Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/QR>
     12 
     13 template<typename MatrixType> void qr(const MatrixType& m)
     14 {
     15   /* this test covers the following files:
     16      QR.h
     17   */
     18   int rows = m.rows();
     19   int cols = m.cols();
     20 
     21   typedef typename MatrixType::Scalar Scalar;
     22   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
     23   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
     24 
     25   MatrixType a = MatrixType::Random(rows,cols);
     26   QR<MatrixType> qrOfA(a);
     27   VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
     28   VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
     29 
     30   #if 0 // eigenvalues module not yet ready
     31   SquareMatrixType b = a.adjoint() * a;
     32 
     33   // check tridiagonalization
     34   Tridiagonalization<SquareMatrixType> tridiag(b);
     35   VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
     36 
     37   // check hessenberg decomposition
     38   HessenbergDecomposition<SquareMatrixType> hess(b);
     39   VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
     40   VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
     41   b = SquareMatrixType::Random(cols,cols);
     42   hess.compute(b);
     43   VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
     44   #endif
     45 }
     46 
     47 void test_eigen2_qr()
     48 {
     49   for(int i = 0; i < 1; i++) {
     50     CALL_SUBTEST_1( qr(Matrix2f()) );
     51     CALL_SUBTEST_2( qr(Matrix4d()) );
     52     CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
     53     CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
     54     CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
     55   }
     56 
     57 #ifdef EIGEN_TEST_PART_5
     58   // small isFullRank test
     59   {
     60     Matrix3d mat;
     61     mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
     62     VERIFY(mat.qr().isFullRank());
     63     mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
     64     //always returns true in eigen2support
     65     //VERIFY(!mat.qr().isFullRank());
     66   }
     67 
     68 #endif
     69 }
     70