Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
     11 
     12 namespace Eigen {
     13 
     14 /** \geometry_module \ingroup Geometry_Module
     15   *
     16   * \class Rotation2D
     17   *
     18   * \brief Represents a rotation/orientation in a 2 dimensional space.
     19   *
     20   * \param _Scalar the scalar type, i.e., the type of the coefficients
     21   *
     22   * This class is equivalent to a single scalar representing a counter clock wise rotation
     23   * as a single angle in radian. It provides some additional features such as the automatic
     24   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
     25   * interface to Quaternion in order to facilitate the writing of generic algorithms
     26   * dealing with rotations.
     27   *
     28   * \sa class Quaternion, class Transform
     29   */
     30 template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
     31 {
     32   typedef _Scalar Scalar;
     33 };
     34 
     35 template<typename _Scalar>
     36 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
     37 {
     38   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
     39 
     40 public:
     41 
     42   using Base::operator*;
     43 
     44   enum { Dim = 2 };
     45   /** the scalar type of the coefficients */
     46   typedef _Scalar Scalar;
     47   typedef Matrix<Scalar,2,1> Vector2;
     48   typedef Matrix<Scalar,2,2> Matrix2;
     49 
     50 protected:
     51 
     52   Scalar m_angle;
     53 
     54 public:
     55 
     56   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
     57   inline Rotation2D(Scalar a) : m_angle(a) {}
     58 
     59   /** \returns the rotation angle */
     60   inline Scalar angle() const { return m_angle; }
     61 
     62   /** \returns a read-write reference to the rotation angle */
     63   inline Scalar& angle() { return m_angle; }
     64 
     65   /** \returns the inverse rotation */
     66   inline Rotation2D inverse() const { return -m_angle; }
     67 
     68   /** Concatenates two rotations */
     69   inline Rotation2D operator*(const Rotation2D& other) const
     70   { return m_angle + other.m_angle; }
     71 
     72   /** Concatenates two rotations */
     73   inline Rotation2D& operator*=(const Rotation2D& other)
     74   { return m_angle += other.m_angle; return *this; }
     75 
     76   /** Applies the rotation to a 2D vector */
     77   Vector2 operator* (const Vector2& vec) const
     78   { return toRotationMatrix() * vec; }
     79 
     80   template<typename Derived>
     81   Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
     82   Matrix2 toRotationMatrix(void) const;
     83 
     84   /** \returns the spherical interpolation between \c *this and \a other using
     85     * parameter \a t. It is in fact equivalent to a linear interpolation.
     86     */
     87   inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
     88   { return m_angle * (1-t) + other.angle() * t; }
     89 
     90   /** \returns \c *this with scalar type casted to \a NewScalarType
     91     *
     92     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
     93     * then this function smartly returns a const reference to \c *this.
     94     */
     95   template<typename NewScalarType>
     96   inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
     97   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
     98 
     99   /** Copy constructor with scalar type conversion */
    100   template<typename OtherScalarType>
    101   inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
    102   {
    103     m_angle = Scalar(other.angle());
    104   }
    105 
    106   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    107     * determined by \a prec.
    108     *
    109     * \sa MatrixBase::isApprox() */
    110   bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
    111   { return ei_isApprox(m_angle,other.m_angle, prec); }
    112 };
    113 
    114 /** \ingroup Geometry_Module
    115   * single precision 2D rotation type */
    116 typedef Rotation2D<float> Rotation2Df;
    117 /** \ingroup Geometry_Module
    118   * double precision 2D rotation type */
    119 typedef Rotation2D<double> Rotation2Dd;
    120 
    121 /** Set \c *this from a 2x2 rotation matrix \a mat.
    122   * In other words, this function extract the rotation angle
    123   * from the rotation matrix.
    124   */
    125 template<typename Scalar>
    126 template<typename Derived>
    127 Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
    128 {
    129   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
    130   m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
    131   return *this;
    132 }
    133 
    134 /** Constructs and \returns an equivalent 2x2 rotation matrix.
    135   */
    136 template<typename Scalar>
    137 typename Rotation2D<Scalar>::Matrix2
    138 Rotation2D<Scalar>::toRotationMatrix(void) const
    139 {
    140   Scalar sinA = ei_sin(m_angle);
    141   Scalar cosA = ei_cos(m_angle);
    142   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
    143 }
    144 
    145 } // end namespace Eigen
    146