Home | History | Annotate | only in /external/compiler-rt
Up to higher level directory
NameDateSize
.arcconfig03-Jun-201491
.gitignore03-Jun-201438
Android.mk03-Jun-20149.2K
BlocksRuntime/03-Jun-2014
cmake/03-Jun-2014
CMakeLists.txt03-Jun-20146.7K
CREDITS.TXT03-Jun-2014846
include/03-Jun-2014
lib/03-Jun-2014
LICENSE.TXT03-Jun-20144.4K
make/03-Jun-2014
Makefile03-Jun-20149.3K
README.android03-Jun-20142.1K
README.txt03-Jun-201414.5K
SDKs/03-Jun-2014
test/03-Jun-2014
www/03-Jun-2014

README.android

      1 /*
      2  * README.android describes in high-level the compiler-rt changes that we
      3  * cannot push upstream to the llvm.org repository:
      4  *  - Changes due to Android's build system.
      5  *  - Changes due to Android's toolchain.
      6  *  - Changes due to the limitations in Android-based consumer electronics.
      7  *
      8  * Some of them are to-dos. If and when they are done, there will no longer be
      9  * merge conflicts with upstream on those parts.
     10  *
     11  * The file contains useful hints when we try to resolve future 3-way merge
     12  * conflicts.
     13  */
     14 
     15 * For JellyBean: Synced to upstream r155350
     16 * For JellyBean MR1: Synced to upstream r162279
     17 * For Jellybean MR2: Synced to upstream r177337
     18 * For Key Lime Pie: Synced to upstream r187889
     19 
     20 * Recent downstreaming on 2013/8/8: Synced to r187889 (Contact srhines for merge questions.)
     21 * Recent downstreaming on 2013/6/13: Synced to r183849 (Contact srhines for merge questions.)
     22 * Recent downstreaming on 2013/5/3: Synced to r180792 (Contact srhines for merge questions.)
     23 * Recent downstreaming on 2013/3/18: Synced to r177337 (Contact srhines for merge questions.)
     24 * Recent downstreaming on 2013/3/5: Synced to r176091 (Contact srhines for merge questions.)
     25 * Recent downstreaming on 2013/1/8: Synced to r171802 (Contact srhines for merge questions.)
     26 * Recent downstreaming on 2012/08/23: Synced to r162279 (Contact srhines for merge questions.)
     27 * Recent downstreaming on 2012/08/15: Synced to r159129 (Contact sliao for merge questions.)
     28 * Cherry-pick on 2012/07/27: https://llvm.org/svn/llvm-project/compiler-rt/trunk@160853 for ASan (Contact srhines for merge questions.)
     29 * Cherry-pick on 2012/05/23: https://llvm.org/svn/llvm-project/compiler-rt/trunk@157318 for ASan (Contact srhines for merge questions.)
     30 * Recent downstreaming on 2012/04/25: Synced to r155350 (Contact sliao for merge questions.)
     31 * Recent downstreaming on 2012/03/08: Synced to r152058 (Contact srhines for merge questions.)
     32 
     33 TODO: This is still not building by default (no Android.mk files are present
     34 yet). Look at frameworks/compile/libbcc/runtime for potential starting points.
     35 
     36 TODO: Switch libbcc to use this version of compiler-rt instead of its own
     37 tweaked version.
     38 

README.txt

      1 Compiler-RT
      2 ================================
      3 
      4 This directory and its subdirectories contain source code for the compiler
      5 support routines.
      6 
      7 Compiler-RT is open source software. You may freely distribute it under the
      8 terms of the license agreement found in LICENSE.txt.
      9 
     10 ================================
     11 
     12 This is a replacement library for libgcc.  Each function is contained
     13 in its own file.  Each function has a corresponding unit test under
     14 test/Unit.
     15 
     16 A rudimentary script to test each file is in the file called
     17 test/Unit/test.
     18 
     19 Here is the specification for this library:
     20 
     21 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
     22 
     23 Here is a synopsis of the contents of this library:
     24 
     25 typedef      int si_int;
     26 typedef unsigned su_int;
     27 
     28 typedef          long long di_int;
     29 typedef unsigned long long du_int;
     30 
     31 // Integral bit manipulation
     32 
     33 di_int __ashldi3(di_int a, si_int b);      // a << b
     34 ti_int __ashlti3(ti_int a, si_int b);      // a << b
     35 
     36 di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
     37 ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
     38 di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
     39 ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
     40 
     41 si_int __clzsi2(si_int a);  // count leading zeros
     42 si_int __clzdi2(di_int a);  // count leading zeros
     43 si_int __clzti2(ti_int a);  // count leading zeros
     44 si_int __ctzsi2(si_int a);  // count trailing zeros
     45 si_int __ctzdi2(di_int a);  // count trailing zeros
     46 si_int __ctzti2(ti_int a);  // count trailing zeros
     47 
     48 si_int __ffsdi2(di_int a);  // find least significant 1 bit
     49 si_int __ffsti2(ti_int a);  // find least significant 1 bit
     50 
     51 si_int __paritysi2(si_int a);  // bit parity
     52 si_int __paritydi2(di_int a);  // bit parity
     53 si_int __parityti2(ti_int a);  // bit parity
     54 
     55 si_int __popcountsi2(si_int a);  // bit population
     56 si_int __popcountdi2(di_int a);  // bit population
     57 si_int __popcountti2(ti_int a);  // bit population
     58 
     59 uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
     60 uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
     61 
     62 // Integral arithmetic
     63 
     64 di_int __negdi2    (di_int a);                         // -a
     65 ti_int __negti2    (ti_int a);                         // -a
     66 di_int __muldi3    (di_int a, di_int b);               // a * b
     67 ti_int __multi3    (ti_int a, ti_int b);               // a * b
     68 si_int __divsi3    (si_int a, si_int b);               // a / b   signed
     69 di_int __divdi3    (di_int a, di_int b);               // a / b   signed
     70 ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
     71 su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
     72 du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
     73 tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
     74 si_int __modsi3    (si_int a, si_int b);               // a % b   signed
     75 di_int __moddi3    (di_int a, di_int b);               // a % b   signed
     76 ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
     77 su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
     78 du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
     79 tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
     80 du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
     81 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
     82 su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
     83 si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
     84 
     85 
     86 
     87 //  Integral arithmetic with trapping overflow
     88 
     89 si_int __absvsi2(si_int a);           // abs(a)
     90 di_int __absvdi2(di_int a);           // abs(a)
     91 ti_int __absvti2(ti_int a);           // abs(a)
     92 
     93 si_int __negvsi2(si_int a);           // -a
     94 di_int __negvdi2(di_int a);           // -a
     95 ti_int __negvti2(ti_int a);           // -a
     96 
     97 si_int __addvsi3(si_int a, si_int b);  // a + b
     98 di_int __addvdi3(di_int a, di_int b);  // a + b
     99 ti_int __addvti3(ti_int a, ti_int b);  // a + b
    100 
    101 si_int __subvsi3(si_int a, si_int b);  // a - b
    102 di_int __subvdi3(di_int a, di_int b);  // a - b
    103 ti_int __subvti3(ti_int a, ti_int b);  // a - b
    104 
    105 si_int __mulvsi3(si_int a, si_int b);  // a * b
    106 di_int __mulvdi3(di_int a, di_int b);  // a * b
    107 ti_int __mulvti3(ti_int a, ti_int b);  // a * b
    108 
    109 
    110 // Integral arithmetic which returns if overflow
    111 
    112 si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
    113 di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
    114 ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to
    115  one if result not in signed range
    116 
    117 
    118 //  Integral comparison: a  < b -> 0
    119 //                       a == b -> 1
    120 //                       a  > b -> 2
    121 
    122 si_int __cmpdi2 (di_int a, di_int b);
    123 si_int __cmpti2 (ti_int a, ti_int b);
    124 si_int __ucmpdi2(du_int a, du_int b);
    125 si_int __ucmpti2(tu_int a, tu_int b);
    126 
    127 //  Integral / floating point conversion
    128 
    129 di_int __fixsfdi(      float a);
    130 di_int __fixdfdi(     double a);
    131 di_int __fixxfdi(long double a);
    132 
    133 ti_int __fixsfti(      float a);
    134 ti_int __fixdfti(     double a);
    135 ti_int __fixxfti(long double a);
    136 uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
    137 
    138 su_int __fixunssfsi(      float a);
    139 su_int __fixunsdfsi(     double a);
    140 su_int __fixunsxfsi(long double a);
    141 
    142 du_int __fixunssfdi(      float a);
    143 du_int __fixunsdfdi(     double a);
    144 du_int __fixunsxfdi(long double a);
    145 
    146 tu_int __fixunssfti(      float a);
    147 tu_int __fixunsdfti(     double a);
    148 tu_int __fixunsxfti(long double a);
    149 uint64_t __fixunstfdi(long double input);  // ppc only
    150 
    151 float       __floatdisf(di_int a);
    152 double      __floatdidf(di_int a);
    153 long double __floatdixf(di_int a);
    154 long double __floatditf(int64_t a);        // ppc only
    155 
    156 float       __floattisf(ti_int a);
    157 double      __floattidf(ti_int a);
    158 long double __floattixf(ti_int a);
    159 
    160 float       __floatundisf(du_int a);
    161 double      __floatundidf(du_int a);
    162 long double __floatundixf(du_int a);
    163 long double __floatunditf(uint64_t a);     // ppc only
    164 
    165 float       __floatuntisf(tu_int a);
    166 double      __floatuntidf(tu_int a);
    167 long double __floatuntixf(tu_int a);
    168 
    169 //  Floating point raised to integer power
    170 
    171 float       __powisf2(      float a, si_int b);  // a ^ b
    172 double      __powidf2(     double a, si_int b);  // a ^ b
    173 long double __powixf2(long double a, si_int b);  // a ^ b
    174 long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
    175 
    176 //  Complex arithmetic
    177 
    178 //  (a + ib) * (c + id)
    179 
    180       float _Complex __mulsc3( float a,  float b,  float c,  float d);
    181      double _Complex __muldc3(double a, double b, double c, double d);
    182 long double _Complex __mulxc3(long double a, long double b,
    183                               long double c, long double d);
    184 long double _Complex __multc3(long double a, long double b,
    185                               long double c, long double d); // ppc only
    186 
    187 //  (a + ib) / (c + id)
    188 
    189       float _Complex __divsc3( float a,  float b,  float c,  float d);
    190      double _Complex __divdc3(double a, double b, double c, double d);
    191 long double _Complex __divxc3(long double a, long double b,
    192                               long double c, long double d);
    193 long double _Complex __divtc3(long double a, long double b,
    194                               long double c, long double d);  // ppc only
    195 
    196 
    197 //         Runtime support
    198 
    199 // __clear_cache() is used to tell process that new instructions have been
    200 // written to an address range.  Necessary on processors that do not have
    201 // a unified instuction and data cache.
    202 void __clear_cache(void* start, void* end);
    203 
    204 // __enable_execute_stack() is used with nested functions when a trampoline
    205 // function is written onto the stack and that page range needs to be made
    206 // executable.
    207 void __enable_execute_stack(void* addr);
    208 
    209 // __gcc_personality_v0() is normally only called by the system unwinder.
    210 // C code (as opposed to C++) normally does not need a personality function
    211 // because there are no catch clauses or destructors to be run.  But there
    212 // is a C language extension __attribute__((cleanup(func))) which marks local
    213 // variables as needing the cleanup function "func" to be run when the
    214 // variable goes out of scope.  That includes when an exception is thrown,
    215 // so a personality handler is needed.  
    216 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
    217          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
    218          _Unwind_Context_t context);
    219 
    220 // for use with some implementations of assert() in <assert.h>
    221 void __eprintf(const char* format, const char* assertion_expression,
    222 				const char* line, const char* file);
    223 				
    224 
    225 
    226 //   Power PC specific functions
    227 
    228 // There is no C interface to the saveFP/restFP functions.  They are helper
    229 // functions called by the prolog and epilog of functions that need to save
    230 // a number of non-volatile float point registers.  
    231 saveFP
    232 restFP
    233 
    234 // PowerPC has a standard template for trampoline functions.  This function
    235 // generates a custom trampoline function with the specific realFunc
    236 // and localsPtr values.
    237 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
    238                                 const void* realFunc, void* localsPtr);
    239 
    240 // adds two 128-bit double-double precision values ( x + y )
    241 long double __gcc_qadd(long double x, long double y);  
    242 
    243 // subtracts two 128-bit double-double precision values ( x - y )
    244 long double __gcc_qsub(long double x, long double y); 
    245 
    246 // multiples two 128-bit double-double precision values ( x * y )
    247 long double __gcc_qmul(long double x, long double y);  
    248 
    249 // divides two 128-bit double-double precision values ( x / y )
    250 long double __gcc_qdiv(long double a, long double b);  
    251 
    252 
    253 //    ARM specific functions
    254 
    255 // There is no C interface to the switch* functions.  These helper functions
    256 // are only needed by Thumb1 code for efficient switch table generation.
    257 switch16
    258 switch32
    259 switch8
    260 switchu8
    261 
    262 // There is no C interface to the *_vfp_d8_d15_regs functions.  There are
    263 // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
    264 // SJLJ for exceptions, each function with a catch clause or destuctors needs
    265 // to save and restore all registers in it prolog and epliog.  But there is 
    266 // no way to access vector and high float registers from thumb1 code, so the 
    267 // compiler must add call outs to these helper functions in the prolog and 
    268 // epilog.
    269 restore_vfp_d8_d15_regs
    270 save_vfp_d8_d15_regs
    271 
    272 
    273 // Note: long ago ARM processors did not have floating point hardware support.
    274 // Floating point was done in software and floating point parameters were 
    275 // passed in integer registers.  When hardware support was added for floating
    276 // point, new *vfp functions were added to do the same operations but with 
    277 // floating point parameters in floating point registers.
    278 
    279 // Undocumented functions
    280 
    281 float  __addsf3vfp(float a, float b);   // Appears to return a + b
    282 double __adddf3vfp(double a, double b); // Appears to return a + b
    283 float  __divsf3vfp(float a, float b);   // Appears to return a / b
    284 double __divdf3vfp(double a, double b); // Appears to return a / b
    285 int    __eqsf2vfp(float a, float b);    // Appears to return  one
    286                                         //     iff a == b and neither is NaN.
    287 int    __eqdf2vfp(double a, double b);  // Appears to return  one
    288                                         //     iff a == b and neither is NaN.
    289 double __extendsfdf2vfp(float a);       // Appears to convert from
    290                                         //     float to double.
    291 int    __fixdfsivfp(double a);          // Appears to convert from
    292                                         //     double to int.
    293 int    __fixsfsivfp(float a);           // Appears to convert from
    294                                         //     float to int.
    295 unsigned int __fixunssfsivfp(float a);  // Appears to convert from
    296                                         //     float to unsigned int.
    297 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
    298                                         //     double to unsigned int.
    299 double __floatsidfvfp(int a);           // Appears to convert from
    300                                         //     int to double.
    301 float __floatsisfvfp(int a);            // Appears to convert from
    302                                         //     int to float.
    303 double __floatunssidfvfp(unsigned int a); // Appears to convert from
    304                                         //     unisgned int to double.
    305 float __floatunssisfvfp(unsigned int a); // Appears to convert from
    306                                         //     unisgned int to float.
    307 int __gedf2vfp(double a, double b);     // Appears to return __gedf2
    308                                         //     (a >= b)
    309 int __gesf2vfp(float a, float b);       // Appears to return __gesf2
    310                                         //     (a >= b)
    311 int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
    312                                         //     (a > b)
    313 int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
    314                                         //     (a > b)
    315 int __ledf2vfp(double a, double b);     // Appears to return __ledf2
    316                                         //     (a <= b)
    317 int __lesf2vfp(float a, float b);       // Appears to return __lesf2
    318                                         //     (a <= b)
    319 int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
    320                                         //     (a < b)
    321 int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
    322                                         //     (a < b)
    323 double __muldf3vfp(double a, double b); // Appears to return a * b
    324 float __mulsf3vfp(float a, float b);    // Appears to return a * b
    325 int __nedf2vfp(double a, double b);     // Appears to return __nedf2
    326                                         //     (a != b)
    327 double __negdf2vfp(double a);           // Appears to return -a
    328 float __negsf2vfp(float a);             // Appears to return -a
    329 float __negsf2vfp(float a);             // Appears to return -a
    330 double __subdf3vfp(double a, double b); // Appears to return a - b
    331 float __subsf3vfp(float a, float b);    // Appears to return a - b
    332 float __truncdfsf2vfp(double a);        // Appears to convert from
    333                                         //     double to float.
    334 int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
    335 int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
    336 
    337 
    338 Preconditions are listed for each function at the definition when there are any.
    339 Any preconditions reflect the specification at
    340 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
    341 
    342 Assumptions are listed in "int_lib.h", and in individual files.  Where possible
    343 assumptions are checked at compile time.
    344