Home | History | Annotate | Download | only in fdlibm
      1 /* @(#)e_sqrt.c 1.3 95/01/18 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 /* __ieee754_sqrt(x)
     14  * Return correctly rounded sqrt.
     15  *           ------------------------------------------
     16  *	     |  Use the hardware sqrt if you have one |
     17  *           ------------------------------------------
     18  * Method:
     19  *   Bit by bit method using integer arithmetic. (Slow, but portable)
     20  *   1. Normalization
     21  *	Scale x to y in [1,4) with even powers of 2:
     22  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
     23  *		sqrt(x) = 2^k * ieee_sqrt(y)
     24  *   2. Bit by bit computation
     25  *	Let q  = ieee_sqrt(y) truncated to i bit after binary point (q = 1),
     26  *	     i							 0
     27  *                                     i+1         2
     28  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
     29  *	     i      i            i                 i
     30  *
     31  *	To compute q    from q , one checks whether
     32  *		    i+1       i
     33  *
     34  *			      -(i+1) 2
     35  *			(q + 2      ) <= y.			(2)
     36  *     			  i
     37  *							      -(i+1)
     38  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
     39  *		 	       i+1   i             i+1   i
     40  *
     41  *	With some algebric manipulation, it is not difficult to see
     42  *	that (2) is equivalent to
     43  *                             -(i+1)
     44  *			s  +  2       <= y			(3)
     45  *			 i                i
     46  *
     47  *	The advantage of (3) is that s  and y  can be computed by
     48  *				      i      i
     49  *	the following recurrence formula:
     50  *	    if (3) is false
     51  *
     52  *	    s     =  s  ,	y    = y   ;			(4)
     53  *	     i+1      i		 i+1    i
     54  *
     55  *	    otherwise,
     56  *                         -i                     -(i+1)
     57  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
     58  *           i+1      i          i+1    i     i
     59  *
     60  *	One may easily use induction to prove (4) and (5).
     61  *	Note. Since the left hand side of (3) contain only i+2 bits,
     62  *	      it does not necessary to do a full (53-bit) comparison
     63  *	      in (3).
     64  *   3. Final rounding
     65  *	After generating the 53 bits result, we compute one more bit.
     66  *	Together with the remainder, we can decide whether the
     67  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
     68  *	(it will never equal to 1/2ulp).
     69  *	The rounding mode can be detected by checking whether
     70  *	huge + tiny is equal to huge, and whether huge - tiny is
     71  *	equal to huge for some floating point number "huge" and "tiny".
     72  *
     73  * Special cases:
     74  *	sqrt(+-0) = +-0 	... exact
     75  *	sqrt(inf) = inf
     76  *	sqrt(-ve) = NaN		... with invalid signal
     77  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
     78  *
     79  * Other methods : see the appended file at the end of the program below.
     80  *---------------
     81  */
     82 
     83 #include "fdlibm.h"
     84 
     85 #ifdef __STDC__
     86 static	const double	one	= 1.0, tiny=1.0e-300;
     87 #else
     88 static	double	one	= 1.0, tiny=1.0e-300;
     89 #endif
     90 
     91 #ifdef __STDC__
     92 	double __ieee754_sqrt(double x)
     93 #else
     94 	double __ieee754_sqrt(x)
     95 	double x;
     96 #endif
     97 {
     98 	double z;
     99 	int 	sign = (int)0x80000000;
    100 	unsigned r,t1,s1,ix1,q1;
    101 	int ix0,s0,q,m,t,i;
    102 
    103 	ix0 = __HI(x);			/* high word of x */
    104 	ix1 = __LO(x);		/* low word of x */
    105 
    106     /* take care of Inf and NaN */
    107 	if((ix0&0x7ff00000)==0x7ff00000) {
    108 	    return x*x+x;		/* ieee_sqrt(NaN)=NaN, ieee_sqrt(+inf)=+inf
    109 					   ieee_sqrt(-inf)=sNaN */
    110 	}
    111     /* take care of zero */
    112 	if(ix0<=0) {
    113 	    if(((ix0&(~sign))|ix1)==0) return x;/* ieee_sqrt(+-0) = +-0 */
    114 	    else if(ix0<0)
    115 		return (x-x)/(x-x);		/* ieee_sqrt(-ve) = sNaN */
    116 	}
    117     /* normalize x */
    118 	m = (ix0>>20);
    119 	if(m==0) {				/* subnormal x */
    120 	    while(ix0==0) {
    121 		m -= 21;
    122 		ix0 |= (ix1>>11); ix1 <<= 21;
    123 	    }
    124 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
    125 	    m -= i-1;
    126 	    ix0 |= (ix1>>(32-i));
    127 	    ix1 <<= i;
    128 	}
    129 	m -= 1023;	/* unbias exponent */
    130 	ix0 = (ix0&0x000fffff)|0x00100000;
    131 	if(m&1){	/* odd m, double x to make it even */
    132 	    ix0 += ix0 + ((ix1&sign)>>31);
    133 	    ix1 += ix1;
    134 	}
    135 	m >>= 1;	/* m = [m/2] */
    136 
    137     /* generate ieee_sqrt(x) bit by bit */
    138 	ix0 += ix0 + ((ix1&sign)>>31);
    139 	ix1 += ix1;
    140 	q = q1 = s0 = s1 = 0;	/* [q,q1] = ieee_sqrt(x) */
    141 	r = 0x00200000;		/* r = moving bit from right to left */
    142 
    143 	while(r!=0) {
    144 	    t = s0+r;
    145 	    if(t<=ix0) {
    146 		s0   = t+r;
    147 		ix0 -= t;
    148 		q   += r;
    149 	    }
    150 	    ix0 += ix0 + ((ix1&sign)>>31);
    151 	    ix1 += ix1;
    152 	    r>>=1;
    153 	}
    154 
    155 	r = sign;
    156 	while(r!=0) {
    157 	    t1 = s1+r;
    158 	    t  = s0;
    159 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
    160 		s1  = t1+r;
    161 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
    162 		ix0 -= t;
    163 		if (ix1 < t1) ix0 -= 1;
    164 		ix1 -= t1;
    165 		q1  += r;
    166 	    }
    167 	    ix0 += ix0 + ((ix1&sign)>>31);
    168 	    ix1 += ix1;
    169 	    r>>=1;
    170 	}
    171 
    172     /* use floating add to find out rounding direction */
    173 	if((ix0|ix1)!=0) {
    174 	    z = one-tiny; /* trigger inexact flag */
    175 	    if (z>=one) {
    176 	        z = one+tiny;
    177 	        if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
    178 		else if (z>one) {
    179 		    if (q1==(unsigned)0xfffffffe) q+=1;
    180 		    q1+=2;
    181 		} else
    182 	            q1 += (q1&1);
    183 	    }
    184 	}
    185 	ix0 = (q>>1)+0x3fe00000;
    186 	ix1 =  q1>>1;
    187 	if ((q&1)==1) ix1 |= sign;
    188 	ix0 += (m <<20);
    189 	__HI(z) = ix0;
    190 	__LO(z) = ix1;
    191 	return z;
    192 }
    193 
    194 /*
    195 Other methods  (use floating-point arithmetic)
    196 -------------
    197 (This is a copy of a drafted paper by Prof W. Kahan
    198 and K.C. Ng, written in May, 1986)
    199 
    200 	Two algorithms are given here to implement ieee_sqrt(x)
    201 	(IEEE double precision arithmetic) in software.
    202 	Both supply ieee_sqrt(x) correctly rounded. The first algorithm (in
    203 	Section A) uses newton iterations and involves four divisions.
    204 	The second one uses reciproot iterations to avoid division, but
    205 	requires more multiplications. Both algorithms need the ability
    206 	to chop results of arithmetic operations instead of round them,
    207 	and the INEXACT flag to indicate when an arithmetic operation
    208 	is executed exactly with no roundoff error, all part of the
    209 	standard (IEEE 754-1985). The ability to perform shift, add,
    210 	subtract and logical AND operations upon 32-bit words is needed
    211 	too, though not part of the standard.
    212 
    213 A.  ieee_sqrt(x) by Newton Iteration
    214 
    215    (1)	Initial approximation
    216 
    217 	Let x0 and x1 be the leading and the trailing 32-bit words of
    218 	a floating point number x (in IEEE double format) respectively
    219 
    220 	    1    11		     52				  ...widths
    221 	   ------------------------------------------------------
    222 	x: |s|	  e     |	      f				|
    223 	   ------------------------------------------------------
    224 	      msb    lsb  msb				      lsb ...order
    225 
    226 
    227 	     ------------------------  	     ------------------------
    228 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
    229 	     ------------------------  	     ------------------------
    230 
    231 	By performing shifts and subtracts on x0 and x1 (both regarded
    232 	as integers), we obtain an 8-bit approximation of ieee_sqrt(x) as
    233 	follows.
    234 
    235 		k  := (x0>>1) + 0x1ff80000;
    236 		y0 := k - T1[31&(k>>15)].	... y ~ ieee_sqrt(x) to 8 bits
    237 	Here k is a 32-bit integer and T1[] is an integer array containing
    238 	correction terms. Now magically the floating value of y (y's
    239 	leading 32-bit word is y0, the value of its trailing word is 0)
    240 	approximates ieee_sqrt(x) to almost 8-bit.
    241 
    242 	Value of T1:
    243 	static int T1[32]= {
    244 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
    245 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
    246 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
    247 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
    248 
    249     (2)	Iterative refinement
    250 
    251 	Apply Heron's rule three times to y, we have y approximates
    252 	sqrt(x) to within 1 ulp (Unit in the Last Place):
    253 
    254 		y := (y+x/y)/2		... almost 17 sig. bits
    255 		y := (y+x/y)/2		... almost 35 sig. bits
    256 		y := y-(y-x/y)/2	... within 1 ulp
    257 
    258 
    259 	Remark 1.
    260 	    Another way to improve y to within 1 ulp is:
    261 
    262 		y := (y+x/y)		... almost 17 sig. bits to 2*ieee_sqrt(x)
    263 		y := y - 0x00100006	... almost 18 sig. bits to ieee_sqrt(x)
    264 
    265 				2
    266 			    (x-y )*y
    267 		y := y + 2* ----------	...within 1 ulp
    268 			       2
    269 			     3y  + x
    270 
    271 
    272 	This formula has one division fewer than the one above; however,
    273 	it requires more multiplications and additions. Also x must be
    274 	scaled in advance to avoid spurious overflow in evaluating the
    275 	expression 3y*y+x. Hence it is not recommended uless division
    276 	is slow. If division is very slow, then one should use the
    277 	reciproot algorithm given in section B.
    278 
    279     (3) Final adjustment
    280 
    281 	By twiddling y's last bit it is possible to force y to be
    282 	correctly rounded according to the prevailing rounding mode
    283 	as follows. Let r and i be copies of the rounding mode and
    284 	inexact flag before entering the square root program. Also we
    285 	use the expression y+-ulp for the next representable floating
    286 	numbers (up and down) of y. Note that y+-ulp = either fixed
    287 	point y+-1, or multiply y by ieee_nextafter(1,+-inf) in chopped
    288 	mode.
    289 
    290 		I := FALSE;	... reset INEXACT flag I
    291 		R := RZ;	... set rounding mode to round-toward-zero
    292 		z := x/y;	... chopped quotient, possibly inexact
    293 		If(not I) then {	... if the quotient is exact
    294 		    if(z=y) {
    295 		        I := i;	 ... restore inexact flag
    296 		        R := r;  ... restore rounded mode
    297 		        return ieee_sqrt(x):=y.
    298 		    } else {
    299 			z := z - ulp;	... special rounding
    300 		    }
    301 		}
    302 		i := TRUE;		... ieee_sqrt(x) is inexact
    303 		If (r=RN) then z=z+ulp	... rounded-to-nearest
    304 		If (r=RP) then {	... round-toward-+inf
    305 		    y = y+ulp; z=z+ulp;
    306 		}
    307 		y := y+z;		... chopped sum
    308 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
    309 	        I := i;	 		... restore inexact flag
    310 	        R := r;  		... restore rounded mode
    311 	        return ieee_sqrt(x):=y.
    312 
    313     (4)	Special cases
    314 
    315 	Square root of +inf, +-0, or NaN is itself;
    316 	Square root of a negative number is NaN with invalid signal.
    317 
    318 
    319 B.  ieee_sqrt(x) by Reciproot Iteration
    320 
    321    (1)	Initial approximation
    322 
    323 	Let x0 and x1 be the leading and the trailing 32-bit words of
    324 	a floating point number x (in IEEE double format) respectively
    325 	(see section A). By performing shifs and subtracts on x0 and y0,
    326 	we obtain a 7.8-bit approximation of 1/ieee_sqrt(x) as follows.
    327 
    328 	    k := 0x5fe80000 - (x0>>1);
    329 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/ieee_sqrt(x) to 7.8 bits
    330 
    331 	Here k is a 32-bit integer and T2[] is an integer array
    332 	containing correction terms. Now magically the floating
    333 	value of y (y's leading 32-bit word is y0, the value of
    334 	its trailing word y1 is set to zero) approximates 1/ieee_sqrt(x)
    335 	to almost 7.8-bit.
    336 
    337 	Value of T2:
    338 	static int T2[64]= {
    339 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
    340 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
    341 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
    342 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
    343 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
    344 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
    345 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
    346 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
    347 
    348     (2)	Iterative refinement
    349 
    350 	Apply Reciproot iteration three times to y and multiply the
    351 	result by x to get an approximation z that matches ieee_sqrt(x)
    352 	to about 1 ulp. To be exact, we will have
    353 		-1ulp < ieee_sqrt(x)-z<1.0625ulp.
    354 
    355 	... set rounding mode to Round-to-nearest
    356 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/ieee_sqrt(x)
    357 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/ieee_sqrt(x)
    358 	... special arrangement for better accuracy
    359 	   z := x*y			... 29 bits to ieee_sqrt(x), with z*y<1
    360 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to ieee_sqrt(x)
    361 
    362 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
    363 	(a) the term z*y in the final iteration is always less than 1;
    364 	(b) the error in the final result is biased upward so that
    365 		-1 ulp < ieee_sqrt(x) - z < 1.0625 ulp
    366 	    instead of |ieee_sqrt(x)-z|<1.03125ulp.
    367 
    368     (3)	Final adjustment
    369 
    370 	By twiddling y's last bit it is possible to force y to be
    371 	correctly rounded according to the prevailing rounding mode
    372 	as follows. Let r and i be copies of the rounding mode and
    373 	inexact flag before entering the square root program. Also we
    374 	use the expression y+-ulp for the next representable floating
    375 	numbers (up and down) of y. Note that y+-ulp = either fixed
    376 	point y+-1, or multiply y by ieee_nextafter(1,+-inf) in chopped
    377 	mode.
    378 
    379 	R := RZ;		... set rounding mode to round-toward-zero
    380 	switch(r) {
    381 	    case RN:		... round-to-nearest
    382 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
    383 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
    384 	       break;
    385 	    case RZ:case RM:	... round-to-zero or round-to--inf
    386 	       R:=RP;		... reset rounding mod to round-to-+inf
    387 	       if(x<z*z ... rounded up) z = z - ulp; else
    388 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
    389 	       break;
    390 	    case RP:		... round-to-+inf
    391 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
    392 	       if(x>z*z ...chopped) z = z+ulp;
    393 	       break;
    394 	}
    395 
    396 	Remark 3. The above comparisons can be done in fixed point. For
    397 	example, to compare x and w=z*z chopped, it suffices to compare
    398 	x1 and w1 (the trailing parts of x and w), regarding them as
    399 	two's complement integers.
    400 
    401 	...Is z an exact square root?
    402 	To determine whether z is an exact square root of x, let z1 be the
    403 	trailing part of z, and also let x0 and x1 be the leading and
    404 	trailing parts of x.
    405 
    406 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
    407 	    I := 1;		... Raise Inexact flag: z is not exact
    408 	else {
    409 	    j := 1 - [(x0>>20)&1]	... j = ieee_logb(x) mod 2
    410 	    k := z1 >> 26;		... get z's 25-th and 26-th
    411 					    fraction bits
    412 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
    413 	}
    414 	R:= r		... restore rounded mode
    415 	return ieee_sqrt(x):=z.
    416 
    417 	If multiplication is cheaper then the foregoing red tape, the
    418 	Inexact flag can be evaluated by
    419 
    420 	    I := i;
    421 	    I := (z*z!=x) or I.
    422 
    423 	Note that z*z can overwrite I; this value must be sensed if it is
    424 	True.
    425 
    426 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
    427 	zero.
    428 
    429 		    --------------------
    430 		z1: |        f2        |
    431 		    --------------------
    432 		bit 31		   bit 0
    433 
    434 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
    435 	or even of ieee_logb(x) have the following relations:
    436 
    437 	-------------------------------------------------
    438 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
    439 	-------------------------------------------------
    440 	00			00		odd and even
    441 	01			01		even
    442 	10			10		odd
    443 	10			00		even
    444 	11			01		even
    445 	-------------------------------------------------
    446 
    447     (4)	Special cases (see (4) of Section A).
    448 
    449  */
    450 
    451