Home | History | Annotate | Download | only in blas
      1       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
      2 *     .. Scalar Arguments ..
      3       INTEGER INCX,N
      4       CHARACTER DIAG,TRANS,UPLO
      5 *     ..
      6 *     .. Array Arguments ..
      7       DOUBLE PRECISION AP(*),X(*)
      8 *     ..
      9 *
     10 *  Purpose
     11 *  =======
     12 *
     13 *  DTPSV  solves one of the systems of equations
     14 *
     15 *     A*x = b,   or   A'*x = b,
     16 *
     17 *  where b and x are n element vectors and A is an n by n unit, or
     18 *  non-unit, upper or lower triangular matrix, supplied in packed form.
     19 *
     20 *  No test for singularity or near-singularity is included in this
     21 *  routine. Such tests must be performed before calling this routine.
     22 *
     23 *  Arguments
     24 *  ==========
     25 *
     26 *  UPLO   - CHARACTER*1.
     27 *           On entry, UPLO specifies whether the matrix is an upper or
     28 *           lower triangular matrix as follows:
     29 *
     30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
     31 *
     32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
     33 *
     34 *           Unchanged on exit.
     35 *
     36 *  TRANS  - CHARACTER*1.
     37 *           On entry, TRANS specifies the equations to be solved as
     38 *           follows:
     39 *
     40 *              TRANS = 'N' or 'n'   A*x = b.
     41 *
     42 *              TRANS = 'T' or 't'   A'*x = b.
     43 *
     44 *              TRANS = 'C' or 'c'   A'*x = b.
     45 *
     46 *           Unchanged on exit.
     47 *
     48 *  DIAG   - CHARACTER*1.
     49 *           On entry, DIAG specifies whether or not A is unit
     50 *           triangular as follows:
     51 *
     52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
     53 *
     54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
     55 *                                  triangular.
     56 *
     57 *           Unchanged on exit.
     58 *
     59 *  N      - INTEGER.
     60 *           On entry, N specifies the order of the matrix A.
     61 *           N must be at least zero.
     62 *           Unchanged on exit.
     63 *
     64 *  AP     - DOUBLE PRECISION array of DIMENSION at least
     65 *           ( ( n*( n + 1 ) )/2 ).
     66 *           Before entry with  UPLO = 'U' or 'u', the array AP must
     67 *           contain the upper triangular matrix packed sequentially,
     68 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     69 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
     70 *           respectively, and so on.
     71 *           Before entry with UPLO = 'L' or 'l', the array AP must
     72 *           contain the lower triangular matrix packed sequentially,
     73 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     74 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
     75 *           respectively, and so on.
     76 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
     77 *           A are not referenced, but are assumed to be unity.
     78 *           Unchanged on exit.
     79 *
     80 *  X      - DOUBLE PRECISION array of dimension at least
     81 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     82 *           Before entry, the incremented array X must contain the n
     83 *           element right-hand side vector b. On exit, X is overwritten
     84 *           with the solution vector x.
     85 *
     86 *  INCX   - INTEGER.
     87 *           On entry, INCX specifies the increment for the elements of
     88 *           X. INCX must not be zero.
     89 *           Unchanged on exit.
     90 *
     91 *  Further Details
     92 *  ===============
     93 *
     94 *  Level 2 Blas routine.
     95 *
     96 *  -- Written on 22-October-1986.
     97 *     Jack Dongarra, Argonne National Lab.
     98 *     Jeremy Du Croz, Nag Central Office.
     99 *     Sven Hammarling, Nag Central Office.
    100 *     Richard Hanson, Sandia National Labs.
    101 *
    102 *  =====================================================================
    103 *
    104 *     .. Parameters ..
    105       DOUBLE PRECISION ZERO
    106       PARAMETER (ZERO=0.0D+0)
    107 *     ..
    108 *     .. Local Scalars ..
    109       DOUBLE PRECISION TEMP
    110       INTEGER I,INFO,IX,J,JX,K,KK,KX
    111       LOGICAL NOUNIT
    112 *     ..
    113 *     .. External Functions ..
    114       LOGICAL LSAME
    115       EXTERNAL LSAME
    116 *     ..
    117 *     .. External Subroutines ..
    118       EXTERNAL XERBLA
    119 *     ..
    120 *
    121 *     Test the input parameters.
    122 *
    123       INFO = 0
    124       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    125           INFO = 1
    126       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
    127      +         .NOT.LSAME(TRANS,'C')) THEN
    128           INFO = 2
    129       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    130           INFO = 3
    131       ELSE IF (N.LT.0) THEN
    132           INFO = 4
    133       ELSE IF (INCX.EQ.0) THEN
    134           INFO = 7
    135       END IF
    136       IF (INFO.NE.0) THEN
    137           CALL XERBLA('DTPSV ',INFO)
    138           RETURN
    139       END IF
    140 *
    141 *     Quick return if possible.
    142 *
    143       IF (N.EQ.0) RETURN
    144 *
    145       NOUNIT = LSAME(DIAG,'N')
    146 *
    147 *     Set up the start point in X if the increment is not unity. This
    148 *     will be  ( N - 1 )*INCX  too small for descending loops.
    149 *
    150       IF (INCX.LE.0) THEN
    151           KX = 1 - (N-1)*INCX
    152       ELSE IF (INCX.NE.1) THEN
    153           KX = 1
    154       END IF
    155 *
    156 *     Start the operations. In this version the elements of AP are
    157 *     accessed sequentially with one pass through AP.
    158 *
    159       IF (LSAME(TRANS,'N')) THEN
    160 *
    161 *        Form  x := inv( A )*x.
    162 *
    163           IF (LSAME(UPLO,'U')) THEN
    164               KK = (N* (N+1))/2
    165               IF (INCX.EQ.1) THEN
    166                   DO 20 J = N,1,-1
    167                       IF (X(J).NE.ZERO) THEN
    168                           IF (NOUNIT) X(J) = X(J)/AP(KK)
    169                           TEMP = X(J)
    170                           K = KK - 1
    171                           DO 10 I = J - 1,1,-1
    172                               X(I) = X(I) - TEMP*AP(K)
    173                               K = K - 1
    174    10                     CONTINUE
    175                       END IF
    176                       KK = KK - J
    177    20             CONTINUE
    178               ELSE
    179                   JX = KX + (N-1)*INCX
    180                   DO 40 J = N,1,-1
    181                       IF (X(JX).NE.ZERO) THEN
    182                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
    183                           TEMP = X(JX)
    184                           IX = JX
    185                           DO 30 K = KK - 1,KK - J + 1,-1
    186                               IX = IX - INCX
    187                               X(IX) = X(IX) - TEMP*AP(K)
    188    30                     CONTINUE
    189                       END IF
    190                       JX = JX - INCX
    191                       KK = KK - J
    192    40             CONTINUE
    193               END IF
    194           ELSE
    195               KK = 1
    196               IF (INCX.EQ.1) THEN
    197                   DO 60 J = 1,N
    198                       IF (X(J).NE.ZERO) THEN
    199                           IF (NOUNIT) X(J) = X(J)/AP(KK)
    200                           TEMP = X(J)
    201                           K = KK + 1
    202                           DO 50 I = J + 1,N
    203                               X(I) = X(I) - TEMP*AP(K)
    204                               K = K + 1
    205    50                     CONTINUE
    206                       END IF
    207                       KK = KK + (N-J+1)
    208    60             CONTINUE
    209               ELSE
    210                   JX = KX
    211                   DO 80 J = 1,N
    212                       IF (X(JX).NE.ZERO) THEN
    213                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
    214                           TEMP = X(JX)
    215                           IX = JX
    216                           DO 70 K = KK + 1,KK + N - J
    217                               IX = IX + INCX
    218                               X(IX) = X(IX) - TEMP*AP(K)
    219    70                     CONTINUE
    220                       END IF
    221                       JX = JX + INCX
    222                       KK = KK + (N-J+1)
    223    80             CONTINUE
    224               END IF
    225           END IF
    226       ELSE
    227 *
    228 *        Form  x := inv( A' )*x.
    229 *
    230           IF (LSAME(UPLO,'U')) THEN
    231               KK = 1
    232               IF (INCX.EQ.1) THEN
    233                   DO 100 J = 1,N
    234                       TEMP = X(J)
    235                       K = KK
    236                       DO 90 I = 1,J - 1
    237                           TEMP = TEMP - AP(K)*X(I)
    238                           K = K + 1
    239    90                 CONTINUE
    240                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
    241                       X(J) = TEMP
    242                       KK = KK + J
    243   100             CONTINUE
    244               ELSE
    245                   JX = KX
    246                   DO 120 J = 1,N
    247                       TEMP = X(JX)
    248                       IX = KX
    249                       DO 110 K = KK,KK + J - 2
    250                           TEMP = TEMP - AP(K)*X(IX)
    251                           IX = IX + INCX
    252   110                 CONTINUE
    253                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
    254                       X(JX) = TEMP
    255                       JX = JX + INCX
    256                       KK = KK + J
    257   120             CONTINUE
    258               END IF
    259           ELSE
    260               KK = (N* (N+1))/2
    261               IF (INCX.EQ.1) THEN
    262                   DO 140 J = N,1,-1
    263                       TEMP = X(J)
    264                       K = KK
    265                       DO 130 I = N,J + 1,-1
    266                           TEMP = TEMP - AP(K)*X(I)
    267                           K = K - 1
    268   130                 CONTINUE
    269                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
    270                       X(J) = TEMP
    271                       KK = KK - (N-J+1)
    272   140             CONTINUE
    273               ELSE
    274                   KX = KX + (N-1)*INCX
    275                   JX = KX
    276                   DO 160 J = N,1,-1
    277                       TEMP = X(JX)
    278                       IX = KX
    279                       DO 150 K = KK,KK - (N- (J+1)),-1
    280                           TEMP = TEMP - AP(K)*X(IX)
    281                           IX = IX - INCX
    282   150                 CONTINUE
    283                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
    284                       X(JX) = TEMP
    285                       JX = JX - INCX
    286                       KK = KK - (N-J+1)
    287   160             CONTINUE
    288               END IF
    289           END IF
    290       END IF
    291 *
    292       RETURN
    293 *
    294 *     End of DTPSV .
    295 *
    296       END
    297