1 // -*- coding: utf-8 2 // vim: set fileencoding=utf-8 3 4 // This file is part of Eigen, a lightweight C++ template library 5 // for linear algebra. 6 // 7 // Copyright (C) 2009 Thomas Capricelli <orzel (at) freehackers.org> 8 // 9 // This Source Code Form is subject to the terms of the Mozilla 10 // Public License v. 2.0. If a copy of the MPL was not distributed 11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 12 13 #ifndef EIGEN_NUMERICAL_DIFF_H 14 #define EIGEN_NUMERICAL_DIFF_H 15 16 namespace Eigen { 17 18 enum NumericalDiffMode { 19 Forward, 20 Central 21 }; 22 23 24 /** 25 * This class allows you to add a method df() to your functor, which will 26 * use numerical differentiation to compute an approximate of the 27 * derivative for the functor. Of course, if you have an analytical form 28 * for the derivative, you should rather implement df() by yourself. 29 * 30 * More information on 31 * http://en.wikipedia.org/wiki/Numerical_differentiation 32 * 33 * Currently only "Forward" and "Central" scheme are implemented. 34 */ 35 template<typename _Functor, NumericalDiffMode mode=Forward> 36 class NumericalDiff : public _Functor 37 { 38 public: 39 typedef _Functor Functor; 40 typedef typename Functor::Scalar Scalar; 41 typedef typename Functor::InputType InputType; 42 typedef typename Functor::ValueType ValueType; 43 typedef typename Functor::JacobianType JacobianType; 44 45 NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {} 46 NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {} 47 48 // forward constructors 49 template<typename T0> 50 NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {} 51 template<typename T0, typename T1> 52 NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {} 53 template<typename T0, typename T1, typename T2> 54 NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {} 55 56 enum { 57 InputsAtCompileTime = Functor::InputsAtCompileTime, 58 ValuesAtCompileTime = Functor::ValuesAtCompileTime 59 }; 60 61 /** 62 * return the number of evaluation of functor 63 */ 64 int df(const InputType& _x, JacobianType &jac) const 65 { 66 /* Local variables */ 67 Scalar h; 68 int nfev=0; 69 const typename InputType::Index n = _x.size(); 70 const Scalar eps = internal::sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() ))); 71 ValueType val1, val2; 72 InputType x = _x; 73 // TODO : we should do this only if the size is not already known 74 val1.resize(Functor::values()); 75 val2.resize(Functor::values()); 76 77 // initialization 78 switch(mode) { 79 case Forward: 80 // compute f(x) 81 Functor::operator()(x, val1); nfev++; 82 break; 83 case Central: 84 // do nothing 85 break; 86 default: 87 assert(false); 88 }; 89 90 // Function Body 91 for (int j = 0; j < n; ++j) { 92 h = eps * internal::abs(x[j]); 93 if (h == 0.) { 94 h = eps; 95 } 96 switch(mode) { 97 case Forward: 98 x[j] += h; 99 Functor::operator()(x, val2); 100 nfev++; 101 x[j] = _x[j]; 102 jac.col(j) = (val2-val1)/h; 103 break; 104 case Central: 105 x[j] += h; 106 Functor::operator()(x, val2); nfev++; 107 x[j] -= 2*h; 108 Functor::operator()(x, val1); nfev++; 109 x[j] = _x[j]; 110 jac.col(j) = (val2-val1)/(2*h); 111 break; 112 default: 113 assert(false); 114 }; 115 } 116 return nfev; 117 } 118 private: 119 Scalar epsfcn; 120 121 NumericalDiff& operator=(const NumericalDiff&); 122 }; 123 124 } // end namespace Eigen 125 126 //vim: ai ts=4 sts=4 et sw=4 127 #endif // EIGEN_NUMERICAL_DIFF_H 128 129