Home | History | Annotate | Download | only in test
      1 /*
      2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 #include <stdlib.h>
     13 #include <string.h>
     14 
     15 #include "third_party/googletest/src/include/gtest/gtest.h"
     16 #include "test/acm_random.h"
     17 #include "test/clear_system_state.h"
     18 #include "test/register_state_check.h"
     19 #include "test/util.h"
     20 
     21 extern "C" {
     22 #include "vp9/common/vp9_entropy.h"
     23 #include "./vp9_rtcd.h"
     24 void vp9_idct4x4_16_add_c(const int16_t *input, uint8_t *output, int pitch);
     25 }
     26 #include "vpx/vpx_integer.h"
     27 
     28 using libvpx_test::ACMRandom;
     29 
     30 namespace {
     31 const int kNumCoeffs = 16;
     32 typedef void (*fdct_t)(const int16_t *in, int16_t *out, int stride);
     33 typedef void (*idct_t)(const int16_t *in, uint8_t *out, int stride);
     34 typedef void (*fht_t) (const int16_t *in, int16_t *out, int stride,
     35                        int tx_type);
     36 typedef void (*iht_t) (const int16_t *in, uint8_t *out, int stride,
     37                        int tx_type);
     38 
     39 void fdct4x4_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
     40   vp9_fdct4x4_c(in, out, stride);
     41 }
     42 
     43 void fht4x4_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
     44   vp9_short_fht4x4_c(in, out, stride, tx_type);
     45 }
     46 
     47 class Trans4x4TestBase {
     48  public:
     49   virtual ~Trans4x4TestBase() {}
     50 
     51  protected:
     52   virtual void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) = 0;
     53 
     54   virtual void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) = 0;
     55 
     56   void RunAccuracyCheck() {
     57     ACMRandom rnd(ACMRandom::DeterministicSeed());
     58     uint32_t max_error = 0;
     59     int64_t total_error = 0;
     60     const int count_test_block = 10000;
     61     for (int i = 0; i < count_test_block; ++i) {
     62       DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
     63       DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
     64       DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
     65       DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
     66 
     67       // Initialize a test block with input range [-255, 255].
     68       for (int j = 0; j < kNumCoeffs; ++j) {
     69         src[j] = rnd.Rand8();
     70         dst[j] = rnd.Rand8();
     71         test_input_block[j] = src[j] - dst[j];
     72       }
     73 
     74       REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block,
     75                                       test_temp_block, pitch_));
     76       REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
     77 
     78       for (int j = 0; j < kNumCoeffs; ++j) {
     79         const uint32_t diff = dst[j] - src[j];
     80         const uint32_t error = diff * diff;
     81         if (max_error < error)
     82           max_error = error;
     83         total_error += error;
     84       }
     85     }
     86 
     87     EXPECT_GE(1u, max_error)
     88         << "Error: 4x4 FHT/IHT has an individual round trip error > 1";
     89 
     90     EXPECT_GE(count_test_block , total_error)
     91         << "Error: 4x4 FHT/IHT has average round trip error > 1 per block";
     92   }
     93 
     94   void RunCoeffCheck() {
     95     ACMRandom rnd(ACMRandom::DeterministicSeed());
     96     const int count_test_block = 5000;
     97     DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
     98     DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
     99     DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
    100 
    101     for (int i = 0; i < count_test_block; ++i) {
    102       // Initialize a test block with input range [-255, 255].
    103       for (int j = 0; j < kNumCoeffs; ++j)
    104         input_block[j] = rnd.Rand8() - rnd.Rand8();
    105 
    106       fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
    107       REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
    108 
    109       // The minimum quant value is 4.
    110       for (int j = 0; j < kNumCoeffs; ++j)
    111         EXPECT_EQ(output_block[j], output_ref_block[j]);
    112     }
    113   }
    114 
    115   void RunMemCheck() {
    116     ACMRandom rnd(ACMRandom::DeterministicSeed());
    117     const int count_test_block = 5000;
    118     DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
    119     DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
    120     DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
    121     DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
    122 
    123     for (int i = 0; i < count_test_block; ++i) {
    124       // Initialize a test block with input range [-255, 255].
    125       for (int j = 0; j < kNumCoeffs; ++j) {
    126         input_block[j] = rnd.Rand8() - rnd.Rand8();
    127         input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
    128       }
    129       if (i == 0)
    130         for (int j = 0; j < kNumCoeffs; ++j)
    131           input_extreme_block[j] = 255;
    132       if (i == 1)
    133         for (int j = 0; j < kNumCoeffs; ++j)
    134           input_extreme_block[j] = -255;
    135 
    136       fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
    137       REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
    138                                       output_block, pitch_));
    139 
    140       // The minimum quant value is 4.
    141       for (int j = 0; j < kNumCoeffs; ++j) {
    142         EXPECT_EQ(output_block[j], output_ref_block[j]);
    143         EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
    144             << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
    145       }
    146     }
    147   }
    148 
    149   void RunInvAccuracyCheck() {
    150     ACMRandom rnd(ACMRandom::DeterministicSeed());
    151     const int count_test_block = 1000;
    152     DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
    153     DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
    154     DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
    155     DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
    156 
    157     for (int i = 0; i < count_test_block; ++i) {
    158       // Initialize a test block with input range [-255, 255].
    159       for (int j = 0; j < kNumCoeffs; ++j) {
    160         src[j] = rnd.Rand8();
    161         dst[j] = rnd.Rand8();
    162         in[j] = src[j] - dst[j];
    163       }
    164 
    165       fwd_txfm_ref(in, coeff, pitch_, tx_type_);
    166 
    167       REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
    168 
    169       for (int j = 0; j < kNumCoeffs; ++j) {
    170         const uint32_t diff = dst[j] - src[j];
    171         const uint32_t error = diff * diff;
    172         EXPECT_GE(1u, error)
    173             << "Error: 16x16 IDCT has error " << error
    174             << " at index " << j;
    175       }
    176     }
    177   }
    178 
    179   int pitch_;
    180   int tx_type_;
    181   fht_t fwd_txfm_ref;
    182 };
    183 
    184 class Trans4x4DCT
    185     : public Trans4x4TestBase,
    186       public PARAMS(fdct_t, idct_t, int) {
    187  public:
    188   virtual ~Trans4x4DCT() {}
    189 
    190   virtual void SetUp() {
    191     fwd_txfm_ = GET_PARAM(0);
    192     inv_txfm_ = GET_PARAM(1);
    193     tx_type_  = GET_PARAM(2);
    194     pitch_    = 4;
    195     fwd_txfm_ref = fdct4x4_ref;
    196   }
    197   virtual void TearDown() { libvpx_test::ClearSystemState(); }
    198 
    199  protected:
    200   void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) {
    201     fwd_txfm_(in, out, stride);
    202   }
    203   void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) {
    204     inv_txfm_(out, dst, stride);
    205   }
    206 
    207   fdct_t fwd_txfm_;
    208   idct_t inv_txfm_;
    209 };
    210 
    211 TEST_P(Trans4x4DCT, AccuracyCheck) {
    212   RunAccuracyCheck();
    213 }
    214 
    215 TEST_P(Trans4x4DCT, CoeffCheck) {
    216   RunCoeffCheck();
    217 }
    218 
    219 TEST_P(Trans4x4DCT, MemCheck) {
    220   RunMemCheck();
    221 }
    222 
    223 TEST_P(Trans4x4DCT, InvAccuracyCheck) {
    224   RunInvAccuracyCheck();
    225 }
    226 
    227 class Trans4x4HT
    228     : public Trans4x4TestBase,
    229       public PARAMS(fht_t, iht_t, int) {
    230  public:
    231   virtual ~Trans4x4HT() {}
    232 
    233   virtual void SetUp() {
    234     fwd_txfm_ = GET_PARAM(0);
    235     inv_txfm_ = GET_PARAM(1);
    236     tx_type_  = GET_PARAM(2);
    237     pitch_    = 4;
    238     fwd_txfm_ref = fht4x4_ref;
    239   }
    240   virtual void TearDown() { libvpx_test::ClearSystemState(); }
    241 
    242  protected:
    243   void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) {
    244     fwd_txfm_(in, out, stride, tx_type_);
    245   }
    246 
    247   void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) {
    248     inv_txfm_(out, dst, stride, tx_type_);
    249   }
    250 
    251   fht_t fwd_txfm_;
    252   iht_t inv_txfm_;
    253 };
    254 
    255 TEST_P(Trans4x4HT, AccuracyCheck) {
    256   RunAccuracyCheck();
    257 }
    258 
    259 TEST_P(Trans4x4HT, CoeffCheck) {
    260   RunCoeffCheck();
    261 }
    262 
    263 TEST_P(Trans4x4HT, MemCheck) {
    264   RunMemCheck();
    265 }
    266 
    267 TEST_P(Trans4x4HT, InvAccuracyCheck) {
    268   RunInvAccuracyCheck();
    269 }
    270 
    271 using std::tr1::make_tuple;
    272 
    273 INSTANTIATE_TEST_CASE_P(
    274     C, Trans4x4DCT,
    275     ::testing::Values(
    276         make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, 0)));
    277 INSTANTIATE_TEST_CASE_P(
    278     C, Trans4x4HT,
    279     ::testing::Values(
    280         make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 0),
    281         make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 1),
    282         make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 2),
    283         make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 3)));
    284 
    285 #if HAVE_SSE2
    286 INSTANTIATE_TEST_CASE_P(
    287     SSE2, Trans4x4DCT,
    288     ::testing::Values(
    289         make_tuple(&vp9_fdct4x4_sse2,
    290                    &vp9_idct4x4_16_add_sse2, 0)));
    291 INSTANTIATE_TEST_CASE_P(
    292     SSE2, Trans4x4HT,
    293     ::testing::Values(
    294         make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 0),
    295         make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 1),
    296         make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 2),
    297         make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 3)));
    298 #endif
    299 
    300 }  // namespace
    301