1 /* 2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "vp8_rtcd.h" 12 13 #if HAVE_DSPR2 14 #define CROP_WIDTH 256 15 16 /****************************************************************************** 17 * Notes: 18 * 19 * This implementation makes use of 16 bit fixed point version of two multiply 20 * constants: 21 * 1. sqrt(2) * cos (pi/8) 22 * 2. sqrt(2) * sin (pi/8) 23 * Since the first constant is bigger than 1, to maintain the same 16 bit 24 * fixed point precision as the second one, we use a trick of 25 * x * a = x + x*(a-1) 26 * so 27 * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). 28 ****************************************************************************/ 29 extern unsigned char ff_cropTbl[256 + 2 * CROP_WIDTH]; 30 static const int cospi8sqrt2minus1 = 20091; 31 static const int sinpi8sqrt2 = 35468; 32 33 inline void prefetch_load_short(short *src) 34 { 35 __asm__ __volatile__ ( 36 "pref 0, 0(%[src]) \n\t" 37 : 38 : [src] "r" (src) 39 ); 40 } 41 42 void vp8_short_idct4x4llm_dspr2(short *input, unsigned char *pred_ptr, 43 int pred_stride, unsigned char *dst_ptr, 44 int dst_stride) 45 { 46 int r, c; 47 int a1, b1, c1, d1; 48 short output[16]; 49 short *ip = input; 50 short *op = output; 51 int temp1, temp2; 52 int shortpitch = 4; 53 54 int c2, d2; 55 int temp3, temp4; 56 unsigned char *cm = ff_cropTbl + CROP_WIDTH; 57 58 /* prepare data for load */ 59 prefetch_load_short(ip + 8); 60 61 /* first loop is unrolled */ 62 a1 = ip[0] + ip[8]; 63 b1 = ip[0] - ip[8]; 64 65 temp1 = (ip[4] * sinpi8sqrt2) >> 16; 66 temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); 67 c1 = temp1 - temp2; 68 69 temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); 70 temp2 = (ip[12] * sinpi8sqrt2) >> 16; 71 d1 = temp1 + temp2; 72 73 temp3 = (ip[5] * sinpi8sqrt2) >> 16; 74 temp4 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); 75 c2 = temp3 - temp4; 76 77 temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); 78 temp4 = (ip[13] * sinpi8sqrt2) >> 16; 79 d2 = temp3 + temp4; 80 81 op[0] = a1 + d1; 82 op[12] = a1 - d1; 83 op[4] = b1 + c1; 84 op[8] = b1 - c1; 85 86 a1 = ip[1] + ip[9]; 87 b1 = ip[1] - ip[9]; 88 89 op[1] = a1 + d2; 90 op[13] = a1 - d2; 91 op[5] = b1 + c2; 92 op[9] = b1 - c2; 93 94 a1 = ip[2] + ip[10]; 95 b1 = ip[2] - ip[10]; 96 97 temp1 = (ip[6] * sinpi8sqrt2) >> 16; 98 temp2 = ip[14] + ((ip[14] * cospi8sqrt2minus1) >> 16); 99 c1 = temp1 - temp2; 100 101 temp1 = ip[6] + ((ip[6] * cospi8sqrt2minus1) >> 16); 102 temp2 = (ip[14] * sinpi8sqrt2) >> 16; 103 d1 = temp1 + temp2; 104 105 temp3 = (ip[7] * sinpi8sqrt2) >> 16; 106 temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); 107 c2 = temp3 - temp4; 108 109 temp3 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); 110 temp4 = (ip[15] * sinpi8sqrt2) >> 16; 111 d2 = temp3 + temp4; 112 113 op[2] = a1 + d1; 114 op[14] = a1 - d1; 115 op[6] = b1 + c1; 116 op[10] = b1 - c1; 117 118 a1 = ip[3] + ip[11]; 119 b1 = ip[3] - ip[11]; 120 121 op[3] = a1 + d2; 122 op[15] = a1 - d2; 123 op[7] = b1 + c2; 124 op[11] = b1 - c2; 125 126 ip = output; 127 128 /* prepare data for load */ 129 prefetch_load_short(ip + shortpitch); 130 131 /* second loop is unrolled */ 132 a1 = ip[0] + ip[2]; 133 b1 = ip[0] - ip[2]; 134 135 temp1 = (ip[1] * sinpi8sqrt2) >> 16; 136 temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); 137 c1 = temp1 - temp2; 138 139 temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); 140 temp2 = (ip[3] * sinpi8sqrt2) >> 16; 141 d1 = temp1 + temp2; 142 143 temp3 = (ip[5] * sinpi8sqrt2) >> 16; 144 temp4 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); 145 c2 = temp3 - temp4; 146 147 temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); 148 temp4 = (ip[7] * sinpi8sqrt2) >> 16; 149 d2 = temp3 + temp4; 150 151 op[0] = (a1 + d1 + 4) >> 3; 152 op[3] = (a1 - d1 + 4) >> 3; 153 op[1] = (b1 + c1 + 4) >> 3; 154 op[2] = (b1 - c1 + 4) >> 3; 155 156 a1 = ip[4] + ip[6]; 157 b1 = ip[4] - ip[6]; 158 159 op[4] = (a1 + d2 + 4) >> 3; 160 op[7] = (a1 - d2 + 4) >> 3; 161 op[5] = (b1 + c2 + 4) >> 3; 162 op[6] = (b1 - c2 + 4) >> 3; 163 164 a1 = ip[8] + ip[10]; 165 b1 = ip[8] - ip[10]; 166 167 temp1 = (ip[9] * sinpi8sqrt2) >> 16; 168 temp2 = ip[11] + ((ip[11] * cospi8sqrt2minus1) >> 16); 169 c1 = temp1 - temp2; 170 171 temp1 = ip[9] + ((ip[9] * cospi8sqrt2minus1) >> 16); 172 temp2 = (ip[11] * sinpi8sqrt2) >> 16; 173 d1 = temp1 + temp2; 174 175 temp3 = (ip[13] * sinpi8sqrt2) >> 16; 176 temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); 177 c2 = temp3 - temp4; 178 179 temp3 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); 180 temp4 = (ip[15] * sinpi8sqrt2) >> 16; 181 d2 = temp3 + temp4; 182 183 op[8] = (a1 + d1 + 4) >> 3; 184 op[11] = (a1 - d1 + 4) >> 3; 185 op[9] = (b1 + c1 + 4) >> 3; 186 op[10] = (b1 - c1 + 4) >> 3; 187 188 a1 = ip[12] + ip[14]; 189 b1 = ip[12] - ip[14]; 190 191 op[12] = (a1 + d2 + 4) >> 3; 192 op[15] = (a1 - d2 + 4) >> 3; 193 op[13] = (b1 + c2 + 4) >> 3; 194 op[14] = (b1 - c2 + 4) >> 3; 195 196 ip = output; 197 198 for (r = 0; r < 4; r++) 199 { 200 for (c = 0; c < 4; c++) 201 { 202 short a = ip[c] + pred_ptr[c] ; 203 dst_ptr[c] = cm[a] ; 204 } 205 206 ip += 4; 207 dst_ptr += dst_stride; 208 pred_ptr += pred_stride; 209 } 210 } 211 212 void vp8_dc_only_idct_add_dspr2(short input_dc, unsigned char *pred_ptr, int pred_stride, unsigned char *dst_ptr, int dst_stride) 213 { 214 int a1; 215 int i, absa1; 216 int t2, vector_a1, vector_a; 217 218 /* a1 = ((input_dc + 4) >> 3); */ 219 __asm__ __volatile__ ( 220 "addi %[a1], %[input_dc], 4 \n\t" 221 "sra %[a1], %[a1], 3 \n\t" 222 : [a1] "=r" (a1) 223 : [input_dc] "r" (input_dc) 224 ); 225 226 if (a1 < 0) 227 { 228 /* use quad-byte 229 * input and output memory are four byte aligned 230 */ 231 __asm__ __volatile__ ( 232 "abs %[absa1], %[a1] \n\t" 233 "replv.qb %[vector_a1], %[absa1] \n\t" 234 : [absa1] "=r" (absa1), [vector_a1] "=r" (vector_a1) 235 : [a1] "r" (a1) 236 ); 237 238 /* use (a1 - predptr[c]) instead a1 + predptr[c] */ 239 for (i = 4; i--;) 240 { 241 __asm__ __volatile__ ( 242 "lw %[t2], 0(%[pred_ptr]) \n\t" 243 "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" 244 "subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t" 245 "sw %[vector_a], 0(%[dst_ptr]) \n\t" 246 "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" 247 : [t2] "=&r" (t2), [vector_a] "=&r" (vector_a), 248 [dst_ptr] "+&r" (dst_ptr), [pred_ptr] "+&r" (pred_ptr) 249 : [dst_stride] "r" (dst_stride), [pred_stride] "r" (pred_stride), [vector_a1] "r" (vector_a1) 250 ); 251 } 252 } 253 else 254 { 255 /* use quad-byte 256 * input and output memory are four byte aligned 257 */ 258 __asm__ __volatile__ ( 259 "replv.qb %[vector_a1], %[a1] \n\t" 260 : [vector_a1] "=r" (vector_a1) 261 : [a1] "r" (a1) 262 ); 263 264 for (i = 4; i--;) 265 { 266 __asm__ __volatile__ ( 267 "lw %[t2], 0(%[pred_ptr]) \n\t" 268 "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" 269 "addu_s.qb %[vector_a], %[vector_a1], %[t2] \n\t" 270 "sw %[vector_a], 0(%[dst_ptr]) \n\t" 271 "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" 272 : [t2] "=&r" (t2), [vector_a] "=&r" (vector_a), 273 [dst_ptr] "+&r" (dst_ptr), [pred_ptr] "+&r" (pred_ptr) 274 : [dst_stride] "r" (dst_stride), [pred_stride] "r" (pred_stride), [vector_a1] "r" (vector_a1) 275 ); 276 } 277 } 278 279 } 280 281 void vp8_short_inv_walsh4x4_dspr2(short *input, short *mb_dqcoeff) 282 { 283 short output[16]; 284 int i; 285 int a1, b1, c1, d1; 286 int a2, b2, c2, d2; 287 short *ip = input; 288 short *op = output; 289 290 prefetch_load_short(ip); 291 292 for (i = 4; i--;) 293 { 294 a1 = ip[0] + ip[12]; 295 b1 = ip[4] + ip[8]; 296 c1 = ip[4] - ip[8]; 297 d1 = ip[0] - ip[12]; 298 299 op[0] = a1 + b1; 300 op[4] = c1 + d1; 301 op[8] = a1 - b1; 302 op[12] = d1 - c1; 303 304 ip++; 305 op++; 306 } 307 308 ip = output; 309 op = output; 310 311 prefetch_load_short(ip); 312 313 for (i = 4; i--;) 314 { 315 a1 = ip[0] + ip[3] + 3; 316 b1 = ip[1] + ip[2]; 317 c1 = ip[1] - ip[2]; 318 d1 = ip[0] - ip[3] + 3; 319 320 a2 = a1 + b1; 321 b2 = d1 + c1; 322 c2 = a1 - b1; 323 d2 = d1 - c1; 324 325 op[0] = a2 >> 3; 326 op[1] = b2 >> 3; 327 op[2] = c2 >> 3; 328 op[3] = d2 >> 3; 329 330 ip += 4; 331 op += 4; 332 } 333 334 for (i = 0; i < 16; i++) 335 { 336 mb_dqcoeff[i * 16] = output[i]; 337 } 338 } 339 340 void vp8_short_inv_walsh4x4_1_dspr2(short *input, short *mb_dqcoeff) 341 { 342 int a1; 343 344 a1 = ((input[0] + 3) >> 3); 345 346 __asm__ __volatile__ ( 347 "sh %[a1], 0(%[mb_dqcoeff]) \n\t" 348 "sh %[a1], 32(%[mb_dqcoeff]) \n\t" 349 "sh %[a1], 64(%[mb_dqcoeff]) \n\t" 350 "sh %[a1], 96(%[mb_dqcoeff]) \n\t" 351 "sh %[a1], 128(%[mb_dqcoeff]) \n\t" 352 "sh %[a1], 160(%[mb_dqcoeff]) \n\t" 353 "sh %[a1], 192(%[mb_dqcoeff]) \n\t" 354 "sh %[a1], 224(%[mb_dqcoeff]) \n\t" 355 "sh %[a1], 256(%[mb_dqcoeff]) \n\t" 356 "sh %[a1], 288(%[mb_dqcoeff]) \n\t" 357 "sh %[a1], 320(%[mb_dqcoeff]) \n\t" 358 "sh %[a1], 352(%[mb_dqcoeff]) \n\t" 359 "sh %[a1], 384(%[mb_dqcoeff]) \n\t" 360 "sh %[a1], 416(%[mb_dqcoeff]) \n\t" 361 "sh %[a1], 448(%[mb_dqcoeff]) \n\t" 362 "sh %[a1], 480(%[mb_dqcoeff]) \n\t" 363 364 : 365 : [a1] "r" (a1), [mb_dqcoeff] "r" (mb_dqcoeff) 366 ); 367 } 368 369 #endif 370