Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/LU>
     13 
     14 template<typename MatrixType> void determinant(const MatrixType& m)
     15 {
     16   /* this test covers the following files:
     17      Determinant.h
     18   */
     19   int size = m.rows();
     20 
     21   MatrixType m1(size, size), m2(size, size);
     22   m1.setRandom();
     23   m2.setRandom();
     24   typedef typename MatrixType::Scalar Scalar;
     25   Scalar x = ei_random<Scalar>();
     26   VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1));
     27   VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant());
     28   if(size==1) return;
     29   int i = ei_random<int>(0, size-1);
     30   int j;
     31   do {
     32     j = ei_random<int>(0, size-1);
     33   } while(j==i);
     34   m2 = m1;
     35   m2.row(i).swap(m2.row(j));
     36   VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
     37   m2 = m1;
     38   m2.col(i).swap(m2.col(j));
     39   VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
     40   VERIFY_IS_APPROX(m2.determinant(), m2.transpose().determinant());
     41   VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant());
     42   m2 = m1;
     43   m2.row(i) += x*m2.row(j);
     44   VERIFY_IS_APPROX(m2.determinant(), m1.determinant());
     45   m2 = m1;
     46   m2.row(i) *= x;
     47   VERIFY_IS_APPROX(m2.determinant(), m1.determinant() * x);
     48 }
     49 
     50 void test_eigen2_determinant()
     51 {
     52   for(int i = 0; i < g_repeat; i++) {
     53     CALL_SUBTEST_1( determinant(Matrix<float, 1, 1>()) );
     54     CALL_SUBTEST_2( determinant(Matrix<double, 2, 2>()) );
     55     CALL_SUBTEST_3( determinant(Matrix<double, 3, 3>()) );
     56     CALL_SUBTEST_4( determinant(Matrix<double, 4, 4>()) );
     57     CALL_SUBTEST_5( determinant(Matrix<std::complex<double>, 10, 10>()) );
     58     CALL_SUBTEST_6( determinant(MatrixXd(20, 20)) );
     59   }
     60   CALL_SUBTEST_6( determinant(MatrixXd(200, 200)) );
     61 }
     62