1 package com.jme3.util; 2 3 4 /** 5 * The wrapper for the primitive type {@code int}. 6 * <p> 7 * As with the specification, this implementation relies on code laid out in <a 8 * href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's 9 * Delight, (Addison Wesley, 2002)</a> as well as <a 10 * href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>. 11 * 12 * @see java.lang.Number 13 * @since 1.1 14 */ 15 public final class FastInteger { 16 17 /** 18 * Constant for the maximum {@code int} value, 2<sup>31</sup>-1. 19 */ 20 public static final int MAX_VALUE = 0x7FFFFFFF; 21 22 /** 23 * Constant for the minimum {@code int} value, -2<sup>31</sup>. 24 */ 25 public static final int MIN_VALUE = 0x80000000; 26 27 /** 28 * Constant for the number of bits needed to represent an {@code int} in 29 * two's complement form. 30 * 31 * @since 1.5 32 */ 33 public static final int SIZE = 32; 34 35 /* 36 * Progressively smaller decimal order of magnitude that can be represented 37 * by an instance of Integer. Used to help compute the String 38 * representation. 39 */ 40 private static final int[] decimalScale = new int[] { 1000000000, 100000000, 41 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }; 42 43 /** 44 * Converts the specified integer into its decimal string representation. 45 * The returned string is a concatenation of a minus sign if the number is 46 * negative and characters from '0' to '9'. 47 * 48 * @param value 49 * the integer to convert. 50 * @return the decimal string representation of {@code value}. 51 */ 52 public static boolean toCharArray(int value, char[] output) { 53 if (value == 0) 54 { 55 output[0] = '0'; 56 output[1] = 0; 57 return true; 58 } 59 60 // Faster algorithm for smaller Integers 61 if (value < 1000 && value > -1000) { 62 63 int positive_value = value < 0 ? -value : value; 64 int first_digit = 0; 65 if (value < 0) { 66 output[0] = '-'; 67 first_digit++; 68 } 69 int last_digit = first_digit; 70 int quot = positive_value; 71 do { 72 int res = quot / 10; 73 int digit_value = quot - ((res << 3) + (res << 1)); 74 digit_value += '0'; 75 output[last_digit++] = (char) digit_value; 76 quot = res; 77 } while (quot != 0); 78 79 int count = last_digit--; 80 do { 81 char tmp = output[last_digit]; 82 output[last_digit--] = output[first_digit]; 83 output[first_digit++] = tmp; 84 } while (first_digit < last_digit); 85 output[count] = 0; 86 return true; 87 } 88 if (value == MIN_VALUE) { 89 System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12); 90 output[12] = 0; 91 return true; 92 } 93 94 95 int positive_value = value < 0 ? -value : value; 96 byte first_digit = 0; 97 if (value < 0) { 98 output[0] = '-'; 99 first_digit++; 100 } 101 byte last_digit = first_digit; 102 byte count; 103 int number; 104 boolean start = false; 105 for (int i = 0; i < 9; i++) { 106 count = 0; 107 if (positive_value < (number = decimalScale[i])) { 108 if (start) { 109 output[last_digit++] = '0'; 110 } 111 continue; 112 } 113 114 if (i > 0) { 115 number = (decimalScale[i] << 3); 116 if (positive_value >= number) { 117 positive_value -= number; 118 count += 8; 119 } 120 number = (decimalScale[i] << 2); 121 if (positive_value >= number) { 122 positive_value -= number; 123 count += 4; 124 } 125 } 126 number = (decimalScale[i] << 1); 127 if (positive_value >= number) { 128 positive_value -= number; 129 count += 2; 130 } 131 if (positive_value >= decimalScale[i]) { 132 positive_value -= decimalScale[i]; 133 count++; 134 } 135 if (count > 0 && !start) { 136 start = true; 137 } 138 if (start) { 139 output[last_digit++] = (char) (count + '0'); 140 } 141 } 142 143 output[last_digit++] = (char) (positive_value + '0'); 144 output[last_digit] = 0; 145 count = last_digit--; 146 return true; 147 } 148 149 150 /** 151 * Determines the highest (leftmost) bit of the specified integer that is 1 152 * and returns the bit mask value for that bit. This is also referred to as 153 * the Most Significant 1 Bit. Returns zero if the specified integer is 154 * zero. 155 * 156 * @param i 157 * the integer to examine. 158 * @return the bit mask indicating the highest 1 bit in {@code i}. 159 * @since 1.5 160 */ 161 public static int highestOneBit(int i) { 162 i |= (i >> 1); 163 i |= (i >> 2); 164 i |= (i >> 4); 165 i |= (i >> 8); 166 i |= (i >> 16); 167 return (i & ~(i >>> 1)); 168 } 169 170 /** 171 * Determines the lowest (rightmost) bit of the specified integer that is 1 172 * and returns the bit mask value for that bit. This is also referred 173 * to as the Least Significant 1 Bit. Returns zero if the specified integer 174 * is zero. 175 * 176 * @param i 177 * the integer to examine. 178 * @return the bit mask indicating the lowest 1 bit in {@code i}. 179 * @since 1.5 180 */ 181 public static int lowestOneBit(int i) { 182 return (i & (-i)); 183 } 184 185 /** 186 * Determines the number of leading zeros in the specified integer prior to 187 * the {@link #highestOneBit(int) highest one bit}. 188 * 189 * @param i 190 * the integer to examine. 191 * @return the number of leading zeros in {@code i}. 192 * @since 1.5 193 */ 194 public static int numberOfLeadingZeros(int i) { 195 i |= i >> 1; 196 i |= i >> 2; 197 i |= i >> 4; 198 i |= i >> 8; 199 i |= i >> 16; 200 return bitCount(~i); 201 } 202 203 /** 204 * Determines the number of trailing zeros in the specified integer after 205 * the {@link #lowestOneBit(int) lowest one bit}. 206 * 207 * @param i 208 * the integer to examine. 209 * @return the number of trailing zeros in {@code i}. 210 * @since 1.5 211 */ 212 public static int numberOfTrailingZeros(int i) { 213 return bitCount((i & -i) - 1); 214 } 215 216 /** 217 * Counts the number of 1 bits in the specified integer; this is also 218 * referred to as population count. 219 * 220 * @param i 221 * the integer to examine. 222 * @return the number of 1 bits in {@code i}. 223 * @since 1.5 224 */ 225 public static int bitCount(int i) { 226 i -= ((i >> 1) & 0x55555555); 227 i = (i & 0x33333333) + ((i >> 2) & 0x33333333); 228 i = (((i >> 4) + i) & 0x0F0F0F0F); 229 i += (i >> 8); 230 i += (i >> 16); 231 return (i & 0x0000003F); 232 } 233 234 /** 235 * Rotates the bits of the specified integer to the left by the specified 236 * number of bits. 237 * 238 * @param i 239 * the integer value to rotate left. 240 * @param distance 241 * the number of bits to rotate. 242 * @return the rotated value. 243 * @since 1.5 244 */ 245 public static int rotateLeft(int i, int distance) { 246 if (distance == 0) { 247 return i; 248 } 249 /* 250 * According to JLS3, 15.19, the right operand of a shift is always 251 * implicitly masked with 0x1F, which the negation of 'distance' is 252 * taking advantage of. 253 */ 254 return ((i << distance) | (i >>> (-distance))); 255 } 256 257 /** 258 * Rotates the bits of the specified integer to the right by the specified 259 * number of bits. 260 * 261 * @param i 262 * the integer value to rotate right. 263 * @param distance 264 * the number of bits to rotate. 265 * @return the rotated value. 266 * @since 1.5 267 */ 268 public static int rotateRight(int i, int distance) { 269 if (distance == 0) { 270 return i; 271 } 272 /* 273 * According to JLS3, 15.19, the right operand of a shift is always 274 * implicitly masked with 0x1F, which the negation of 'distance' is 275 * taking advantage of. 276 */ 277 return ((i >>> distance) | (i << (-distance))); 278 } 279 280 /** 281 * Reverses the order of the bytes of the specified integer. 282 * 283 * @param i 284 * the integer value for which to reverse the byte order. 285 * @return the reversed value. 286 * @since 1.5 287 */ 288 public static int reverseBytes(int i) { 289 int b3 = i >>> 24; 290 int b2 = (i >>> 8) & 0xFF00; 291 int b1 = (i & 0xFF00) << 8; 292 int b0 = i << 24; 293 return (b0 | b1 | b2 | b3); 294 } 295 296 /** 297 * Reverses the order of the bits of the specified integer. 298 * 299 * @param i 300 * the integer value for which to reverse the bit order. 301 * @return the reversed value. 302 * @since 1.5 303 */ 304 public static int reverse(int i) { 305 // From Hacker's Delight, 7-1, Figure 7-1 306 i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555; 307 i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333; 308 i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F; 309 return reverseBytes(i); 310 } 311 312 /** 313 * Returns the value of the {@code signum} function for the specified 314 * integer. 315 * 316 * @param i 317 * the integer value to check. 318 * @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if 319 * {@code i} is zero. 320 * @since 1.5 321 */ 322 public static int signum(int i) { 323 return (i == 0 ? 0 : (i < 0 ? -1 : 1)); 324 } 325 326 /** 327 * Returns a {@code Integer} instance for the specified integer value. 328 * <p> 329 * If it is not necessary to get a new {@code Integer} instance, it is 330 * recommended to use this method instead of the constructor, since it 331 * maintains a cache of instances which may result in better performance. 332 * 333 * @param i 334 * the integer value to store in the instance. 335 * @return a {@code Integer} instance containing {@code i}. 336 * @since 1.5 337 */ 338 public static Integer valueOf(int i) { 339 if (i < -128 || i > 127) { 340 return new Integer(i); 341 } 342 return valueOfCache.CACHE [i+128]; 343 344 } 345 346 static class valueOfCache { 347 /** 348 * <p> 349 * A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing. 350 */ 351 static final Integer[] CACHE = new Integer[256]; 352 353 static { 354 for(int i=-128; i<=127; i++) { 355 CACHE[i+128] = new Integer(i); 356 } 357 } 358 } 359 } 360