1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "main.h" 11 #include <Eigen/QR> 12 13 template<typename MatrixType> void qr(const MatrixType& m) 14 { 15 /* this test covers the following files: 16 QR.h 17 */ 18 int rows = m.rows(); 19 int cols = m.cols(); 20 21 typedef typename MatrixType::Scalar Scalar; 22 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType; 23 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; 24 25 MatrixType a = MatrixType::Random(rows,cols); 26 QR<MatrixType> qrOfA(a); 27 VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR()); 28 VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR()); 29 30 #if 0 // eigenvalues module not yet ready 31 SquareMatrixType b = a.adjoint() * a; 32 33 // check tridiagonalization 34 Tridiagonalization<SquareMatrixType> tridiag(b); 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); 36 37 // check hessenberg decomposition 38 HessenbergDecomposition<SquareMatrixType> hess(b); 39 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); 40 VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH()); 41 b = SquareMatrixType::Random(cols,cols); 42 hess.compute(b); 43 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); 44 #endif 45 } 46 47 void test_eigen2_qr() 48 { 49 for(int i = 0; i < 1; i++) { 50 CALL_SUBTEST_1( qr(Matrix2f()) ); 51 CALL_SUBTEST_2( qr(Matrix4d()) ); 52 CALL_SUBTEST_3( qr(MatrixXf(12,8)) ); 53 CALL_SUBTEST_4( qr(MatrixXcd(5,5)) ); 54 CALL_SUBTEST_4( qr(MatrixXcd(7,3)) ); 55 } 56 57 #ifdef EIGEN_TEST_PART_5 58 // small isFullRank test 59 { 60 Matrix3d mat; 61 mat << 1, 45, 1, 2, 2, 2, 1, 2, 3; 62 VERIFY(mat.qr().isFullRank()); 63 mat << 1, 1, 1, 2, 2, 2, 1, 2, 3; 64 //always returns true in eigen2support 65 //VERIFY(!mat.qr().isFullRank()); 66 } 67 68 #endif 69 } 70