Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 /*
     15  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
     16  * double x[],y[]; int e0,nx,prec; int ipio2[];
     17  *
     18  * __kernel_rem_pio2 return the last three digits of N with
     19  *		y = x - N*pi/2
     20  * so that |y| < pi/2.
     21  *
     22  * The method is to compute the integer (mod 8) and fraction parts of
     23  * (2/pi)*x without doing the full multiplication. In general we
     24  * skip the part of the product that are known to be a huge integer (
     25  * more accurately, = 0 mod 8 ). Thus the number of operations are
     26  * independent of the exponent of the input.
     27  *
     28  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
     29  *
     30  * Input parameters:
     31  * 	x[]	The input value (must be positive) is broken into nx
     32  *		pieces of 24-bit integers in double precision format.
     33  *		x[i] will be the i-th 24 bit of x. The scaled exponent
     34  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
     35  *		match x's up to 24 bits.
     36  *
     37  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
     38  *			e0 = ieee_ilogb(z)-23
     39  *			z  = ieee_scalbn(z,-e0)
     40  *		for i = 0,1,2
     41  *			x[i] = ieee_floor(z)
     42  *			z    = (z-x[i])*2**24
     43  *
     44  *
     45  *	y[]	ouput result in an array of double precision numbers.
     46  *		The dimension of y[] is:
     47  *			24-bit  precision	1
     48  *			53-bit  precision	2
     49  *			64-bit  precision	2
     50  *			113-bit precision	3
     51  *		The actual value is the sum of them. Thus for 113-bit
     52  *		precison, one may have to do something like:
     53  *
     54  *		long double t,w,r_head, r_tail;
     55  *		t = (long double)y[2] + (long double)y[1];
     56  *		w = (long double)y[0];
     57  *		r_head = t+w;
     58  *		r_tail = w - (r_head - t);
     59  *
     60  *	e0	The exponent of x[0]
     61  *
     62  *	nx	dimension of x[]
     63  *
     64  *  	prec	an integer indicating the precision:
     65  *			0	24  bits (single)
     66  *			1	53  bits (double)
     67  *			2	64  bits (extended)
     68  *			3	113 bits (quad)
     69  *
     70  *	ipio2[]
     71  *		integer array, contains the (24*i)-th to (24*i+23)-th
     72  *		bit of 2/pi after binary point. The corresponding
     73  *		floating value is
     74  *
     75  *			ipio2[i] * 2^(-24(i+1)).
     76  *
     77  * External function:
     78  *	double ieee_scalbn(), ieee_floor();
     79  *
     80  *
     81  * Here is the description of some local variables:
     82  *
     83  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
     84  *		in the computation. The recommended value is 2,3,4,
     85  *		6 for single, double, extended,and quad.
     86  *
     87  * 	jz	local integer variable indicating the number of
     88  *		terms of ipio2[] used.
     89  *
     90  *	jx	nx - 1
     91  *
     92  *	jv	index for pointing to the suitable ipio2[] for the
     93  *		computation. In general, we want
     94  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
     95  *		is an integer. Thus
     96  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
     97  *		Hence jv = max(0,(e0-3)/24).
     98  *
     99  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
    100  *
    101  * 	q[]	double array with integral value, representing the
    102  *		24-bits chunk of the product of x and 2/pi.
    103  *
    104  *	q0	the corresponding exponent of q[0]. Note that the
    105  *		exponent for q[i] would be q0-24*i.
    106  *
    107  *	PIo2[]	double precision array, obtained by cutting pi/2
    108  *		into 24 bits chunks.
    109  *
    110  *	f[]	ipio2[] in floating point
    111  *
    112  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
    113  *
    114  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
    115  *
    116  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
    117  *		it also indicates the *sign* of the result.
    118  *
    119  */
    120 
    121 
    122 /*
    123  * Constants:
    124  * The hexadecimal values are the intended ones for the following
    125  * constants. The decimal values may be used, provided that the
    126  * compiler will convert from decimal to binary accurately enough
    127  * to produce the hexadecimal values shown.
    128  */
    129 
    130 #include "fdlibm.h"
    131 
    132 #ifdef __STDC__
    133 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
    134 #else
    135 static int init_jk[] = {2,3,4,6};
    136 #endif
    137 
    138 #ifdef __STDC__
    139 static const double PIo2[] = {
    140 #else
    141 static double PIo2[] = {
    142 #endif
    143   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
    144   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
    145   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
    146   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
    147   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
    148   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
    149   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
    150   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
    151 };
    152 
    153 #ifdef __STDC__
    154 static const double
    155 #else
    156 static double
    157 #endif
    158 zero   = 0.0,
    159 one    = 1.0,
    160 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
    161 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
    162 
    163 #ifdef __STDC__
    164 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
    165 #else
    166 	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
    167 	double x[], y[]; int e0,nx,prec; int ipio2[];
    168 #endif
    169 {
    170 	int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
    171 	double z,fw,f[20],fq[20],q[20];
    172 
    173     /* initialize jk*/
    174 	jk = init_jk[prec];
    175 	jp = jk;
    176 
    177     /* determine jx,jv,q0, note that 3>q0 */
    178 	jx =  nx-1;
    179 	jv = (e0-3)/24; if(jv<0) jv=0;
    180 	q0 =  e0-24*(jv+1);
    181 
    182     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
    183 	j = jv-jx; m = jx+jk;
    184 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
    185 
    186     /* compute q[0],q[1],...q[jk] */
    187 	for (i=0;i<=jk;i++) {
    188 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
    189 	}
    190 
    191 	jz = jk;
    192 recompute:
    193     /* distill q[] into iq[] reversingly */
    194 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
    195 	    fw    =  (double)((int)(twon24* z));
    196 	    iq[i] =  (int)(z-two24*fw);
    197 	    z     =  q[j-1]+fw;
    198 	}
    199 
    200     /* compute n */
    201 	z  = ieee_scalbn(z,q0);		/* actual value of z */
    202 	z -= 8.0*ieee_floor(z*0.125);		/* trim off integer >= 8 */
    203 	n  = (int) z;
    204 	z -= (double)n;
    205 	ih = 0;
    206 	if(q0>0) {	/* need iq[jz-1] to determine n */
    207 	    i  = (iq[jz-1]>>(24-q0)); n += i;
    208 	    iq[jz-1] -= i<<(24-q0);
    209 	    ih = iq[jz-1]>>(23-q0);
    210 	}
    211 	else if(q0==0) ih = iq[jz-1]>>23;
    212 	else if(z>=0.5) ih=2;
    213 
    214 	if(ih>0) {	/* q > 0.5 */
    215 	    n += 1; carry = 0;
    216 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
    217 		j = iq[i];
    218 		if(carry==0) {
    219 		    if(j!=0) {
    220 			carry = 1; iq[i] = 0x1000000- j;
    221 		    }
    222 		} else  iq[i] = 0xffffff - j;
    223 	    }
    224 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
    225 	        switch(q0) {
    226 	        case 1:
    227 	    	   iq[jz-1] &= 0x7fffff; break;
    228 	    	case 2:
    229 	    	   iq[jz-1] &= 0x3fffff; break;
    230 	        }
    231 	    }
    232 	    if(ih==2) {
    233 		z = one - z;
    234 		if(carry!=0) z -= ieee_scalbn(one,q0);
    235 	    }
    236 	}
    237 
    238     /* check if recomputation is needed */
    239 	if(z==zero) {
    240 	    j = 0;
    241 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
    242 	    if(j==0) { /* need recomputation */
    243 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
    244 
    245 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
    246 		    f[jx+i] = (double) ipio2[jv+i];
    247 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
    248 		    q[i] = fw;
    249 		}
    250 		jz += k;
    251 		goto recompute;
    252 	    }
    253 	}
    254 
    255     /* chop off zero terms */
    256 	if(z==0.0) {
    257 	    jz -= 1; q0 -= 24;
    258 	    while(iq[jz]==0) { jz--; q0-=24;}
    259 	} else { /* break z into 24-bit if necessary */
    260 	    z = ieee_scalbn(z,-q0);
    261 	    if(z>=two24) {
    262 		fw = (double)((int)(twon24*z));
    263 		iq[jz] = (int)(z-two24*fw);
    264 		jz += 1; q0 += 24;
    265 		iq[jz] = (int) fw;
    266 	    } else iq[jz] = (int) z ;
    267 	}
    268 
    269     /* convert integer "bit" chunk to floating-point value */
    270 	fw = ieee_scalbn(one,q0);
    271 	for(i=jz;i>=0;i--) {
    272 	    q[i] = fw*(double)iq[i]; fw*=twon24;
    273 	}
    274 
    275     /* compute PIo2[0,...,jp]*q[jz,...,0] */
    276 	for(i=jz;i>=0;i--) {
    277 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
    278 	    fq[jz-i] = fw;
    279 	}
    280 
    281     /* compress fq[] into y[] */
    282 	switch(prec) {
    283 	    case 0:
    284 		fw = 0.0;
    285 		for (i=jz;i>=0;i--) fw += fq[i];
    286 		y[0] = (ih==0)? fw: -fw;
    287 		break;
    288 	    case 1:
    289 	    case 2:
    290 		fw = 0.0;
    291 		for (i=jz;i>=0;i--) fw += fq[i];
    292 		y[0] = (ih==0)? fw: -fw;
    293 		fw = fq[0]-fw;
    294 		for (i=1;i<=jz;i++) fw += fq[i];
    295 		y[1] = (ih==0)? fw: -fw;
    296 		break;
    297 	    case 3:	/* painful */
    298 		for (i=jz;i>0;i--) {
    299 		    fw      = fq[i-1]+fq[i];
    300 		    fq[i]  += fq[i-1]-fw;
    301 		    fq[i-1] = fw;
    302 		}
    303 		for (i=jz;i>1;i--) {
    304 		    fw      = fq[i-1]+fq[i];
    305 		    fq[i]  += fq[i-1]-fw;
    306 		    fq[i-1] = fw;
    307 		}
    308 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    309 		if(ih==0) {
    310 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    311 		} else {
    312 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    313 		}
    314 	}
    315 	return n&7;
    316 }
    317