Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/Array>
     12 
     13 template<typename MatrixType> void array(const MatrixType& m)
     14 {
     15   /* this test covers the following files:
     16      Array.cpp
     17   */
     18 
     19   typedef typename MatrixType::Scalar Scalar;
     20   typedef typename NumTraits<Scalar>::Real RealScalar;
     21   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     22 
     23   int rows = m.rows();
     24   int cols = m.cols();
     25 
     26   MatrixType m1 = MatrixType::Random(rows, cols),
     27              m2 = MatrixType::Random(rows, cols),
     28              m3(rows, cols);
     29 
     30   Scalar  s1 = ei_random<Scalar>(),
     31           s2 = ei_random<Scalar>();
     32 
     33   // scalar addition
     34   VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
     35   VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
     36   VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
     37   m3 = m1;
     38   m3.cwise() += s2;
     39   VERIFY_IS_APPROX(m3, m1.cwise() + s2);
     40   m3 = m1;
     41   m3.cwise() -= s1;
     42   VERIFY_IS_APPROX(m3, m1.cwise() - s1);
     43 
     44   // reductions
     45   VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
     46   VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
     47   if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
     48     VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
     49   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
     50 }
     51 
     52 template<typename MatrixType> void comparisons(const MatrixType& m)
     53 {
     54   typedef typename MatrixType::Scalar Scalar;
     55   typedef typename NumTraits<Scalar>::Real RealScalar;
     56   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     57 
     58   int rows = m.rows();
     59   int cols = m.cols();
     60 
     61   int r = ei_random<int>(0, rows-1),
     62       c = ei_random<int>(0, cols-1);
     63 
     64   MatrixType m1 = MatrixType::Random(rows, cols),
     65              m2 = MatrixType::Random(rows, cols),
     66              m3(rows, cols);
     67 
     68   VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all());
     69   VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all());
     70   if (rows*cols>1)
     71   {
     72     m3 = m1;
     73     m3(r,c) += 1;
     74     VERIFY(! (m1.cwise() < m3).all() );
     75     VERIFY(! (m1.cwise() > m3).all() );
     76   }
     77 
     78   // comparisons to scalar
     79   VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() );
     80   VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() );
     81   VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() );
     82   VERIFY( (m1.cwise() == m1(r,c) ).any() );
     83 
     84   // test Select
     85   VERIFY_IS_APPROX( (m1.cwise()<m2).select(m1,m2), m1.cwise().min(m2) );
     86   VERIFY_IS_APPROX( (m1.cwise()>m2).select(m1,m2), m1.cwise().max(m2) );
     87   Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2);
     88   for (int j=0; j<cols; ++j)
     89   for (int i=0; i<rows; ++i)
     90     m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
     91   VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
     92                         .select(MatrixType::Zero(rows,cols),m1), m3);
     93   // shorter versions:
     94   VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
     95                         .select(0,m1), m3);
     96   VERIFY_IS_APPROX( (m1.cwise().abs().cwise()>=MatrixType::Constant(rows,cols,mid))
     97                         .select(m1,0), m3);
     98   // even shorter version:
     99   VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
    100 
    101   // count
    102   VERIFY(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).count() == rows*cols);
    103   VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast<int>(), RowVectorXi::Constant(cols,rows));
    104   VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast<int>(), VectorXi::Constant(rows, cols));
    105 }
    106 
    107 template<typename VectorType> void lpNorm(const VectorType& v)
    108 {
    109   VectorType u = VectorType::Random(v.size());
    110 
    111   VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff());
    112   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum());
    113   VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum()));
    114   VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum());
    115 }
    116 
    117 void test_eigen2_array()
    118 {
    119   for(int i = 0; i < g_repeat; i++) {
    120     CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) );
    121     CALL_SUBTEST_2( array(Matrix2f()) );
    122     CALL_SUBTEST_3( array(Matrix4d()) );
    123     CALL_SUBTEST_4( array(MatrixXcf(3, 3)) );
    124     CALL_SUBTEST_5( array(MatrixXf(8, 12)) );
    125     CALL_SUBTEST_6( array(MatrixXi(8, 12)) );
    126   }
    127   for(int i = 0; i < g_repeat; i++) {
    128     CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
    129     CALL_SUBTEST_2( comparisons(Matrix2f()) );
    130     CALL_SUBTEST_3( comparisons(Matrix4d()) );
    131     CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
    132     CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
    133   }
    134   for(int i = 0; i < g_repeat; i++) {
    135     CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
    136     CALL_SUBTEST_2( lpNorm(Vector2f()) );
    137     CALL_SUBTEST_3( lpNorm(Vector3d()) );
    138     CALL_SUBTEST_4( lpNorm(Vector4f()) );
    139     CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
    140     CALL_SUBTEST_7( lpNorm(VectorXcd(10)) );
    141   }
    142 }
    143