Home | History | Annotate | Download | only in asm-mips
      1 /*
      2  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
      3  * Written by Hennus Bergman, 1992.
      4  * High DMA channel support & info by Hannu Savolainen
      5  * and John Boyd, Nov. 1992.
      6  *
      7  * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
      8  * and can only be used for expansion cards. Onboard DMA controllers, such
      9  * as the R4030 on Jazz boards behave totally different!
     10  */
     11 
     12 #ifndef _ASM_DMA_H
     13 #define _ASM_DMA_H
     14 
     15 #include <asm/io.h>			/* need byte IO */
     16 #include <linux/spinlock.h>		/* And spinlocks */
     17 #include <linux/delay.h>
     18 #include <asm/system.h>
     19 
     20 
     21 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
     22 #define dma_outb	outb_p
     23 #else
     24 #define dma_outb	outb
     25 #endif
     26 
     27 #define dma_inb		inb
     28 
     29 /*
     30  * NOTES about DMA transfers:
     31  *
     32  *  controller 1: channels 0-3, byte operations, ports 00-1F
     33  *  controller 2: channels 4-7, word operations, ports C0-DF
     34  *
     35  *  - ALL registers are 8 bits only, regardless of transfer size
     36  *  - channel 4 is not used - cascades 1 into 2.
     37  *  - channels 0-3 are byte - addresses/counts are for physical bytes
     38  *  - channels 5-7 are word - addresses/counts are for physical words
     39  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
     40  *  - transfer count loaded to registers is 1 less than actual count
     41  *  - controller 2 offsets are all even (2x offsets for controller 1)
     42  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
     43  *  - page registers for 0-3 use bit 0, represent 64K pages
     44  *
     45  * DMA transfers are limited to the lower 16MB of _physical_ memory.
     46  * Note that addresses loaded into registers must be _physical_ addresses,
     47  * not logical addresses (which may differ if paging is active).
     48  *
     49  *  Address mapping for channels 0-3:
     50  *
     51  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
     52  *    |  ...  |   |  ... |   |  ... |
     53  *    |  ...  |   |  ... |   |  ... |
     54  *    |  ...  |   |  ... |   |  ... |
     55  *   P7  ...  P0  A7 ... A0  A7 ... A0
     56  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
     57  *
     58  *  Address mapping for channels 5-7:
     59  *
     60  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
     61  *    |  ...  |   \   \   ... \  \  \  ... \  \
     62  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
     63  *    |  ...  |     \   \   ... \  \  \  ... \
     64  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
     65  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
     66  *
     67  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
     68  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
     69  * the hardware level, so odd-byte transfers aren't possible).
     70  *
     71  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
     72  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
     73  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
     74  *
     75  */
     76 
     77 #ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
     78 #define MAX_DMA_CHANNELS	8
     79 #endif
     80 
     81 /*
     82  * The maximum address in KSEG0 that we can perform a DMA transfer to on this
     83  * platform.  This describes only the PC style part of the DMA logic like on
     84  * Deskstations or Acer PICA but not the much more versatile DMA logic used
     85  * for the local devices on Acer PICA or Magnums.
     86  */
     87 #if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
     88 /* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
     89 #define MAX_DMA_ADDRESS		PAGE_OFFSET
     90 #else
     91 #define MAX_DMA_ADDRESS		(PAGE_OFFSET + 0x01000000)
     92 #endif
     93 #define MAX_DMA_PFN		PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
     94 #define MAX_DMA32_PFN		(1UL << (32 - PAGE_SHIFT))
     95 
     96 /* 8237 DMA controllers */
     97 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
     98 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
     99 
    100 /* DMA controller registers */
    101 #define DMA1_CMD_REG		0x08	/* command register (w) */
    102 #define DMA1_STAT_REG		0x08	/* status register (r) */
    103 #define DMA1_REQ_REG            0x09    /* request register (w) */
    104 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
    105 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
    106 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
    107 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
    108 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
    109 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
    110 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
    111 
    112 #define DMA2_CMD_REG		0xD0	/* command register (w) */
    113 #define DMA2_STAT_REG		0xD0	/* status register (r) */
    114 #define DMA2_REQ_REG            0xD2    /* request register (w) */
    115 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
    116 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
    117 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
    118 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
    119 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
    120 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
    121 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
    122 
    123 #define DMA_ADDR_0              0x00    /* DMA address registers */
    124 #define DMA_ADDR_1              0x02
    125 #define DMA_ADDR_2              0x04
    126 #define DMA_ADDR_3              0x06
    127 #define DMA_ADDR_4              0xC0
    128 #define DMA_ADDR_5              0xC4
    129 #define DMA_ADDR_6              0xC8
    130 #define DMA_ADDR_7              0xCC
    131 
    132 #define DMA_CNT_0               0x01    /* DMA count registers */
    133 #define DMA_CNT_1               0x03
    134 #define DMA_CNT_2               0x05
    135 #define DMA_CNT_3               0x07
    136 #define DMA_CNT_4               0xC2
    137 #define DMA_CNT_5               0xC6
    138 #define DMA_CNT_6               0xCA
    139 #define DMA_CNT_7               0xCE
    140 
    141 #define DMA_PAGE_0              0x87    /* DMA page registers */
    142 #define DMA_PAGE_1              0x83
    143 #define DMA_PAGE_2              0x81
    144 #define DMA_PAGE_3              0x82
    145 #define DMA_PAGE_5              0x8B
    146 #define DMA_PAGE_6              0x89
    147 #define DMA_PAGE_7              0x8A
    148 
    149 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
    150 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
    151 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
    152 
    153 #define DMA_AUTOINIT	0x10
    154 
    155 extern spinlock_t  dma_spin_lock;
    156 
    157 static __inline__ unsigned long claim_dma_lock(void)
    158 {
    159 	unsigned long flags;
    160 	spin_lock_irqsave(&dma_spin_lock, flags);
    161 	return flags;
    162 }
    163 
    164 static __inline__ void release_dma_lock(unsigned long flags)
    165 {
    166 	spin_unlock_irqrestore(&dma_spin_lock, flags);
    167 }
    168 
    169 /* enable/disable a specific DMA channel */
    170 static __inline__ void enable_dma(unsigned int dmanr)
    171 {
    172 	if (dmanr<=3)
    173 		dma_outb(dmanr,  DMA1_MASK_REG);
    174 	else
    175 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
    176 }
    177 
    178 static __inline__ void disable_dma(unsigned int dmanr)
    179 {
    180 	if (dmanr<=3)
    181 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
    182 	else
    183 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
    184 }
    185 
    186 /* Clear the 'DMA Pointer Flip Flop'.
    187  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
    188  * Use this once to initialize the FF to a known state.
    189  * After that, keep track of it. :-)
    190  * --- In order to do that, the DMA routines below should ---
    191  * --- only be used while holding the DMA lock ! ---
    192  */
    193 static __inline__ void clear_dma_ff(unsigned int dmanr)
    194 {
    195 	if (dmanr<=3)
    196 		dma_outb(0,  DMA1_CLEAR_FF_REG);
    197 	else
    198 		dma_outb(0,  DMA2_CLEAR_FF_REG);
    199 }
    200 
    201 /* set mode (above) for a specific DMA channel */
    202 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
    203 {
    204 	if (dmanr<=3)
    205 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
    206 	else
    207 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
    208 }
    209 
    210 /* Set only the page register bits of the transfer address.
    211  * This is used for successive transfers when we know the contents of
    212  * the lower 16 bits of the DMA current address register, but a 64k boundary
    213  * may have been crossed.
    214  */
    215 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
    216 {
    217 	switch(dmanr) {
    218 		case 0:
    219 			dma_outb(pagenr, DMA_PAGE_0);
    220 			break;
    221 		case 1:
    222 			dma_outb(pagenr, DMA_PAGE_1);
    223 			break;
    224 		case 2:
    225 			dma_outb(pagenr, DMA_PAGE_2);
    226 			break;
    227 		case 3:
    228 			dma_outb(pagenr, DMA_PAGE_3);
    229 			break;
    230 		case 5:
    231 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
    232 			break;
    233 		case 6:
    234 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
    235 			break;
    236 		case 7:
    237 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
    238 			break;
    239 	}
    240 }
    241 
    242 
    243 /* Set transfer address & page bits for specific DMA channel.
    244  * Assumes dma flipflop is clear.
    245  */
    246 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
    247 {
    248 	set_dma_page(dmanr, a>>16);
    249 	if (dmanr <= 3)  {
    250 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
    251             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
    252 	}  else  {
    253 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
    254 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
    255 	}
    256 }
    257 
    258 
    259 /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
    260  * a specific DMA channel.
    261  * You must ensure the parameters are valid.
    262  * NOTE: from a manual: "the number of transfers is one more
    263  * than the initial word count"! This is taken into account.
    264  * Assumes dma flip-flop is clear.
    265  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
    266  */
    267 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
    268 {
    269         count--;
    270 	if (dmanr <= 3)  {
    271 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
    272 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
    273         } else {
    274 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
    275 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
    276         }
    277 }
    278 
    279 
    280 /* Get DMA residue count. After a DMA transfer, this
    281  * should return zero. Reading this while a DMA transfer is
    282  * still in progress will return unpredictable results.
    283  * If called before the channel has been used, it may return 1.
    284  * Otherwise, it returns the number of _bytes_ left to transfer.
    285  *
    286  * Assumes DMA flip-flop is clear.
    287  */
    288 static __inline__ int get_dma_residue(unsigned int dmanr)
    289 {
    290 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
    291 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
    292 
    293 	/* using short to get 16-bit wrap around */
    294 	unsigned short count;
    295 
    296 	count = 1 + dma_inb(io_port);
    297 	count += dma_inb(io_port) << 8;
    298 
    299 	return (dmanr<=3)? count : (count<<1);
    300 }
    301 
    302 
    303 /* These are in kernel/dma.c: */
    304 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
    305 extern void free_dma(unsigned int dmanr);	/* release it again */
    306 
    307 /* From PCI */
    308 
    309 #ifdef CONFIG_PCI
    310 extern int isa_dma_bridge_buggy;
    311 #else
    312 #define isa_dma_bridge_buggy	(0)
    313 #endif
    314 
    315 #endif /* _ASM_DMA_H */
    316