Home | History | Annotate | Download | only in blas
      1       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
      2 *     .. Scalar Arguments ..
      3       DOUBLE COMPLEX ALPHA,BETA
      4       INTEGER INCX,INCY,N
      5       CHARACTER UPLO
      6 *     ..
      7 *     .. Array Arguments ..
      8       DOUBLE COMPLEX AP(*),X(*),Y(*)
      9 *     ..
     10 *
     11 *  Purpose
     12 *  =======
     13 *
     14 *  ZHPMV  performs the matrix-vector operation
     15 *
     16 *     y := alpha*A*x + beta*y,
     17 *
     18 *  where alpha and beta are scalars, x and y are n element vectors and
     19 *  A is an n by n hermitian matrix, supplied in packed form.
     20 *
     21 *  Arguments
     22 *  ==========
     23 *
     24 *  UPLO   - CHARACTER*1.
     25 *           On entry, UPLO specifies whether the upper or lower
     26 *           triangular part of the matrix A is supplied in the packed
     27 *           array AP as follows:
     28 *
     29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
     30 *                                  supplied in AP.
     31 *
     32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
     33 *                                  supplied in AP.
     34 *
     35 *           Unchanged on exit.
     36 *
     37 *  N      - INTEGER.
     38 *           On entry, N specifies the order of the matrix A.
     39 *           N must be at least zero.
     40 *           Unchanged on exit.
     41 *
     42 *  ALPHA  - COMPLEX*16      .
     43 *           On entry, ALPHA specifies the scalar alpha.
     44 *           Unchanged on exit.
     45 *
     46 *  AP     - COMPLEX*16       array of DIMENSION at least
     47 *           ( ( n*( n + 1 ) )/2 ).
     48 *           Before entry with UPLO = 'U' or 'u', the array AP must
     49 *           contain the upper triangular part of the hermitian matrix
     50 *           packed sequentially, column by column, so that AP( 1 )
     51 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
     52 *           and a( 2, 2 ) respectively, and so on.
     53 *           Before entry with UPLO = 'L' or 'l', the array AP must
     54 *           contain the lower triangular part of the hermitian matrix
     55 *           packed sequentially, column by column, so that AP( 1 )
     56 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
     57 *           and a( 3, 1 ) respectively, and so on.
     58 *           Note that the imaginary parts of the diagonal elements need
     59 *           not be set and are assumed to be zero.
     60 *           Unchanged on exit.
     61 *
     62 *  X      - COMPLEX*16       array of dimension at least
     63 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     64 *           Before entry, the incremented array X must contain the n
     65 *           element vector x.
     66 *           Unchanged on exit.
     67 *
     68 *  INCX   - INTEGER.
     69 *           On entry, INCX specifies the increment for the elements of
     70 *           X. INCX must not be zero.
     71 *           Unchanged on exit.
     72 *
     73 *  BETA   - COMPLEX*16      .
     74 *           On entry, BETA specifies the scalar beta. When BETA is
     75 *           supplied as zero then Y need not be set on input.
     76 *           Unchanged on exit.
     77 *
     78 *  Y      - COMPLEX*16       array of dimension at least
     79 *           ( 1 + ( n - 1 )*abs( INCY ) ).
     80 *           Before entry, the incremented array Y must contain the n
     81 *           element vector y. On exit, Y is overwritten by the updated
     82 *           vector y.
     83 *
     84 *  INCY   - INTEGER.
     85 *           On entry, INCY specifies the increment for the elements of
     86 *           Y. INCY must not be zero.
     87 *           Unchanged on exit.
     88 *
     89 *  Further Details
     90 *  ===============
     91 *
     92 *  Level 2 Blas routine.
     93 *
     94 *  -- Written on 22-October-1986.
     95 *     Jack Dongarra, Argonne National Lab.
     96 *     Jeremy Du Croz, Nag Central Office.
     97 *     Sven Hammarling, Nag Central Office.
     98 *     Richard Hanson, Sandia National Labs.
     99 *
    100 *  =====================================================================
    101 *
    102 *     .. Parameters ..
    103       DOUBLE COMPLEX ONE
    104       PARAMETER (ONE= (1.0D+0,0.0D+0))
    105       DOUBLE COMPLEX ZERO
    106       PARAMETER (ZERO= (0.0D+0,0.0D+0))
    107 *     ..
    108 *     .. Local Scalars ..
    109       DOUBLE COMPLEX TEMP1,TEMP2
    110       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
    111 *     ..
    112 *     .. External Functions ..
    113       LOGICAL LSAME
    114       EXTERNAL LSAME
    115 *     ..
    116 *     .. External Subroutines ..
    117       EXTERNAL XERBLA
    118 *     ..
    119 *     .. Intrinsic Functions ..
    120       INTRINSIC DBLE,DCONJG
    121 *     ..
    122 *
    123 *     Test the input parameters.
    124 *
    125       INFO = 0
    126       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    127           INFO = 1
    128       ELSE IF (N.LT.0) THEN
    129           INFO = 2
    130       ELSE IF (INCX.EQ.0) THEN
    131           INFO = 6
    132       ELSE IF (INCY.EQ.0) THEN
    133           INFO = 9
    134       END IF
    135       IF (INFO.NE.0) THEN
    136           CALL XERBLA('ZHPMV ',INFO)
    137           RETURN
    138       END IF
    139 *
    140 *     Quick return if possible.
    141 *
    142       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
    143 *
    144 *     Set up the start points in  X  and  Y.
    145 *
    146       IF (INCX.GT.0) THEN
    147           KX = 1
    148       ELSE
    149           KX = 1 - (N-1)*INCX
    150       END IF
    151       IF (INCY.GT.0) THEN
    152           KY = 1
    153       ELSE
    154           KY = 1 - (N-1)*INCY
    155       END IF
    156 *
    157 *     Start the operations. In this version the elements of the array AP
    158 *     are accessed sequentially with one pass through AP.
    159 *
    160 *     First form  y := beta*y.
    161 *
    162       IF (BETA.NE.ONE) THEN
    163           IF (INCY.EQ.1) THEN
    164               IF (BETA.EQ.ZERO) THEN
    165                   DO 10 I = 1,N
    166                       Y(I) = ZERO
    167    10             CONTINUE
    168               ELSE
    169                   DO 20 I = 1,N
    170                       Y(I) = BETA*Y(I)
    171    20             CONTINUE
    172               END IF
    173           ELSE
    174               IY = KY
    175               IF (BETA.EQ.ZERO) THEN
    176                   DO 30 I = 1,N
    177                       Y(IY) = ZERO
    178                       IY = IY + INCY
    179    30             CONTINUE
    180               ELSE
    181                   DO 40 I = 1,N
    182                       Y(IY) = BETA*Y(IY)
    183                       IY = IY + INCY
    184    40             CONTINUE
    185               END IF
    186           END IF
    187       END IF
    188       IF (ALPHA.EQ.ZERO) RETURN
    189       KK = 1
    190       IF (LSAME(UPLO,'U')) THEN
    191 *
    192 *        Form  y  when AP contains the upper triangle.
    193 *
    194           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    195               DO 60 J = 1,N
    196                   TEMP1 = ALPHA*X(J)
    197                   TEMP2 = ZERO
    198                   K = KK
    199                   DO 50 I = 1,J - 1
    200                       Y(I) = Y(I) + TEMP1*AP(K)
    201                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
    202                       K = K + 1
    203    50             CONTINUE
    204                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
    205                   KK = KK + J
    206    60         CONTINUE
    207           ELSE
    208               JX = KX
    209               JY = KY
    210               DO 80 J = 1,N
    211                   TEMP1 = ALPHA*X(JX)
    212                   TEMP2 = ZERO
    213                   IX = KX
    214                   IY = KY
    215                   DO 70 K = KK,KK + J - 2
    216                       Y(IY) = Y(IY) + TEMP1*AP(K)
    217                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
    218                       IX = IX + INCX
    219                       IY = IY + INCY
    220    70             CONTINUE
    221                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
    222                   JX = JX + INCX
    223                   JY = JY + INCY
    224                   KK = KK + J
    225    80         CONTINUE
    226           END IF
    227       ELSE
    228 *
    229 *        Form  y  when AP contains the lower triangle.
    230 *
    231           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    232               DO 100 J = 1,N
    233                   TEMP1 = ALPHA*X(J)
    234                   TEMP2 = ZERO
    235                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
    236                   K = KK + 1
    237                   DO 90 I = J + 1,N
    238                       Y(I) = Y(I) + TEMP1*AP(K)
    239                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
    240                       K = K + 1
    241    90             CONTINUE
    242                   Y(J) = Y(J) + ALPHA*TEMP2
    243                   KK = KK + (N-J+1)
    244   100         CONTINUE
    245           ELSE
    246               JX = KX
    247               JY = KY
    248               DO 120 J = 1,N
    249                   TEMP1 = ALPHA*X(JX)
    250                   TEMP2 = ZERO
    251                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
    252                   IX = JX
    253                   IY = JY
    254                   DO 110 K = KK + 1,KK + N - J
    255                       IX = IX + INCX
    256                       IY = IY + INCY
    257                       Y(IY) = Y(IY) + TEMP1*AP(K)
    258                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
    259   110             CONTINUE
    260                   Y(JY) = Y(JY) + ALPHA*TEMP2
    261                   JX = JX + INCX
    262                   JY = JY + INCY
    263                   KK = KK + (N-J+1)
    264   120         CONTINUE
    265           END IF
    266       END IF
    267 *
    268       RETURN
    269 *
    270 *     End of ZHPMV .
    271 *
    272       END
    273