Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 
      3 /** \page TopicCustomizingEigen Customizing/Extending Eigen
      4 
      5 Eigen can be extended in several ways, for instance, by defining global methods, \ref ExtendingMatrixBase "by adding custom methods to MatrixBase", adding support to \ref CustomScalarType "custom types" etc.
      6 
      7 \b Table \b of \b contents
      8   - \ref ExtendingMatrixBase
      9   - \ref InheritingFromMatrix
     10   - \ref CustomScalarType
     11 
     12 \section ExtendingMatrixBase Extending MatrixBase (and other classes)
     13 
     14 In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API.
     15 
     16 You certainly know that in C++ it is not possible to add methods to an existing class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN:
     17 \code
     18 class MatrixBase {
     19   // ...
     20   #ifdef EIGEN_MATRIXBASE_PLUGIN
     21   #include EIGEN_MATRIXBASE_PLUGIN
     22   #endif
     23 };
     24 \endcode
     25 Therefore to extend MatrixBase with your own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file.
     26 
     27 You can extend many of the other classes used in Eigen by defining similarly named preprocessor symbols. For instance, define \c EIGEN_ARRAYBASE_PLUGIN if you want to extend the ArrayBase class. A full list of classes that can be extended in this way and the corresponding preprocessor symbols can be found on our page \ref TopicPreprocessorDirectives.
     28 
     29 Here is an example of an extension file for adding methods to MatrixBase: \n
     30 \b MatrixBaseAddons.h
     31 \code
     32 inline Scalar at(uint i, uint j) const { return this->operator()(i,j); }
     33 inline Scalar& at(uint i, uint j) { return this->operator()(i,j); }
     34 inline Scalar at(uint i) const { return this->operator[](i); }
     35 inline Scalar& at(uint i) { return this->operator[](i); }
     36 
     37 inline RealScalar squaredLength() const { return squaredNorm(); }
     38 inline RealScalar length() const { return norm(); }
     39 inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); }
     40 
     41 template<typename OtherDerived>
     42 inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const
     43 { return (derived() - other.derived()).squaredNorm(); }
     44 
     45 template<typename OtherDerived>
     46 inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const
     47 { return internal::sqrt(derived().squaredDistanceTo(other)); }
     48 
     49 inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); }
     50 
     51 inline Transpose<Derived> transposed() {return this->transpose();}
     52 inline const Transpose<Derived> transposed() const {return this->transpose();}
     53 
     54 inline uint minComponentId(void) const  { int i; this->minCoeff(&i); return i; }
     55 inline uint maxComponentId(void) const  { int i; this->maxCoeff(&i); return i; }
     56 
     57 template<typename OtherDerived>
     58 void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMin(other.derived()); }
     59 template<typename OtherDerived>
     60 void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMax(other.derived()); }
     61 
     62 const CwiseUnaryOp<internal::scalar_add_op<Scalar>, Derived>
     63 operator+(const Scalar& scalar) const
     64 { return CwiseUnaryOp<internal::scalar_add_op<Scalar>, Derived>(derived(), internal::scalar_add_op<Scalar>(scalar)); }
     65 
     66 friend const CwiseUnaryOp<internal::scalar_add_op<Scalar>, Derived>
     67 operator+(const Scalar& scalar, const MatrixBase<Derived>& mat)
     68 { return CwiseUnaryOp<internal::scalar_add_op<Scalar>, Derived>(mat.derived(), internal::scalar_add_op<Scalar>(scalar)); }
     69 \endcode
     70 
     71 Then one can the following declaration in the config.h or whatever prerequisites header file of his project:
     72 \code
     73 #define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h"
     74 \endcode
     75 
     76 \section InheritingFromMatrix Inheriting from Matrix
     77 
     78 Before inheriting from Matrix, be really, i mean REALLY sure that using
     79 EIGEN_MATRIX_PLUGIN is not what you really want (see previous section).
     80 If you just need to add few members to Matrix, this is the way to go.
     81 
     82 An example of when you actually need to inherit Matrix, is when you have
     83 several layers of heritage such as  MyVerySpecificVector1,MyVerySpecificVector1 -> MyVector1 -> Matrix and.
     84 MyVerySpecificVector3,MyVerySpecificVector4 -> MyVector2 -> Matrix.
     85 
     86 In order for your object to work within the %Eigen framework, you need to
     87 define a few members in your inherited class.
     88 
     89 Here is a minimalistic example:\n
     90 \code
     91 class MyVectorType : public  Eigen::VectorXd
     92 {
     93 public:
     94     MyVectorType(void):Eigen::VectorXd() {}
     95 
     96     typedef Eigen::VectorXd Base;
     97 
     98     // This constructor allows you to construct MyVectorType from Eigen expressions
     99     template<typename OtherDerived>
    100     MyVectorType(const Eigen::MatrixBase<OtherDerived>& other)
    101         : Eigen::Vector3d(other)
    102     { }
    103 
    104     // This method allows you to assign Eigen expressions to MyVectorType
    105     template<typename OtherDerived>
    106     MyVectorType & operator= (const Eigen::MatrixBase <OtherDerived>& other)
    107     {
    108         this->Base::operator=(other);
    109         return *this;
    110     }
    111 };
    112 \endcode
    113 
    114 This is the kind of error you can get if you don't provide those methods
    115 \code
    116 error: no match for operator= in delta =
    117 (((Eigen::MatrixBase<Eigen::Matrix<std::complex<float>, 10000, 1, 2, 10000,
    118 1> >*)(& delta)) + 8u)->Eigen::MatrixBase<Derived>::cwise [with Derived =
    119 Eigen::Matrix<std::complex<float>, 10000, 1, 2, 10000,
    120 1>]().Eigen::Cwise<ExpressionType>::operator* [with OtherDerived =
    121 Eigen::Matrix<std::complex<float>, 10000, 1, 2, 10000, 1>, ExpressionType =
    122 Eigen::Matrix<std::complex<float>, 10000, 1, 2, 10000, 1>](((const
    123 Eigen::MatrixBase<Eigen::Matrix<std::complex<float>, 10000, 1, 2, 10000, 1>
    124 >&)(((const Eigen::MatrixBase<Eigen::Matrix<std::complex<float>, 10000, 1,
    125 >2, 10000, 1> >*)((const spectral1d*)where)) + 8u)))                                                    
    126 \endcode
    127 
    128 \anchor user_defined_scalars \section CustomScalarType Using custom scalar types
    129 
    130 By default, Eigen currently supports standard floating-point types (\c float, \c double, \c std::complex<float>, \c std::complex<double>, \c long \c double), as well as all integrale types (e.g., \c int, \c unsigned \c int, \c short, etc.), and \c bool.
    131 On x86-64 systems, \c long \c double permits to locally enforces the use of x87 registers with extended accuracy (in comparison to SSE).
    132 
    133 In order to add support for a custom type \c T you need:
    134 -# make sure the common operator (+,-,*,/,etc.) are supported by the type \c T
    135 -# add a specialization of struct Eigen::NumTraits<T> (see \ref NumTraits)
    136 -# define the math functions that makes sense for your type. This includes standard ones like sqrt, pow, sin, tan, conj, real, imag, etc, as well as abs2 which is Eigen specific.
    137      (see the file Eigen/src/Core/MathFunctions.h)
    138 
    139 The math function should be defined in the same namespace than \c T, or in the \c std namespace though that second appraoch is not recommended.
    140 
    141 Here is a concrete example adding support for the Adolc's \c adouble type. <a href="https://projects.coin-or.org/ADOL-C">Adolc</a> is an automatic differentiation library. The type \c adouble is basically a real value tracking the values of any number of partial derivatives.
    142 
    143 \code
    144 #ifndef ADOLCSUPPORT_H
    145 #define ADOLCSUPPORT_H
    146 
    147 #define ADOLC_TAPELESS
    148 #include <adolc/adouble.h>
    149 #include <Eigen/Core>
    150 
    151 namespace Eigen {
    152 
    153 template<> struct NumTraits<adtl::adouble>
    154  : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
    155 {
    156   typedef adtl::adouble Real;
    157   typedef adtl::adouble NonInteger;
    158   typedef adtl::adouble Nested;
    159 
    160   enum {
    161     IsComplex = 0,
    162     IsInteger = 0,
    163     IsSigned = 1,
    164     RequireInitialization = 1,
    165     ReadCost = 1,
    166     AddCost = 3,
    167     MulCost = 3
    168   };
    169 };
    170 
    171 }
    172 
    173 namespace adtl {
    174 
    175 inline const adouble& conj(const adouble& x)  { return x; }
    176 inline const adouble& real(const adouble& x)  { return x; }
    177 inline adouble imag(const adouble&)    { return 0.; }
    178 inline adouble abs(const adouble&  x)  { return fabs(x); }
    179 inline adouble abs2(const adouble& x)  { return x*x; }
    180 
    181 }
    182 
    183 #endif // ADOLCSUPPORT_H
    184 \endcode
    185 
    186 
    187 \sa \ref TopicPreprocessorDirectives
    188 
    189 */
    190 
    191 }
    192