Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)e_hypot.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 /* __ieee754_hypot(x,y)
     15  *
     16  * Method :
     17  *	If (assume round-to-nearest) z=x*x+y*y
     18  *	has error less than ieee_sqrt(2)/2 ulp, than
     19  *	sqrt(z) has error less than 1 ulp (exercise).
     20  *
     21  *	So, compute ieee_sqrt(x*x+y*y) with some care as
     22  *	follows to get the error below 1 ulp:
     23  *
     24  *	Assume x>y>0;
     25  *	(if possible, set rounding to round-to-nearest)
     26  *	1. if x > 2y  use
     27  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
     28  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
     29  *	2. if x <= 2y use
     30  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
     31  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
     32  *	y1= y with lower 32 bits chopped, y2 = y-y1.
     33  *
     34  *	NOTE: scaling may be necessary if some argument is too
     35  *	      large or too tiny
     36  *
     37  * Special cases:
     38  *	hypot(x,y) is INF if x or y is +INF or -INF; else
     39  *	hypot(x,y) is NAN if x or y is NAN.
     40  *
     41  * Accuracy:
     42  * 	hypot(x,y) returns ieee_sqrt(x^2+y^2) with error less
     43  * 	than 1 ulps (units in the last place)
     44  */
     45 
     46 #include "fdlibm.h"
     47 
     48 #ifdef __STDC__
     49 	double __ieee754_hypot(double x, double y)
     50 #else
     51 	double __ieee754_hypot(x,y)
     52 	double x, y;
     53 #endif
     54 {
     55 	double a=x,b=y,t1,t2,y1,y2,w;
     56 	int j,k,ha,hb;
     57 
     58 	ha = __HI(x)&0x7fffffff;	/* high word of  x */
     59 	hb = __HI(y)&0x7fffffff;	/* high word of  y */
     60 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
     61 	__HI(a) = ha;	/* a <- |a| */
     62 	__HI(b) = hb;	/* b <- |b| */
     63 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
     64 	k=0;
     65 	if(ha > 0x5f300000) {	/* a>2**500 */
     66 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
     67 	       w = a+b;			/* for sNaN */
     68 	       if(((ha&0xfffff)|__LO(a))==0) w = a;
     69 	       if(((hb^0x7ff00000)|__LO(b))==0) w = b;
     70 	       return w;
     71 	   }
     72 	   /* scale a and b by 2**-600 */
     73 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
     74 	   __HI(a) = ha;
     75 	   __HI(b) = hb;
     76 	}
     77 	if(hb < 0x20b00000) {	/* b < 2**-500 */
     78 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
     79 		if((hb|(__LO(b)))==0) return a;
     80 		t1=0;
     81 		__HI(t1) = 0x7fd00000;	/* t1=2^1022 */
     82 		b *= t1;
     83 		a *= t1;
     84 		k -= 1022;
     85 	    } else {		/* scale a and b by 2^600 */
     86 	        ha += 0x25800000; 	/* a *= 2^600 */
     87 		hb += 0x25800000;	/* b *= 2^600 */
     88 		k -= 600;
     89 	   	__HI(a) = ha;
     90 	   	__HI(b) = hb;
     91 	    }
     92 	}
     93     /* medium size a and b */
     94 	w = a-b;
     95 	if (w>b) {
     96 	    t1 = 0;
     97 	    __HI(t1) = ha;
     98 	    t2 = a-t1;
     99 	    w  = ieee_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
    100 	} else {
    101 	    a  = a+a;
    102 	    y1 = 0;
    103 	    __HI(y1) = hb;
    104 	    y2 = b - y1;
    105 	    t1 = 0;
    106 	    __HI(t1) = ha+0x00100000;
    107 	    t2 = a - t1;
    108 	    w  = ieee_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
    109 	}
    110 	if(k!=0) {
    111 	    t1 = 1.0;
    112 	    __HI(t1) += (k<<20);
    113 	    return t1*w;
    114 	} else return w;
    115 }
    116