Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
     11 
     12 namespace Eigen {
     13 
     14 /** \geometry_module \ingroup Geometry_Module
     15   *
     16   * \class AngleAxis
     17   *
     18   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
     19   *
     20   * \param _Scalar the scalar type, i.e., the type of the coefficients.
     21   *
     22   * The following two typedefs are provided for convenience:
     23   * \li \c AngleAxisf for \c float
     24   * \li \c AngleAxisd for \c double
     25   *
     26   * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
     27   *
     28   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
     29   * mimic Euler-angles. Here is an example:
     30   * \include AngleAxis_mimic_euler.cpp
     31   * Output: \verbinclude AngleAxis_mimic_euler.out
     32   *
     33   * \note This class is not aimed to be used to store a rotation transformation,
     34   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
     35   * and transformation objects.
     36   *
     37   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
     38   */
     39 
     40 template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
     41 {
     42   typedef _Scalar Scalar;
     43 };
     44 
     45 template<typename _Scalar>
     46 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
     47 {
     48   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
     49 
     50 public:
     51 
     52   using Base::operator*;
     53 
     54   enum { Dim = 3 };
     55   /** the scalar type of the coefficients */
     56   typedef _Scalar Scalar;
     57   typedef Matrix<Scalar,3,3> Matrix3;
     58   typedef Matrix<Scalar,3,1> Vector3;
     59   typedef Quaternion<Scalar> QuaternionType;
     60 
     61 protected:
     62 
     63   Vector3 m_axis;
     64   Scalar m_angle;
     65 
     66 public:
     67 
     68   /** Default constructor without initialization. */
     69   AngleAxis() {}
     70   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
     71     * and an \a axis which must be normalized. */
     72   template<typename Derived>
     73   inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
     74   /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
     75   inline AngleAxis(const QuaternionType& q) { *this = q; }
     76   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
     77   template<typename Derived>
     78   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
     79 
     80   Scalar angle() const { return m_angle; }
     81   Scalar& angle() { return m_angle; }
     82 
     83   const Vector3& axis() const { return m_axis; }
     84   Vector3& axis() { return m_axis; }
     85 
     86   /** Concatenates two rotations */
     87   inline QuaternionType operator* (const AngleAxis& other) const
     88   { return QuaternionType(*this) * QuaternionType(other); }
     89 
     90   /** Concatenates two rotations */
     91   inline QuaternionType operator* (const QuaternionType& other) const
     92   { return QuaternionType(*this) * other; }
     93 
     94   /** Concatenates two rotations */
     95   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
     96   { return a * QuaternionType(b); }
     97 
     98   /** Concatenates two rotations */
     99   inline Matrix3 operator* (const Matrix3& other) const
    100   { return toRotationMatrix() * other; }
    101 
    102   /** Concatenates two rotations */
    103   inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
    104   { return a * b.toRotationMatrix(); }
    105 
    106   /** Applies rotation to vector */
    107   inline Vector3 operator* (const Vector3& other) const
    108   { return toRotationMatrix() * other; }
    109 
    110   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
    111   AngleAxis inverse() const
    112   { return AngleAxis(-m_angle, m_axis); }
    113 
    114   AngleAxis& operator=(const QuaternionType& q);
    115   template<typename Derived>
    116   AngleAxis& operator=(const MatrixBase<Derived>& m);
    117 
    118   template<typename Derived>
    119   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
    120   Matrix3 toRotationMatrix(void) const;
    121 
    122   /** \returns \c *this with scalar type casted to \a NewScalarType
    123     *
    124     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    125     * then this function smartly returns a const reference to \c *this.
    126     */
    127   template<typename NewScalarType>
    128   inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
    129   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
    130 
    131   /** Copy constructor with scalar type conversion */
    132   template<typename OtherScalarType>
    133   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
    134   {
    135     m_axis = other.axis().template cast<Scalar>();
    136     m_angle = Scalar(other.angle());
    137   }
    138 
    139   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    140     * determined by \a prec.
    141     *
    142     * \sa MatrixBase::isApprox() */
    143   bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
    144   { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
    145 };
    146 
    147 /** \ingroup Geometry_Module
    148   * single precision angle-axis type */
    149 typedef AngleAxis<float> AngleAxisf;
    150 /** \ingroup Geometry_Module
    151   * double precision angle-axis type */
    152 typedef AngleAxis<double> AngleAxisd;
    153 
    154 /** Set \c *this from a quaternion.
    155   * The axis is normalized.
    156   */
    157 template<typename Scalar>
    158 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
    159 {
    160   Scalar n2 = q.vec().squaredNorm();
    161   if (n2 < precision<Scalar>()*precision<Scalar>())
    162   {
    163     m_angle = 0;
    164     m_axis << 1, 0, 0;
    165   }
    166   else
    167   {
    168     m_angle = 2*std::acos(q.w());
    169     m_axis = q.vec() / ei_sqrt(n2);
    170   }
    171   return *this;
    172 }
    173 
    174 /** Set \c *this from a 3x3 rotation matrix \a mat.
    175   */
    176 template<typename Scalar>
    177 template<typename Derived>
    178 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
    179 {
    180   // Since a direct conversion would not be really faster,
    181   // let's use the robust Quaternion implementation:
    182   return *this = QuaternionType(mat);
    183 }
    184 
    185 /** Constructs and \returns an equivalent 3x3 rotation matrix.
    186   */
    187 template<typename Scalar>
    188 typename AngleAxis<Scalar>::Matrix3
    189 AngleAxis<Scalar>::toRotationMatrix(void) const
    190 {
    191   Matrix3 res;
    192   Vector3 sin_axis  = ei_sin(m_angle) * m_axis;
    193   Scalar c = ei_cos(m_angle);
    194   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
    195 
    196   Scalar tmp;
    197   tmp = cos1_axis.x() * m_axis.y();
    198   res.coeffRef(0,1) = tmp - sin_axis.z();
    199   res.coeffRef(1,0) = tmp + sin_axis.z();
    200 
    201   tmp = cos1_axis.x() * m_axis.z();
    202   res.coeffRef(0,2) = tmp + sin_axis.y();
    203   res.coeffRef(2,0) = tmp - sin_axis.y();
    204 
    205   tmp = cos1_axis.y() * m_axis.z();
    206   res.coeffRef(1,2) = tmp - sin_axis.x();
    207   res.coeffRef(2,1) = tmp + sin_axis.x();
    208 
    209   res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
    210 
    211   return res;
    212 }
    213 
    214 } // end namespace Eigen
    215