolsKind</tt> 104 kind means that the state is the result of purging dead symbols - the 105 analyzer's equivalent of garbage collection. 106 <p> 107 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ProgramState.html">ProgramState</a> 108 represents abstract state of the program. It consists of: 109 <ul> 110 <li><tt>Environment</tt> - a mapping from source code expressions to symbolic 111 values 112 <li><tt>Store</tt> - a mapping from memory locations to symbolic values 113 <li><tt>GenericDataMap</tt> - constraints on symbolic values 114 </ul> 115 116 <h3 id=interaction>Interaction with Checkers</h3> 117 Checkers are not merely passive receivers of the analyzer core changes - they 118 actively participate in the <tt>ProgramState</tt> construction through the 119 <tt>GenericDataMap</tt> which can be used to store the checker-defined part 120 of the state. Each time the analyzer engine explores a new statement, it 121 notifies each checker registered to listen for that statement, giving it an 122 opportunity to either report a bug or modify the state. (As a rule of thumb, 123 the checker itself should be stateless.) The checkers are called one after another 124 in the predefined order; thus, calling all the checkers adds a chain to the 125 <tt>ExplodedGraph</tt>. 126 127 <h3 id=values>Representing Values</h3> 128 During symbolic execution, <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SVal.html">SVal</a> 129 objects are used to represent the semantic evaluation of expressions. 130 They can represent things like concrete 131 integers, symbolic values, or memory locations (which are memory regions). 132 They are a discriminated union of "values", symbolic and otherwise. 133 If a value isn't symbolic, usually that means there is no symbolic 134 information to track. For example, if the value was an integer, such as 135 <tt>42</tt>, it would be a <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1nonloc_1_1ConcreteInt.html">ConcreteInt</a>, 136 and the checker doesn't usually need to track any state with the concrete 137 number. In some cases, <tt>SVal</tt> is not a symbol, but it really should be 138 a symbolic value. This happens when the analyzer cannot reason about something 139 (yet). An example is floating point numbers. In such cases, the 140 <tt>SVal</tt> will evaluate to <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1UnknownVal.html">UnknownVal</a>. 141 This represents a case that is outside the realm of the analyzer's reasoning 142 capabilities. <tt>SVals</tt> are value objects and their values can be viewed 143 using the <tt>.dump()</tt> method. Often they wrap persistent objects such as 144 symbols or regions. 145 <p> 146 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymExpr.html">SymExpr</a> (symbol) 147 is meant to represent abstract, but named, symbolic value. Symbols represent 148 an actual (immutable) value. We might not know what its specific value is, but 149 we can associate constraints with that value as we analyze a path. For 150 example, we might record that the value of a symbol is greater than 151 <tt>0</tt>, etc. 152 <p> 153 154 <p> 155 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1MemRegion.html">MemRegion</a> is similar to a symbol. 156 It is used to provide a lexicon of how to describe abstract memory. Regions can 157 layer on top of other regions, providing a layered approach to representing memory. 158 For example, a struct object on the stack might be represented by a <tt>VarRegion</tt>, 159 but a <tt>FieldRegion</tt> which is a subregion of the <tt>VarRegion</tt> could 160 be used to represent the memory associated with a specific field of that object. 161 So how do we represent symbolic memory regions? That's what 162 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymbolicRegion.html">SymbolicRegion</a> 163 is for. It is a <tt>MemRegion</tt> that has an associated symbol. Since the 164 symbol is unique and has a unique name; that symbol names the region. 165 166 <P> 167 Let's see how the analyzer processes the expressions in the following example: 168 <p> 169 <pre class="code_example"> 170 int foo(int x) { 171 int y = x * 2; 172 int z = x; 173 ... 174 } 175 </pre> 176 <p> 177 Let's look at how <tt>x*2</tt> gets evaluated. When <tt>x</tt> is evaluated, 178 we first construct an <tt>SVal</tt> that represents the lvalue of <tt>x</tt>, in 179 this case it is an <tt>SVal</tt> that references the <tt>MemRegion</tt> for <tt>x</tt>. 180 Afterwards, when we do the lvalue-to-rvalue conversion, we get a new <tt>SVal</tt>, 181 which references the value <b>currently bound</b> to <tt>x</tt>. That value is 182 symbolic; it's whatever <tt>x</tt> was bound to at the start of the function. 183 Let's call that symbol <tt>$0</tt>. Similarly, we evaluate the expression for <tt>2</tt>, 184 and get an <tt>SVal</tt> that references the concrete number <tt>2</tt>. When 185 we evaluate <tt>x*2</tt>, we take the two <tt>SVals</tt> of the subexpressions, 186 and create a new <tt>SVal</tt> that represents their multiplication (which in 187 this case is a new symbolic expression, which we might call <tt>$1</tt>). When we 188 evaluate the assignment to <tt>y</tt>, we again compute its lvalue (a <tt>MemRegion</tt>), 189 and then bind the <tt>SVal</tt> for the RHS (which references the symbolic value <tt>$1</tt>) 190 to the <tt>MemRegion</tt> in the symbolic store. 191 <br> 192 The second line is similar. When we evaluate <tt>x</tt> again, we do the same 193 dance, and create an <tt>SVal</tt> that references the symbol <tt>$0</tt>. Note, two <tt>SVals</tt> 194 might reference the same underlying values. 195 196 <p> 197 To summarize, MemRegions are unique names for blocks of memory. Symbols are 198 unique names for abstract symbolic values. Some MemRegions represents abstract 199 symbolic chunks of memory, and thus are also based on symbols. SVals are just 200 references to values, and can reference either MemRegions, Symbols, or concrete 201 values (e.g., the number 1). 202 203 <!-- 204 TODO: Add a picture. 205 <br> 206 Symbols<br> 207 FunctionalObjects are used throughout. 208 --> 209 210 <h2 id=idea>Idea for a Checker</h2> 211 Here are several questions which you should consider when evaluating your 212 checker idea: 213 <ul> 214 <li>Can the check be effectively implemented without path-sensitive 215 analysis? See <a href="#ast">AST Visitors</a>.</li> 216 217 <li>How high the false positive rate is going to be? Looking at the occurrences 218 of the issue you want to write a checker for in the existing code bases might 219 give you some ideas. </li> 220 221 <li>How the current limitations of the analysis will effect the false alarm 222 rate? Currently, the analyzer only reasons about one procedure at a time (no 223 inter-procedural analysis). Also, it uses a simple range tracking based 224 solver to model symbolic execution.</li> 225 226 <li>Consult the <a 227 href="http://llvm.org/bugs/buglist.cgi?query_format=advanced&bug_status=NEW&bug_status=REOPENED&version=trunk&component=Static%20Analyzer&product=clang">Bugzilla database</a> 228 to get some ideas for new checkers and consider starting with improving/fixing 229 bugs in the existing checkers.</li> 230 </ul> 231 232 <p>Once an idea for a checker has been chosen, there are two key decisions that 233 need to be made: 234 <ul> 235 <li> Which events the checker should be tracking. This is discussed in more 236 detail in the section <a href="#events_callbacks">Events, Callbacks, and 237 Checker Class Structure</a>. 238 <li> What checker-specific data needs to be stored as part of the program 239 state (if any). This should be minimized as much as possible. More detail about 240 implementing custom program state is given in section <a 241 href="#extendingstates">Custom Program States</a>. 242 </ul> 243 244 245 <h2 id=registration>Checker Registration</h2> 246 All checker implementation files are located in 247 <tt>clang/lib/StaticAnalyzer/Checkers</tt> folder. The steps below describe 248 how the checker <tt>SimpleStreamChecker</tt>, which checks for misuses of 249 stream APIs, was registered with the analyzer. 250 Similar steps should be followed for a new checker. 251 <ol> 252 <li>A new checker implementation file, <tt>SimpleStreamChecker.cpp</tt>, was 253 created in the directory <tt>lib/StaticAnalyzer/Checkers</tt>. 254 <li>The following registration code was added to the implementation file: 255 <pre class="code_example"> 256 void ento::registerSimpleStreamChecker(CheckerManager &mgr) { 257 mgr.registerChecker<SimpleStreamChecker>(); 258 } 259 </pre> 260 <li>A package was selected for the checker and the checker was defined in the 261 table of checkers at <tt>lib/StaticAnalyzer/Checkers/Checkers.td</tt>. Since all 262 checkers should first be developed as "alpha", and the SimpleStreamChecker 263 performs UNIX API checks, the correct package is "alpha.unix", and the following 264 was added to the corresponding <tt>UnixAlpha</tt> section of <tt>Checkers.td</tt>: 265 <pre class="code_example"> 266 let ParentPackage = UnixAlpha in { 267 ... 268 def SimpleStreamChecker : Checker<"SimpleStream">, 269 HelpText<"Check for misuses of stream APIs">, 270 DescFile<"SimpleStreamChecker.cpp">; 271 ... 272 } // end "alpha.unix" 273 </pre> 274 275 <li>The source code file was made visible to CMake by adding it to 276 <tt>lib/StaticAnalyzer/Checkers/CMakeLists.txt</tt>. 277 278 </ol> 279 280 After adding a new checker to the analyzer, one can verify that the new checker 281 was successfully added by seeing if it appears in the list of available checkers: 282 <br> <tt><b>$clang -cc1 -analyzer-checker-help</b></tt> 283 284 <h2 id=events_callbacks>Events, Callbacks, and Checker Class Structure</h2> 285 286 <p> All checkers inherit from the <tt><a 287 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1Checker.html"> 288 Checker</a></tt> template class; the template parameter(s) describe the type of 289 events that the checker is interested in processing. The various types of events 290 that are available are described in the file <a 291 href="http://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html"> 292 CheckerDocumentation.cpp</a> 293 294 <p> For each event type requested, a corresponding callback function must be 295 defined in the checker class (<a 296 href="http://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html"> 297 CheckerDocumentation.cpp</a> shows the 298 correct function name and signature for each event type). 299 300 <p> As an example, consider <tt>SimpleStreamChecker</tt>. This checker needs to 301 take action at the following times: 302 303 <ul> 304 <li>Before making a call to a function, check if the function is <tt>fclose</tt>. 305 If so, check the parameter being passed. 306 <li>After making a function call, check if the function is <tt>fopen</tt>. If 307 so, process the return value. 308 <li>When values go out of scope, check whether they are still-open file 309 descriptors, and report a bug if so. In addition, remove any information about 310 them from the program state in order to keep the state as small as possible. 311 <li>When file pointers "escape" (are used in a way that the analyzer can no longer 312 track them), mark them as such. This prevents false positives in the cases where 313 the analyzer cannot be sure whether the file was closed or not. 314 </ul> 315 316 <p>These events that will be used for each of these actions are, respectively, <a 317 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PreCall.html">PreCall</a>, 318 <a 319 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PostCall.html">PostCall</a>, 320 <a 321 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1DeadSymbols.html">DeadSymbols</a>, 322 and <a 323 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PointerEscape.html">PointerEscape</a>. 324 The high-level structure of the checker's class is thus: 325 326 <pre class="code_example"> 327 class SimpleStreamChecker : public Checker<check::PreCall, 328 check::PostCall, 329 check::DeadSymbols, 330 check::PointerEscape> { 331 public: 332 333 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 334 335 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 336 337 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 338 339 ProgramStateRef checkPointerEscape(ProgramStateRef State, 340 const InvalidatedSymbols &Escaped, 341 const CallEvent *Call, 342 PointerEscapeKind Kind) const; 343 }; 344 </pre> 345 346 <h2 id=extendingstates>Custom Program States</h2> 347 348 <p> Checkers often need to keep track of information specific to the checks they 349 perform. However, since checkers have no guarantee about the order in which the 350 program will be explored, or even that all possible paths will be explored, this 351 state information cannot be kept within individual checkers. Therefore, if 352 checkers need to store custom information, they need to add new categories of 353 data to the <tt>ProgramState</tt>. The preferred way to do so is to use one of 354 several macros designed for this purpose. They are: 355 356 <ul> 357 <li><a 358 href="http://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#ae4cddb54383cd702a045d7c61b009147">REGISTER_TRAIT_WITH_PROGRAMSTATE</a>: 359 Used when the state information is a single value. The methods available for 360 state types declared with this macro are <tt>get</tt>, <tt>set</tt>, and 361 <tt>remove</tt>. 362 <li><a 363 href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#aa27656fa0ce65b0d9ba12eb3c02e8be9">REGISTER_LIST_WITH_PROGRAMSTATE</a>: 364 Used when the state information is a list of values. The methods available for 365 state types declared with this macro are <tt>add</tt>, <tt>get</tt>, 366 <tt>remove</tt>, and <tt>contains</tt>. 367 <li><a 368 href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#ad90f9387b94b344eaaf499afec05f4d1">REGISTER_SET_WITH_PROGRAMSTATE</a>: 369 Used when the state information is a set of values. The methods available for 370 state types declared with this macro are <tt>add</tt>, <tt>get</tt>, 371 <tt>remove</tt>, and <tt>contains</tt>. 372 <li><a 373 href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#a6d1893bb8c18543337b6c363c1319fcf">REGISTER_MAP_WITH_PROGRAMSTATE</a>: 374 Used when the state information is a map from a key to a value. The methods 375 available for state types declared with this macro are <tt>add</tt>, 376 <tt>set</tt>, <tt>get</tt>, <tt>remove</tt>, and <tt>contains</tt>. 377 </ul> 378 379 <p>All of these macros take as parameters the name to be used for the custom 380 category of state information and the data type(s) to be used for storage. The 381 data type(s) specified will become the parameter type and/or return type of the 382 methods that manipulate the new category of state information. Each of these 383 methods are templated with the name of the custom data type. 384 385 <p>For example, a common case is the need to track data associated with a 386 symbolic expression; a map type is the most logical way to implement this. The 387 key for this map will be a pointer to a symbolic expression 388 (<tt>SymbolRef</tt>). If the data type to be associated with the symbolic 389 expression is an integer, then the custom category of state information would be 390 declared as 391 392 <pre class="code_example"> 393 REGISTER_MAP_WITH_PROGRAMSTATE(ExampleDataType, SymbolRef, int) 394 </pre> 395 396 The data would be accessed with the function 397 398 <pre class="code_example"> 399 ProgramStateRef state; 400 SymbolRef Sym; 401 ... 402 int currentlValue = state->get<ExampleDataType>(Sym); 403 </pre> 404 405 and set with the function 406 407 <pre class="code_example"> 408 ProgramStateRef state; 409 SymbolRef Sym; 410 int newValue; 411 ... 412 ProgramStateRef newState = state->set<ExampleDataType>(Sym, newValue); 413 </pre> 414 415 <p>In addition, the macros define a data type used for storing the data of the 416 new data category; the name of this type is the name of the data category with 417 "Ty" appended. For <tt>REGISTER_TRAIT_WITH_PROGRAMSTATE</tt>, this will simply 418 be passed data type; for the other three macros, this will be a specialized 419 version of the <a 420 href="http://llvm.org/doxygen/classllvm_1_1ImmutableList.html">llvm::ImmutableList</a>, 421 <a 422 href="http://llvm.org/doxygen/classllvm_1_1ImmutableSet.html">llvm::ImmutableSet</a>, 423 or <a 424 href="http://llvm.org/doxygen/classllvm_1_1ImmutableMap.html">llvm::ImmutableMap</a> 425 templated class. For the <tt>ExampleDataType</tt> example above, the type 426 created would be equivalent to writing the declaration: 427 428 <pre class="code_example"> 429 typedef llvm::ImmutableMap<SymbolRef, int> ExampleDataTypeTy; 430 </pre> 431 432 <p>These macros will cover a majority of use cases; however, they still have a 433 few limitations. They cannot be used inside namespaces (since they expand to 434 contain top-level namespace references), and the data types that they define 435 cannot be referenced from more than one file. 436 437 <p>Note that <tt>ProgramStates</tt> are immutable; instead of modifying an existing 438 one, functions that modify the state will return a copy of the previous state 439 with the change applied. This updated state must be then provided to the 440 analyzer core by calling the <tt>CheckerContext::addTransition</tt> function. 441 <h2 id=bugs>Bug Reports</h2> 442 443 444 <p> When a checker detects a mistake in the analyzed code, it needs a way to 445 report it to the analyzer core so that it can be displayed. The two classes used 446 to construct this report are <tt><a 447 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugType.html">BugType</a></tt> 448 and <tt><a 449 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugReport.html"> 450 BugReport</a></tt>. 451 452 <p> 453 <tt>BugType</tt>, as the name would suggest, represents a type of bug. The 454 constructor for <tt>BugType</tt> takes two parameters: The name of the bug 455 type, and the name of the category of the bug. These are used (e.g.) in the 456 summary page generated by the scan-build tool. 457 458 <P> 459 The <tt>BugReport</tt> class represents a specific occurrence of a bug. In 460 the most common case, three parameters are used to form a <tt>BugReport</tt>: 461 <ol> 462 <li>The type of bug, specified as an instance of the <tt>BugType</tt> class. 463 <li>A short descriptive string. This is placed at the location of the bug in 464 the detailed line-by-line output generated by scan-build. 465 <li>The context in which the bug occurred. This includes both the location of 466 the bug in the program and the program's state when the location is reached. These are 467 both encapsulated in an <tt>ExplodedNode</tt>. 468 </ol> 469 470 <p>In order to obtain the correct <tt>ExplodedNode</tt>, a decision must be made 471 as to whether or not analysis can continue along the current path. This decision 472 is based on whether the detected bug is one that would prevent the program under 473 analysis from continuing. For example, leaking of a resource should not stop 474 analysis, as the program can continue to run after the leak. Dereferencing a 475 null pointer, on the other hand, should stop analysis, as there is no way for 476 the program to meaningfully continue after such an error. 477 478 <p>If analysis can continue, then the most recent <tt>ExplodedNode</tt> 479 generated by the checker can be passed to the <tt>BugReport</tt> constructor 480 without additional modification. This <tt>ExplodedNode</tt> will be the one 481 returned by the most recent call to <a 482 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a264f48d97809707049689c37aa35af78">CheckerContext::addTransition</a>. 483 If no transition has been performed during the current callback, the checker should call <a 484 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a264f48d97809707049689c37aa35af78">CheckerContext::addTransition()</a> 485 and use the returned node for bug reporting. 486 487 <p>If analysis can not continue, then the current state should be transitioned 488 into a so-called <i>sink node</i>, a node from which no further analysis will be 489 performed. This is done by calling the <a 490 href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#adeea33a5a2bed190210c4a2bb807a6f0"> 491 CheckerContext::generateSink</a> function; this function is the same as the 492 <tt>addTransition</tt> function, but marks the state as a sink node. Like 493 <tt>addTransition</tt>, this returns an <tt>ExplodedNode</tt> with the updated 494 state, which can then be passed to the <tt>BugReport</tt> constructor. 495 496 <p> 497 After a <tt>BugReport</tt> is created, it should be passed to the analyzer core 498 by calling <a href = "http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#ae7738af2cbfd1d713edec33d3203dff5">CheckerContext::emitReport</a>. 499 500 <h2 id=ast>AST Visitors</h2> 501 Some checks might not require path-sensitivity to be effective. Simple AST walk 502 might be sufficient. If that is the case, consider implementing a Clang 503 compiler warning. On the other hand, a check might not be acceptable as a compiler 504 warning; for example, because of a relatively high false positive rate. In this 505 situation, AST callbacks <tt><b>checkASTDecl</b></tt> and 506 <tt><b>checkASTCodeBody</b></tt> are your best friends. 507 508 <h2 id=testing>Testing</h2> 509 Every patch should be well tested with Clang regression tests. The checker tests 510 live in <tt>clang/test/Analysis</tt> folder. To run all of the analyzer tests, 511 execute the following from the <tt>clang</tt> build directory: 512 <pre class="code"> 513 $ <b>TESTDIRS=Analysis make test</b> 514 </pre> 515 516 <h2 id=commands>Useful Commands/Debugging Hints</h2> 517 <ul> 518 <li> 519 While investigating a checker-related issue, instruct the analyzer to only 520 execute a single checker: 521 <br><tt> 522 $ <b>clang -cc1 -analyze -analyzer-checker=osx.KeychainAPI test.c</b> 523 </tt> 524 </li> 525 <li> 526 To dump AST: 527 <br><tt> 528 $ <b>clang -cc1 -ast-dump test.c</b> 529 </tt> 530 </li> 531 <li> 532 To view/dump CFG use <tt>debug.ViewCFG</tt> or <tt>debug.DumpCFG</tt> checkers: 533 <br><tt> 534 $ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewCFG test.c</b> 535 </tt> 536 </li> 537 <li> 538 To see all available debug checkers: 539 <br><tt> 540 $ <b>clang -cc1 -analyzer-checker-help | grep "debug"</b> 541 </tt> 542 </li> 543 <li> 544 To see which function is failing while processing a large file use 545 <tt>-analyzer-display-progress</tt> option. 546 </li> 547 <li> 548 While debugging execute <tt>clang -cc1 -analyze -analyzer-checker=core</tt> 549 instead of <tt>clang --analyze</tt>, as the later would call the compiler 550 in a separate process. 551 </li> 552 <li> 553 To view <tt>ExplodedGraph</tt> (the state graph explored by the analyzer) while 554 debugging, goto a frame that has <tt>clang::ento::ExprEngine</tt> object and 555 execute: 556 <br><tt> 557 (gdb) <b>p ViewGraph(0)</b> 558 </tt> 559 </li> 560 <li> 561 To see the <tt>ProgramState</tt> while debugging use the following command. 562 <br><tt> 563 (gdb) <b>p State->dump()</b> 564 </tt> 565 </li> 566 <li> 567 To see <tt>clang::Expr</tt> while debugging use the following command. If you 568 pass in a SourceManager object, it will also dump the corresponding line in the 569 source code. 570 <br><tt> 571 (gdb) <b>p E->dump()</b> 572 </tt> 573 </li> 574 <li> 575 To dump AST of a method that the current <tt>ExplodedNode</tt> belongs to: 576 <br><tt> 577 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump()</b> 578 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump(getContext().getSourceManager())</b> 579 </tt> 580 </li> 581 </ul> 582 583 <h2 id=additioninformation>Additional Sources of Information</h2> 584 585 Here are some additional resources that are useful when working on the Clang 586 Static Analyzer: 587 588 <ul> 589 <li> <a href="http://clang.llvm.org/doxygen">Clang doxygen</a>. Contains 590 up-to-date documentation about the APIs available in Clang. Relevant entries 591 have been linked throughout this page. Also of use is the 592 <a href="http://llvm.org/doxygen">LLVM doxygen</a>, when dealing with classes 593 from LLVM. 594 <li> The <a href="http://lists.cs.uiuc.edu/mailman/listinfo/cfe-dev"> 595 cfe-dev mailing list</a>. This is the primary mailing list used for 596 discussion of Clang development (including static code analysis). The 597 <a href="http://lists.cs.uiuc.edu/pipermail/cfe-dev">archive</a> also contains 598 a lot of information. 599 <li> The "Building a Checker in 24 hours" presentation given at the <a 600 href="http://llvm.org/devmtg/2012-11">November 2012 LLVM Developer's 601 meeting</a>. Describes the construction of SimpleStreamChecker. <a 602 href="http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">Slides</a> 603 and <a 604 href="http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4">video</a> 605 are available. 606 </ul> 607 608 </div> 609 </div> 610 </body> 611 </html> 612