Home | History | Annotate | Download | only in bench
      1 
      2 //g++-4.4 -DNOMTL  -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid  -DOSKI -I ~/Coding/LinearAlgebra/mtl4/  spmv.cpp  -I .. -O2 -DNDEBUG -lrt  -lm -l oski_mat_CSC_Tid  -loskilt && ./a.out r200000 c200000 n100 t1 p1
      3 
      4 #define SCALAR double
      5 
      6 #include <iostream>
      7 #include <algorithm>
      8 #include "BenchTimer.h"
      9 #include "BenchSparseUtil.h"
     10 
     11 #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE);
     12 
     13 // #ifdef MKL
     14 //
     15 // #include "mkl_types.h"
     16 // #include "mkl_spblas.h"
     17 //
     18 // template<typename Lhs,typename Rhs,typename Res>
     19 // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
     20 // {
     21 //   char n = 'N';
     22 //   float alpha = 1;
     23 //   char matdescra[6];
     24 //   matdescra[0] = 'G';
     25 //   matdescra[1] = 0;
     26 //   matdescra[2] = 0;
     27 //   matdescra[3] = 'C';
     28 //   mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
     29 //              lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
     30 //              pntre, b, &ldb, &beta, c, &ldc);
     31 // //   mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
     32 // //                 lhs._valuePtr(), lhs.rows(), DST, dst_stride);
     33 // }
     34 //
     35 // #endif
     36 
     37 int main(int argc, char *argv[])
     38 {
     39   int size = 10000;
     40   int rows = size;
     41   int cols = size;
     42   int nnzPerCol = 40;
     43   int tries = 2;
     44   int repeats = 2;
     45 
     46   bool need_help = false;
     47   for(int i = 1; i < argc; i++)
     48   {
     49     if(argv[i][0] == 'r')
     50     {
     51       rows = atoi(argv[i]+1);
     52     }
     53     else if(argv[i][0] == 'c')
     54     {
     55       cols = atoi(argv[i]+1);
     56     }
     57     else if(argv[i][0] == 'n')
     58     {
     59       nnzPerCol = atoi(argv[i]+1);
     60     }
     61     else if(argv[i][0] == 't')
     62     {
     63       tries = atoi(argv[i]+1);
     64     }
     65     else if(argv[i][0] == 'p')
     66     {
     67       repeats = atoi(argv[i]+1);
     68     }
     69     else
     70     {
     71       need_help = true;
     72     }
     73   }
     74   if(need_help)
     75   {
     76     std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n";
     77     return 1;
     78   }
     79 
     80   std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n";
     81 
     82   EigenSparseMatrix sm(rows,cols);
     83   DenseVector dv(cols), res(rows);
     84   dv.setRandom();
     85 
     86   BenchTimer t;
     87   while (nnzPerCol>=4)
     88   {
     89     std::cout << "nnz: " << nnzPerCol << "\n";
     90     sm.setZero();
     91     fillMatrix2(nnzPerCol, rows, cols, sm);
     92 
     93     // dense matrices
     94     #ifdef DENSEMATRIX
     95     {
     96       DenseMatrix dm(rows,cols), (rows,cols);
     97       eiToDense(sm, dm);
     98 
     99       SPMV_BENCH(res = dm * sm);
    100       std::cout << "Dense       " << t.value()/repeats << "\t";
    101 
    102       SPMV_BENCHres = dm.transpose() * sm);
    103       std::cout << t.value()/repeats << endl;
    104     }
    105     #endif
    106 
    107     // eigen sparse matrices
    108     {
    109       SPMV_BENCH(res.noalias() += sm * dv; )
    110       std::cout << "Eigen       " << t.value()/repeats << "\t";
    111 
    112       SPMV_BENCH(res.noalias() += sm.transpose() * dv; )
    113       std::cout << t.value()/repeats << endl;
    114     }
    115 
    116     // CSparse
    117     #ifdef CSPARSE
    118     {
    119       std::cout << "CSparse \n";
    120       cs *csm;
    121       eiToCSparse(sm, csm);
    122 
    123 //       BENCH();
    124 //       timer.stop();
    125 //       std::cout << "   a * b:\t" << timer.value() << endl;
    126 
    127 //       BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
    128 //       std::cout << "   a * b:\t" << timer.value() << endl;
    129     }
    130     #endif
    131 
    132     #ifdef OSKI
    133     {
    134       oski_matrix_t om;
    135       oski_vecview_t ov, ores;
    136       oski_Init();
    137       om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols,
    138                              SHARE_INPUTMAT, 1, INDEX_ZERO_BASED);
    139       ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT);
    140       ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
    141 
    142       SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
    143       std::cout << "OSKI        " << t.value()/repeats << "\t";
    144 
    145       SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
    146       std::cout << t.value()/repeats << "\n";
    147 
    148       // tune
    149       t.reset();
    150       t.start();
    151       oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY);
    152       oski_TuneMat(om);
    153       t.stop();
    154       double tuning = t.value();
    155 
    156       SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
    157       std::cout << "OSKI tuned  " << t.value()/repeats << "\t";
    158 
    159       SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
    160       std::cout << t.value()/repeats << "\t(" << tuning <<  ")\n";
    161 
    162 
    163       oski_DestroyMat(om);
    164       oski_DestroyVecView(ov);
    165       oski_DestroyVecView(ores);
    166       oski_Close();
    167     }
    168     #endif
    169 
    170     #ifndef NOUBLAS
    171     {
    172       using namespace boost::numeric;
    173       UblasMatrix um(rows,cols);
    174       eiToUblas(sm, um);
    175 
    176       boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows);
    177       Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv;
    178       Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res;
    179 
    180       SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true));
    181       std::cout << "ublas       " << t.value()/repeats << "\t";
    182 
    183       SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true));
    184       std::cout << t.value()/repeats << endl;
    185     }
    186     #endif
    187 
    188     // GMM++
    189     #ifndef NOGMM
    190     {
    191       GmmSparse gm(rows,cols);
    192       eiToGmm(sm, gm);
    193 
    194       std::vector<Scalar> gv(cols), gres(rows);
    195       Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv;
    196       Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res;
    197 
    198       SPMV_BENCH(gmm::mult(gm, gv, gres));
    199       std::cout << "GMM++       " << t.value()/repeats << "\t";
    200 
    201       SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
    202       std::cout << t.value()/repeats << endl;
    203     }
    204     #endif
    205 
    206     // MTL4
    207     #ifndef NOMTL
    208     {
    209       MtlSparse mm(rows,cols);
    210       eiToMtl(sm, mm);
    211       mtl::dense_vector<Scalar> mv(cols, 1.0);
    212       mtl::dense_vector<Scalar> mres(rows, 1.0);
    213 
    214       SPMV_BENCH(mres = mm * mv);
    215       std::cout << "MTL4        " << t.value()/repeats << "\t";
    216 
    217       SPMV_BENCH(mres = trans(mm) * mv);
    218       std::cout << t.value()/repeats << endl;
    219     }
    220     #endif
    221 
    222     std::cout << "\n";
    223 
    224     if(nnzPerCol==1)
    225       break;
    226     nnzPerCol -= nnzPerCol/2;
    227   }
    228 
    229   return 0;
    230 }
    231 
    232 
    233 
    234