Home | History | Annotate | Download | only in jpeg
      1 /*
      2  * jfdctfst.c
      3  *
      4  * Copyright (C) 1994-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains a fast, not so accurate integer implementation of the
      9  * forward DCT (Discrete Cosine Transform).
     10  *
     11  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     12  * on each column.  Direct algorithms are also available, but they are
     13  * much more complex and seem not to be any faster when reduced to code.
     14  *
     15  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     16  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     17  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     18  * JPEG textbook (see REFERENCES section in file README).  The following code
     19  * is based directly on figure 4-8 in P&M.
     20  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     21  * possible to arrange the computation so that many of the multiplies are
     22  * simple scalings of the final outputs.  These multiplies can then be
     23  * folded into the multiplications or divisions by the JPEG quantization
     24  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     25  * to be done in the DCT itself.
     26  * The primary disadvantage of this method is that with fixed-point math,
     27  * accuracy is lost due to imprecise representation of the scaled
     28  * quantization values.  The smaller the quantization table entry, the less
     29  * precise the scaled value, so this implementation does worse with high-
     30  * quality-setting files than with low-quality ones.
     31  */
     32 
     33 #define JPEG_INTERNALS
     34 #include "jinclude.h"
     35 #include "jpeglib.h"
     36 #include "jdct.h"		/* Private declarations for DCT subsystem */
     37 
     38 #ifdef DCT_IFAST_SUPPORTED
     39 
     40 
     41 /*
     42  * This module is specialized to the case DCTSIZE = 8.
     43  */
     44 
     45 #if DCTSIZE != 8
     46   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     47 #endif
     48 
     49 
     50 /* Scaling decisions are generally the same as in the LL&M algorithm;
     51  * see jfdctint.c for more details.  However, we choose to descale
     52  * (right shift) multiplication products as soon as they are formed,
     53  * rather than carrying additional fractional bits into subsequent additions.
     54  * This compromises accuracy slightly, but it lets us save a few shifts.
     55  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     56  * everywhere except in the multiplications proper; this saves a good deal
     57  * of work on 16-bit-int machines.
     58  *
     59  * Again to save a few shifts, the intermediate results between pass 1 and
     60  * pass 2 are not upscaled, but are represented only to integral precision.
     61  *
     62  * A final compromise is to represent the multiplicative constants to only
     63  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     64  * machines, and may also reduce the cost of multiplication (since there
     65  * are fewer one-bits in the constants).
     66  */
     67 
     68 #define CONST_BITS  8
     69 
     70 
     71 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     72  * causing a lot of useless floating-point operations at run time.
     73  * To get around this we use the following pre-calculated constants.
     74  * If you change CONST_BITS you may want to add appropriate values.
     75  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     76  */
     77 
     78 #if CONST_BITS == 8
     79 #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
     80 #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
     81 #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
     82 #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
     83 #else
     84 #define FIX_0_382683433  FIX(0.382683433)
     85 #define FIX_0_541196100  FIX(0.541196100)
     86 #define FIX_0_707106781  FIX(0.707106781)
     87 #define FIX_1_306562965  FIX(1.306562965)
     88 #endif
     89 
     90 
     91 /* We can gain a little more speed, with a further compromise in accuracy,
     92  * by omitting the addition in a descaling shift.  This yields an incorrectly
     93  * rounded result half the time...
     94  */
     95 
     96 #ifndef USE_ACCURATE_ROUNDING
     97 #undef DESCALE
     98 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
     99 #endif
    100 
    101 
    102 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
    103  * descale to yield a DCTELEM result.
    104  */
    105 
    106 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    107 
    108 
    109 /*
    110  * Perform the forward DCT on one block of samples.
    111  */
    112 
    113 GLOBAL(void)
    114 jpeg_fdct_ifast (DCTELEM * data)
    115 {
    116   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    117   DCTELEM tmp10, tmp11, tmp12, tmp13;
    118   DCTELEM z1, z2, z3, z4, z5, z11, z13;
    119   DCTELEM *dataptr;
    120   int ctr;
    121   SHIFT_TEMPS
    122 
    123   /* Pass 1: process rows. */
    124 
    125   dataptr = data;
    126   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    127     tmp0 = dataptr[0] + dataptr[7];
    128     tmp7 = dataptr[0] - dataptr[7];
    129     tmp1 = dataptr[1] + dataptr[6];
    130     tmp6 = dataptr[1] - dataptr[6];
    131     tmp2 = dataptr[2] + dataptr[5];
    132     tmp5 = dataptr[2] - dataptr[5];
    133     tmp3 = dataptr[3] + dataptr[4];
    134     tmp4 = dataptr[3] - dataptr[4];
    135 
    136     /* Even part */
    137 
    138     tmp10 = tmp0 + tmp3;	/* phase 2 */
    139     tmp13 = tmp0 - tmp3;
    140     tmp11 = tmp1 + tmp2;
    141     tmp12 = tmp1 - tmp2;
    142 
    143     dataptr[0] = tmp10 + tmp11; /* phase 3 */
    144     dataptr[4] = tmp10 - tmp11;
    145 
    146     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    147     dataptr[2] = tmp13 + z1;	/* phase 5 */
    148     dataptr[6] = tmp13 - z1;
    149 
    150     /* Odd part */
    151 
    152     tmp10 = tmp4 + tmp5;	/* phase 2 */
    153     tmp11 = tmp5 + tmp6;
    154     tmp12 = tmp6 + tmp7;
    155 
    156     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    157     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    158     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    159     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    160     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    161 
    162     z11 = tmp7 + z3;		/* phase 5 */
    163     z13 = tmp7 - z3;
    164 
    165     dataptr[5] = z13 + z2;	/* phase 6 */
    166     dataptr[3] = z13 - z2;
    167     dataptr[1] = z11 + z4;
    168     dataptr[7] = z11 - z4;
    169 
    170     dataptr += DCTSIZE;		/* advance pointer to next row */
    171   }
    172 
    173   /* Pass 2: process columns. */
    174 
    175   dataptr = data;
    176   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    177     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    178     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    179     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    180     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    181     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    182     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    183     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    184     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    185 
    186     /* Even part */
    187 
    188     tmp10 = tmp0 + tmp3;	/* phase 2 */
    189     tmp13 = tmp0 - tmp3;
    190     tmp11 = tmp1 + tmp2;
    191     tmp12 = tmp1 - tmp2;
    192 
    193     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    194     dataptr[DCTSIZE*4] = tmp10 - tmp11;
    195 
    196     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    197     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    198     dataptr[DCTSIZE*6] = tmp13 - z1;
    199 
    200     /* Odd part */
    201 
    202     tmp10 = tmp4 + tmp5;	/* phase 2 */
    203     tmp11 = tmp5 + tmp6;
    204     tmp12 = tmp6 + tmp7;
    205 
    206     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    207     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    208     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    209     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    210     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    211 
    212     z11 = tmp7 + z3;		/* phase 5 */
    213     z13 = tmp7 - z3;
    214 
    215     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    216     dataptr[DCTSIZE*3] = z13 - z2;
    217     dataptr[DCTSIZE*1] = z11 + z4;
    218     dataptr[DCTSIZE*7] = z11 - z4;
    219 
    220     dataptr++;			/* advance pointer to next column */
    221   }
    222 }
    223 
    224 #endif /* DCT_IFAST_SUPPORTED */
    225