Home | History | Annotate | Download | only in tutorial
      1 ==================================================
      2 Kaleidoscope: Extending the Language: Control Flow
      3 ==================================================
      4 
      5 .. contents::
      6    :local:
      7 
      8 Chapter 5 Introduction
      9 ======================
     10 
     11 Welcome to Chapter 5 of the "`Implementing a language with
     12 LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of
     13 the simple Kaleidoscope language and included support for generating
     14 LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
     15 presented, Kaleidoscope is mostly useless: it has no control flow other
     16 than call and return. This means that you can't have conditional
     17 branches in the code, significantly limiting its power. In this episode
     18 of "build that compiler", we'll extend Kaleidoscope to have an
     19 if/then/else expression plus a simple 'for' loop.
     20 
     21 If/Then/Else
     22 ============
     23 
     24 Extending Kaleidoscope to support if/then/else is quite straightforward.
     25 It basically requires adding lexer support for this "new" concept to the
     26 lexer, parser, AST, and LLVM code emitter. This example is nice, because
     27 it shows how easy it is to "grow" a language over time, incrementally
     28 extending it as new ideas are discovered.
     29 
     30 Before we get going on "how" we add this extension, lets talk about
     31 "what" we want. The basic idea is that we want to be able to write this
     32 sort of thing:
     33 
     34 ::
     35 
     36     def fib(x)
     37       if x < 3 then
     38         1
     39       else
     40         fib(x-1)+fib(x-2);
     41 
     42 In Kaleidoscope, every construct is an expression: there are no
     43 statements. As such, the if/then/else expression needs to return a value
     44 like any other. Since we're using a mostly functional form, we'll have
     45 it evaluate its conditional, then return the 'then' or 'else' value
     46 based on how the condition was resolved. This is very similar to the C
     47 "?:" expression.
     48 
     49 The semantics of the if/then/else expression is that it evaluates the
     50 condition to a boolean equality value: 0.0 is considered to be false and
     51 everything else is considered to be true. If the condition is true, the
     52 first subexpression is evaluated and returned, if the condition is
     53 false, the second subexpression is evaluated and returned. Since
     54 Kaleidoscope allows side-effects, this behavior is important to nail
     55 down.
     56 
     57 Now that we know what we "want", lets break this down into its
     58 constituent pieces.
     59 
     60 Lexer Extensions for If/Then/Else
     61 ---------------------------------
     62 
     63 The lexer extensions are straightforward. First we add new variants for
     64 the relevant tokens:
     65 
     66 .. code-block:: ocaml
     67 
     68       (* control *)
     69       | If | Then | Else | For | In
     70 
     71 Once we have that, we recognize the new keywords in the lexer. This is
     72 pretty simple stuff:
     73 
     74 .. code-block:: ocaml
     75 
     76           ...
     77           match Buffer.contents buffer with
     78           | "def" -> [< 'Token.Def; stream >]
     79           | "extern" -> [< 'Token.Extern; stream >]
     80           | "if" -> [< 'Token.If; stream >]
     81           | "then" -> [< 'Token.Then; stream >]
     82           | "else" -> [< 'Token.Else; stream >]
     83           | "for" -> [< 'Token.For; stream >]
     84           | "in" -> [< 'Token.In; stream >]
     85           | id -> [< 'Token.Ident id; stream >]
     86 
     87 AST Extensions for If/Then/Else
     88 -------------------------------
     89 
     90 To represent the new expression we add a new AST variant for it:
     91 
     92 .. code-block:: ocaml
     93 
     94     type expr =
     95       ...
     96       (* variant for if/then/else. *)
     97       | If of expr * expr * expr
     98 
     99 The AST variant just has pointers to the various subexpressions.
    100 
    101 Parser Extensions for If/Then/Else
    102 ----------------------------------
    103 
    104 Now that we have the relevant tokens coming from the lexer and we have
    105 the AST node to build, our parsing logic is relatively straightforward.
    106 First we define a new parsing function:
    107 
    108 .. code-block:: ocaml
    109 
    110     let rec parse_primary = parser
    111       ...
    112       (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
    113       | [< 'Token.If; c=parse_expr;
    114            'Token.Then ?? "expected 'then'"; t=parse_expr;
    115            'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
    116           Ast.If (c, t, e)
    117 
    118 Next we hook it up as a primary expression:
    119 
    120 .. code-block:: ocaml
    121 
    122     let rec parse_primary = parser
    123       ...
    124       (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
    125       | [< 'Token.If; c=parse_expr;
    126            'Token.Then ?? "expected 'then'"; t=parse_expr;
    127            'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
    128           Ast.If (c, t, e)
    129 
    130 LLVM IR for If/Then/Else
    131 ------------------------
    132 
    133 Now that we have it parsing and building the AST, the final piece is
    134 adding LLVM code generation support. This is the most interesting part
    135 of the if/then/else example, because this is where it starts to
    136 introduce new concepts. All of the code above has been thoroughly
    137 described in previous chapters.
    138 
    139 To motivate the code we want to produce, lets take a look at a simple
    140 example. Consider:
    141 
    142 ::
    143 
    144     extern foo();
    145     extern bar();
    146     def baz(x) if x then foo() else bar();
    147 
    148 If you disable optimizations, the code you'll (soon) get from
    149 Kaleidoscope looks like this:
    150 
    151 .. code-block:: llvm
    152 
    153     declare double @foo()
    154 
    155     declare double @bar()
    156 
    157     define double @baz(double %x) {
    158     entry:
    159       %ifcond = fcmp one double %x, 0.000000e+00
    160       br i1 %ifcond, label %then, label %else
    161 
    162     then:    ; preds = %entry
    163       %calltmp = call double @foo()
    164       br label %ifcont
    165 
    166     else:    ; preds = %entry
    167       %calltmp1 = call double @bar()
    168       br label %ifcont
    169 
    170     ifcont:    ; preds = %else, %then
    171       %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
    172       ret double %iftmp
    173     }
    174 
    175 To visualize the control flow graph, you can use a nifty feature of the
    176 LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM
    177 IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a
    178 window will pop up <../ProgrammersManual.html#ViewGraph>`_ and you'll
    179 see this graph:
    180 
    181 .. figure:: LangImpl5-cfg.png
    182    :align: center
    183    :alt: Example CFG
    184 
    185    Example CFG
    186 
    187 Another way to get this is to call
    188 "``Llvm_analysis.view_function_cfg f``" or
    189 "``Llvm_analysis.view_function_cfg_only f``" (where ``f`` is a
    190 "``Function``") either by inserting actual calls into the code and
    191 recompiling or by calling these in the debugger. LLVM has many nice
    192 features for visualizing various graphs.
    193 
    194 Getting back to the generated code, it is fairly simple: the entry block
    195 evaluates the conditional expression ("x" in our case here) and compares
    196 the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered
    197 and Not Equal"). Based on the result of this expression, the code jumps
    198 to either the "then" or "else" blocks, which contain the expressions for
    199 the true/false cases.
    200 
    201 Once the then/else blocks are finished executing, they both branch back
    202 to the 'ifcont' block to execute the code that happens after the
    203 if/then/else. In this case the only thing left to do is to return to the
    204 caller of the function. The question then becomes: how does the code
    205 know which expression to return?
    206 
    207 The answer to this question involves an important SSA operation: the
    208 `Phi
    209 operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
    210 If you're not familiar with SSA, `the wikipedia
    211 article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
    212 is a good introduction and there are various other introductions to it
    213 available on your favorite search engine. The short version is that
    214 "execution" of the Phi operation requires "remembering" which block
    215 control came from. The Phi operation takes on the value corresponding to
    216 the input control block. In this case, if control comes in from the
    217 "then" block, it gets the value of "calltmp". If control comes from the
    218 "else" block, it gets the value of "calltmp1".
    219 
    220 At this point, you are probably starting to think "Oh no! This means my
    221 simple and elegant front-end will have to start generating SSA form in
    222 order to use LLVM!". Fortunately, this is not the case, and we strongly
    223 advise *not* implementing an SSA construction algorithm in your
    224 front-end unless there is an amazingly good reason to do so. In
    225 practice, there are two sorts of values that float around in code
    226 written for your average imperative programming language that might need
    227 Phi nodes:
    228 
    229 #. Code that involves user variables: ``x = 1; x = x + 1;``
    230 #. Values that are implicit in the structure of your AST, such as the
    231    Phi node in this case.
    232 
    233 In `Chapter 7 <OCamlLangImpl7.html>`_ of this tutorial ("mutable
    234 variables"), we'll talk about #1 in depth. For now, just believe me that
    235 you don't need SSA construction to handle this case. For #2, you have
    236 the choice of using the techniques that we will describe for #1, or you
    237 can insert Phi nodes directly, if convenient. In this case, it is really
    238 really easy to generate the Phi node, so we choose to do it directly.
    239 
    240 Okay, enough of the motivation and overview, lets generate code!
    241 
    242 Code Generation for If/Then/Else
    243 --------------------------------
    244 
    245 In order to generate code for this, we implement the ``Codegen`` method
    246 for ``IfExprAST``:
    247 
    248 .. code-block:: ocaml
    249 
    250     let rec codegen_expr = function
    251       ...
    252       | Ast.If (cond, then_, else_) ->
    253           let cond = codegen_expr cond in
    254 
    255           (* Convert condition to a bool by comparing equal to 0.0 *)
    256           let zero = const_float double_type 0.0 in
    257           let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
    258 
    259 This code is straightforward and similar to what we saw before. We emit
    260 the expression for the condition, then compare that value to zero to get
    261 a truth value as a 1-bit (bool) value.
    262 
    263 .. code-block:: ocaml
    264 
    265           (* Grab the first block so that we might later add the conditional branch
    266            * to it at the end of the function. *)
    267           let start_bb = insertion_block builder in
    268           let the_function = block_parent start_bb in
    269 
    270           let then_bb = append_block context "then" the_function in
    271           position_at_end then_bb builder;
    272 
    273 As opposed to the `C++ tutorial <LangImpl5.html>`_, we have to build our
    274 basic blocks bottom up since we can't have dangling BasicBlocks. We
    275 start off by saving a pointer to the first block (which might not be the
    276 entry block), which we'll need to build a conditional branch later. We
    277 do this by asking the ``builder`` for the current BasicBlock. The fourth
    278 line gets the current Function object that is being built. It gets this
    279 by the ``start_bb`` for its "parent" (the function it is currently
    280 embedded into).
    281 
    282 Once it has that, it creates one block. It is automatically appended
    283 into the function's list of blocks.
    284 
    285 .. code-block:: ocaml
    286 
    287           (* Emit 'then' value. *)
    288           position_at_end then_bb builder;
    289           let then_val = codegen_expr then_ in
    290 
    291           (* Codegen of 'then' can change the current block, update then_bb for the
    292            * phi. We create a new name because one is used for the phi node, and the
    293            * other is used for the conditional branch. *)
    294           let new_then_bb = insertion_block builder in
    295 
    296 We move the builder to start inserting into the "then" block. Strictly
    297 speaking, this call moves the insertion point to be at the end of the
    298 specified block. However, since the "then" block is empty, it also
    299 starts out by inserting at the beginning of the block. :)
    300 
    301 Once the insertion point is set, we recursively codegen the "then"
    302 expression from the AST.
    303 
    304 The final line here is quite subtle, but is very important. The basic
    305 issue is that when we create the Phi node in the merge block, we need to
    306 set up the block/value pairs that indicate how the Phi will work.
    307 Importantly, the Phi node expects to have an entry for each predecessor
    308 of the block in the CFG. Why then, are we getting the current block when
    309 we just set it to ThenBB 5 lines above? The problem is that the "Then"
    310 expression may actually itself change the block that the Builder is
    311 emitting into if, for example, it contains a nested "if/then/else"
    312 expression. Because calling Codegen recursively could arbitrarily change
    313 the notion of the current block, we are required to get an up-to-date
    314 value for code that will set up the Phi node.
    315 
    316 .. code-block:: ocaml
    317 
    318           (* Emit 'else' value. *)
    319           let else_bb = append_block context "else" the_function in
    320           position_at_end else_bb builder;
    321           let else_val = codegen_expr else_ in
    322 
    323           (* Codegen of 'else' can change the current block, update else_bb for the
    324            * phi. *)
    325           let new_else_bb = insertion_block builder in
    326 
    327 Code generation for the 'else' block is basically identical to codegen
    328 for the 'then' block.
    329 
    330 .. code-block:: ocaml
    331 
    332           (* Emit merge block. *)
    333           let merge_bb = append_block context "ifcont" the_function in
    334           position_at_end merge_bb builder;
    335           let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
    336           let phi = build_phi incoming "iftmp" builder in
    337 
    338 The first two lines here are now familiar: the first adds the "merge"
    339 block to the Function object. The second block changes the insertion
    340 point so that newly created code will go into the "merge" block. Once
    341 that is done, we need to create the PHI node and set up the block/value
    342 pairs for the PHI.
    343 
    344 .. code-block:: ocaml
    345 
    346           (* Return to the start block to add the conditional branch. *)
    347           position_at_end start_bb builder;
    348           ignore (build_cond_br cond_val then_bb else_bb builder);
    349 
    350 Once the blocks are created, we can emit the conditional branch that
    351 chooses between them. Note that creating new blocks does not implicitly
    352 affect the IRBuilder, so it is still inserting into the block that the
    353 condition went into. This is why we needed to save the "start" block.
    354 
    355 .. code-block:: ocaml
    356 
    357           (* Set a unconditional branch at the end of the 'then' block and the
    358            * 'else' block to the 'merge' block. *)
    359           position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
    360           position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
    361 
    362           (* Finally, set the builder to the end of the merge block. *)
    363           position_at_end merge_bb builder;
    364 
    365           phi
    366 
    367 To finish off the blocks, we create an unconditional branch to the merge
    368 block. One interesting (and very important) aspect of the LLVM IR is
    369 that it `requires all basic blocks to be
    370 "terminated" <../LangRef.html#functionstructure>`_ with a `control flow
    371 instruction <../LangRef.html#terminators>`_ such as return or branch.
    372 This means that all control flow, *including fall throughs* must be made
    373 explicit in the LLVM IR. If you violate this rule, the verifier will
    374 emit an error.
    375 
    376 Finally, the CodeGen function returns the phi node as the value computed
    377 by the if/then/else expression. In our example above, this returned
    378 value will feed into the code for the top-level function, which will
    379 create the return instruction.
    380 
    381 Overall, we now have the ability to execute conditional code in
    382 Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
    383 language that can calculate a wide variety of numeric functions. Next up
    384 we'll add another useful expression that is familiar from non-functional
    385 languages...
    386 
    387 'for' Loop Expression
    388 =====================
    389 
    390 Now that we know how to add basic control flow constructs to the
    391 language, we have the tools to add more powerful things. Lets add
    392 something more aggressive, a 'for' expression:
    393 
    394 ::
    395 
    396      extern putchard(char);
    397      def printstar(n)
    398        for i = 1, i < n, 1.0 in
    399          putchard(42);  # ascii 42 = '*'
    400 
    401      # print 100 '*' characters
    402      printstar(100);
    403 
    404 This expression defines a new variable ("i" in this case) which iterates
    405 from a starting value, while the condition ("i < n" in this case) is
    406 true, incrementing by an optional step value ("1.0" in this case). If
    407 the step value is omitted, it defaults to 1.0. While the loop is true,
    408 it executes its body expression. Because we don't have anything better
    409 to return, we'll just define the loop as always returning 0.0. In the
    410 future when we have mutable variables, it will get more useful.
    411 
    412 As before, lets talk about the changes that we need to Kaleidoscope to
    413 support this.
    414 
    415 Lexer Extensions for the 'for' Loop
    416 -----------------------------------
    417 
    418 The lexer extensions are the same sort of thing as for if/then/else:
    419 
    420 .. code-block:: ocaml
    421 
    422       ... in Token.token ...
    423       (* control *)
    424       | If | Then | Else
    425       | For | In
    426 
    427       ... in Lexer.lex_ident...
    428           match Buffer.contents buffer with
    429           | "def" -> [< 'Token.Def; stream >]
    430           | "extern" -> [< 'Token.Extern; stream >]
    431           | "if" -> [< 'Token.If; stream >]
    432           | "then" -> [< 'Token.Then; stream >]
    433           | "else" -> [< 'Token.Else; stream >]
    434           | "for" -> [< 'Token.For; stream >]
    435           | "in" -> [< 'Token.In; stream >]
    436           | id -> [< 'Token.Ident id; stream >]
    437 
    438 AST Extensions for the 'for' Loop
    439 ---------------------------------
    440 
    441 The AST variant is just as simple. It basically boils down to capturing
    442 the variable name and the constituent expressions in the node.
    443 
    444 .. code-block:: ocaml
    445 
    446     type expr =
    447       ...
    448       (* variant for for/in. *)
    449       | For of string * expr * expr * expr option * expr
    450 
    451 Parser Extensions for the 'for' Loop
    452 ------------------------------------
    453 
    454 The parser code is also fairly standard. The only interesting thing here
    455 is handling of the optional step value. The parser code handles it by
    456 checking to see if the second comma is present. If not, it sets the step
    457 value to null in the AST node:
    458 
    459 .. code-block:: ocaml
    460 
    461     let rec parse_primary = parser
    462       ...
    463       (* forexpr
    464             ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
    465       | [< 'Token.For;
    466            'Token.Ident id ?? "expected identifier after for";
    467            'Token.Kwd '=' ?? "expected '=' after for";
    468            stream >] ->
    469           begin parser
    470             | [<
    471                  start=parse_expr;
    472                  'Token.Kwd ',' ?? "expected ',' after for";
    473                  end_=parse_expr;
    474                  stream >] ->
    475                 let step =
    476                   begin parser
    477                   | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
    478                   | [< >] -> None
    479                   end stream
    480                 in
    481                 begin parser
    482                 | [< 'Token.In; body=parse_expr >] ->
    483                     Ast.For (id, start, end_, step, body)
    484                 | [< >] ->
    485                     raise (Stream.Error "expected 'in' after for")
    486                 end stream
    487             | [< >] ->
    488                 raise (Stream.Error "expected '=' after for")
    489           end stream
    490 
    491 LLVM IR for the 'for' Loop
    492 --------------------------
    493 
    494 Now we get to the good part: the LLVM IR we want to generate for this
    495 thing. With the simple example above, we get this LLVM IR (note that
    496 this dump is generated with optimizations disabled for clarity):
    497 
    498 .. code-block:: llvm
    499 
    500     declare double @putchard(double)
    501 
    502     define double @printstar(double %n) {
    503     entry:
    504             ; initial value = 1.0 (inlined into phi)
    505       br label %loop
    506 
    507     loop:    ; preds = %loop, %entry
    508       %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
    509             ; body
    510       %calltmp = call double @putchard(double 4.200000e+01)
    511             ; increment
    512       %nextvar = fadd double %i, 1.000000e+00
    513 
    514             ; termination test
    515       %cmptmp = fcmp ult double %i, %n
    516       %booltmp = uitofp i1 %cmptmp to double
    517       %loopcond = fcmp one double %booltmp, 0.000000e+00
    518       br i1 %loopcond, label %loop, label %afterloop
    519 
    520     afterloop:    ; preds = %loop
    521             ; loop always returns 0.0
    522       ret double 0.000000e+00
    523     }
    524 
    525 This loop contains all the same constructs we saw before: a phi node,
    526 several expressions, and some basic blocks. Lets see how this fits
    527 together.
    528 
    529 Code Generation for the 'for' Loop
    530 ----------------------------------
    531 
    532 The first part of Codegen is very simple: we just output the start
    533 expression for the loop value:
    534 
    535 .. code-block:: ocaml
    536 
    537     let rec codegen_expr = function
    538       ...
    539       | Ast.For (var_name, start, end_, step, body) ->
    540           (* Emit the start code first, without 'variable' in scope. *)
    541           let start_val = codegen_expr start in
    542 
    543 With this out of the way, the next step is to set up the LLVM basic
    544 block for the start of the loop body. In the case above, the whole loop
    545 body is one block, but remember that the body code itself could consist
    546 of multiple blocks (e.g. if it contains an if/then/else or a for/in
    547 expression).
    548 
    549 .. code-block:: ocaml
    550 
    551           (* Make the new basic block for the loop header, inserting after current
    552            * block. *)
    553           let preheader_bb = insertion_block builder in
    554           let the_function = block_parent preheader_bb in
    555           let loop_bb = append_block context "loop" the_function in
    556 
    557           (* Insert an explicit fall through from the current block to the
    558            * loop_bb. *)
    559           ignore (build_br loop_bb builder);
    560 
    561 This code is similar to what we saw for if/then/else. Because we will
    562 need it to create the Phi node, we remember the block that falls through
    563 into the loop. Once we have that, we create the actual block that starts
    564 the loop and create an unconditional branch for the fall-through between
    565 the two blocks.
    566 
    567 .. code-block:: ocaml
    568 
    569           (* Start insertion in loop_bb. *)
    570           position_at_end loop_bb builder;
    571 
    572           (* Start the PHI node with an entry for start. *)
    573           let variable = build_phi [(start_val, preheader_bb)] var_name builder in
    574 
    575 Now that the "preheader" for the loop is set up, we switch to emitting
    576 code for the loop body. To begin with, we move the insertion point and
    577 create the PHI node for the loop induction variable. Since we already
    578 know the incoming value for the starting value, we add it to the Phi
    579 node. Note that the Phi will eventually get a second value for the
    580 backedge, but we can't set it up yet (because it doesn't exist!).
    581 
    582 .. code-block:: ocaml
    583 
    584           (* Within the loop, the variable is defined equal to the PHI node. If it
    585            * shadows an existing variable, we have to restore it, so save it
    586            * now. *)
    587           let old_val =
    588             try Some (Hashtbl.find named_values var_name) with Not_found -> None
    589           in
    590           Hashtbl.add named_values var_name variable;
    591 
    592           (* Emit the body of the loop.  This, like any other expr, can change the
    593            * current BB.  Note that we ignore the value computed by the body, but
    594            * don't allow an error *)
    595           ignore (codegen_expr body);
    596 
    597 Now the code starts to get more interesting. Our 'for' loop introduces a
    598 new variable to the symbol table. This means that our symbol table can
    599 now contain either function arguments or loop variables. To handle this,
    600 before we codegen the body of the loop, we add the loop variable as the
    601 current value for its name. Note that it is possible that there is a
    602 variable of the same name in the outer scope. It would be easy to make
    603 this an error (emit an error and return null if there is already an
    604 entry for VarName) but we choose to allow shadowing of variables. In
    605 order to handle this correctly, we remember the Value that we are
    606 potentially shadowing in ``old_val`` (which will be None if there is no
    607 shadowed variable).
    608 
    609 Once the loop variable is set into the symbol table, the code
    610 recursively codegen's the body. This allows the body to use the loop
    611 variable: any references to it will naturally find it in the symbol
    612 table.
    613 
    614 .. code-block:: ocaml
    615 
    616           (* Emit the step value. *)
    617           let step_val =
    618             match step with
    619             | Some step -> codegen_expr step
    620             (* If not specified, use 1.0. *)
    621             | None -> const_float double_type 1.0
    622           in
    623 
    624           let next_var = build_add variable step_val "nextvar" builder in
    625 
    626 Now that the body is emitted, we compute the next value of the iteration
    627 variable by adding the step value, or 1.0 if it isn't present.
    628 '``next_var``' will be the value of the loop variable on the next
    629 iteration of the loop.
    630 
    631 .. code-block:: ocaml
    632 
    633           (* Compute the end condition. *)
    634           let end_cond = codegen_expr end_ in
    635 
    636           (* Convert condition to a bool by comparing equal to 0.0. *)
    637           let zero = const_float double_type 0.0 in
    638           let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
    639 
    640 Finally, we evaluate the exit value of the loop, to determine whether
    641 the loop should exit. This mirrors the condition evaluation for the
    642 if/then/else statement.
    643 
    644 .. code-block:: ocaml
    645 
    646           (* Create the "after loop" block and insert it. *)
    647           let loop_end_bb = insertion_block builder in
    648           let after_bb = append_block context "afterloop" the_function in
    649 
    650           (* Insert the conditional branch into the end of loop_end_bb. *)
    651           ignore (build_cond_br end_cond loop_bb after_bb builder);
    652 
    653           (* Any new code will be inserted in after_bb. *)
    654           position_at_end after_bb builder;
    655 
    656 With the code for the body of the loop complete, we just need to finish
    657 up the control flow for it. This code remembers the end block (for the
    658 phi node), then creates the block for the loop exit ("afterloop"). Based
    659 on the value of the exit condition, it creates a conditional branch that
    660 chooses between executing the loop again and exiting the loop. Any
    661 future code is emitted in the "afterloop" block, so it sets the
    662 insertion position to it.
    663 
    664 .. code-block:: ocaml
    665 
    666           (* Add a new entry to the PHI node for the backedge. *)
    667           add_incoming (next_var, loop_end_bb) variable;
    668 
    669           (* Restore the unshadowed variable. *)
    670           begin match old_val with
    671           | Some old_val -> Hashtbl.add named_values var_name old_val
    672           | None -> ()
    673           end;
    674 
    675           (* for expr always returns 0.0. *)
    676           const_null double_type
    677 
    678 The final code handles various cleanups: now that we have the
    679 "``next_var``" value, we can add the incoming value to the loop PHI
    680 node. After that, we remove the loop variable from the symbol table, so
    681 that it isn't in scope after the for loop. Finally, code generation of
    682 the for loop always returns 0.0, so that is what we return from
    683 ``Codegen.codegen_expr``.
    684 
    685 With this, we conclude the "adding control flow to Kaleidoscope" chapter
    686 of the tutorial. In this chapter we added two control flow constructs,
    687 and used them to motivate a couple of aspects of the LLVM IR that are
    688 important for front-end implementors to know. In the next chapter of our
    689 saga, we will get a bit crazier and add `user-defined
    690 operators <OCamlLangImpl6.html>`_ to our poor innocent language.
    691 
    692 Full Code Listing
    693 =================
    694 
    695 Here is the complete code listing for our running example, enhanced with
    696 the if/then/else and for expressions.. To build this example, use:
    697 
    698 .. code-block:: bash
    699 
    700     # Compile
    701     ocamlbuild toy.byte
    702     # Run
    703     ./toy.byte
    704 
    705 Here is the code:
    706 
    707 \_tags:
    708     ::
    709 
    710         <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
    711         <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
    712         <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
    713         <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
    714 
    715 myocamlbuild.ml:
    716     .. code-block:: ocaml
    717 
    718         open Ocamlbuild_plugin;;
    719 
    720         ocaml_lib ~extern:true "llvm";;
    721         ocaml_lib ~extern:true "llvm_analysis";;
    722         ocaml_lib ~extern:true "llvm_executionengine";;
    723         ocaml_lib ~extern:true "llvm_target";;
    724         ocaml_lib ~extern:true "llvm_scalar_opts";;
    725 
    726         flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
    727         dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
    728 
    729 token.ml:
    730     .. code-block:: ocaml
    731 
    732         (*===----------------------------------------------------------------------===
    733          * Lexer Tokens
    734          *===----------------------------------------------------------------------===*)
    735 
    736         (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
    737          * these others for known things. *)
    738         type token =
    739           (* commands *)
    740           | Def | Extern
    741 
    742           (* primary *)
    743           | Ident of string | Number of float
    744 
    745           (* unknown *)
    746           | Kwd of char
    747 
    748           (* control *)
    749           | If | Then | Else
    750           | For | In
    751 
    752 lexer.ml:
    753     .. code-block:: ocaml
    754 
    755         (*===----------------------------------------------------------------------===
    756          * Lexer
    757          *===----------------------------------------------------------------------===*)
    758 
    759         let rec lex = parser
    760           (* Skip any whitespace. *)
    761           | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
    762 
    763           (* identifier: [a-zA-Z][a-zA-Z0-9] *)
    764           | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
    765               let buffer = Buffer.create 1 in
    766               Buffer.add_char buffer c;
    767               lex_ident buffer stream
    768 
    769           (* number: [0-9.]+ *)
    770           | [< ' ('0' .. '9' as c); stream >] ->
    771               let buffer = Buffer.create 1 in
    772               Buffer.add_char buffer c;
    773               lex_number buffer stream
    774 
    775           (* Comment until end of line. *)
    776           | [< ' ('#'); stream >] ->
    777               lex_comment stream
    778 
    779           (* Otherwise, just return the character as its ascii value. *)
    780           | [< 'c; stream >] ->
    781               [< 'Token.Kwd c; lex stream >]
    782 
    783           (* end of stream. *)
    784           | [< >] -> [< >]
    785 
    786         and lex_number buffer = parser
    787           | [< ' ('0' .. '9' | '.' as c); stream >] ->
    788               Buffer.add_char buffer c;
    789               lex_number buffer stream
    790           | [< stream=lex >] ->
    791               [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
    792 
    793         and lex_ident buffer = parser
    794           | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
    795               Buffer.add_char buffer c;
    796               lex_ident buffer stream
    797           | [< stream=lex >] ->
    798               match Buffer.contents buffer with
    799               | "def" -> [< 'Token.Def; stream >]
    800               | "extern" -> [< 'Token.Extern; stream >]
    801               | "if" -> [< 'Token.If; stream >]
    802               | "then" -> [< 'Token.Then; stream >]
    803               | "else" -> [< 'Token.Else; stream >]
    804               | "for" -> [< 'Token.For; stream >]
    805               | "in" -> [< 'Token.In; stream >]
    806               | id -> [< 'Token.Ident id; stream >]
    807 
    808         and lex_comment = parser
    809           | [< ' ('\n'); stream=lex >] -> stream
    810           | [< 'c; e=lex_comment >] -> e
    811           | [< >] -> [< >]
    812 
    813 ast.ml:
    814     .. code-block:: ocaml
    815 
    816         (*===----------------------------------------------------------------------===
    817          * Abstract Syntax Tree (aka Parse Tree)
    818          *===----------------------------------------------------------------------===*)
    819 
    820         (* expr - Base type for all expression nodes. *)
    821         type expr =
    822           (* variant for numeric literals like "1.0". *)
    823           | Number of float
    824 
    825           (* variant for referencing a variable, like "a". *)
    826           | Variable of string
    827 
    828           (* variant for a binary operator. *)
    829           | Binary of char * expr * expr
    830 
    831           (* variant for function calls. *)
    832           | Call of string * expr array
    833 
    834           (* variant for if/then/else. *)
    835           | If of expr * expr * expr
    836 
    837           (* variant for for/in. *)
    838           | For of string * expr * expr * expr option * expr
    839 
    840         (* proto - This type represents the "prototype" for a function, which captures
    841          * its name, and its argument names (thus implicitly the number of arguments the
    842          * function takes). *)
    843         type proto = Prototype of string * string array
    844 
    845         (* func - This type represents a function definition itself. *)
    846         type func = Function of proto * expr
    847 
    848 parser.ml:
    849     .. code-block:: ocaml
    850 
    851         (*===---------------------------------------------------------------------===
    852          * Parser
    853          *===---------------------------------------------------------------------===*)
    854 
    855         (* binop_precedence - This holds the precedence for each binary operator that is
    856          * defined *)
    857         let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
    858 
    859         (* precedence - Get the precedence of the pending binary operator token. *)
    860         let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
    861 
    862         (* primary
    863          *   ::= identifier
    864          *   ::= numberexpr
    865          *   ::= parenexpr
    866          *   ::= ifexpr
    867          *   ::= forexpr *)
    868         let rec parse_primary = parser
    869           (* numberexpr ::= number *)
    870           | [< 'Token.Number n >] -> Ast.Number n
    871 
    872           (* parenexpr ::= '(' expression ')' *)
    873           | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
    874 
    875           (* identifierexpr
    876            *   ::= identifier
    877            *   ::= identifier '(' argumentexpr ')' *)
    878           | [< 'Token.Ident id; stream >] ->
    879               let rec parse_args accumulator = parser
    880                 | [< e=parse_expr; stream >] ->
    881                     begin parser
    882                       | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
    883                       | [< >] -> e :: accumulator
    884                     end stream
    885                 | [< >] -> accumulator
    886               in
    887               let rec parse_ident id = parser
    888                 (* Call. *)
    889                 | [< 'Token.Kwd '(';
    890                      args=parse_args [];
    891                      'Token.Kwd ')' ?? "expected ')'">] ->
    892                     Ast.Call (id, Array.of_list (List.rev args))
    893 
    894                 (* Simple variable ref. *)
    895                 | [< >] -> Ast.Variable id
    896               in
    897               parse_ident id stream
    898 
    899           (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
    900           | [< 'Token.If; c=parse_expr;
    901                'Token.Then ?? "expected 'then'"; t=parse_expr;
    902                'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
    903               Ast.If (c, t, e)
    904 
    905           (* forexpr
    906                 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
    907           | [< 'Token.For;
    908                'Token.Ident id ?? "expected identifier after for";
    909                'Token.Kwd '=' ?? "expected '=' after for";
    910                stream >] ->
    911               begin parser
    912                 | [<
    913                      start=parse_expr;
    914                      'Token.Kwd ',' ?? "expected ',' after for";
    915                      end_=parse_expr;
    916                      stream >] ->
    917                     let step =
    918                       begin parser
    919                       | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
    920                       | [< >] -> None
    921                       end stream
    922                     in
    923                     begin parser
    924                     | [< 'Token.In; body=parse_expr >] ->
    925                         Ast.For (id, start, end_, step, body)
    926                     | [< >] ->
    927                         raise (Stream.Error "expected 'in' after for")
    928                     end stream
    929                 | [< >] ->
    930                     raise (Stream.Error "expected '=' after for")
    931               end stream
    932 
    933           | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
    934 
    935         (* binoprhs
    936          *   ::= ('+' primary)* *)
    937         and parse_bin_rhs expr_prec lhs stream =
    938           match Stream.peek stream with
    939           (* If this is a binop, find its precedence. *)
    940           | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
    941               let token_prec = precedence c in
    942 
    943               (* If this is a binop that binds at least as tightly as the current binop,
    944                * consume it, otherwise we are done. *)
    945               if token_prec < expr_prec then lhs else begin
    946                 (* Eat the binop. *)
    947                 Stream.junk stream;
    948 
    949                 (* Parse the primary expression after the binary operator. *)
    950                 let rhs = parse_primary stream in
    951 
    952                 (* Okay, we know this is a binop. *)
    953                 let rhs =
    954                   match Stream.peek stream with
    955                   | Some (Token.Kwd c2) ->
    956                       (* If BinOp binds less tightly with rhs than the operator after
    957                        * rhs, let the pending operator take rhs as its lhs. *)
    958                       let next_prec = precedence c2 in
    959                       if token_prec < next_prec
    960                       then parse_bin_rhs (token_prec + 1) rhs stream
    961                       else rhs
    962                   | _ -> rhs
    963                 in
    964 
    965                 (* Merge lhs/rhs. *)
    966                 let lhs = Ast.Binary (c, lhs, rhs) in
    967                 parse_bin_rhs expr_prec lhs stream
    968               end
    969           | _ -> lhs
    970 
    971         (* expression
    972          *   ::= primary binoprhs *)
    973         and parse_expr = parser
    974           | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
    975 
    976         (* prototype
    977          *   ::= id '(' id* ')' *)
    978         let parse_prototype =
    979           let rec parse_args accumulator = parser
    980             | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
    981             | [< >] -> accumulator
    982           in
    983 
    984           parser
    985           | [< 'Token.Ident id;
    986                'Token.Kwd '(' ?? "expected '(' in prototype";
    987                args=parse_args [];
    988                'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
    989               (* success. *)
    990               Ast.Prototype (id, Array.of_list (List.rev args))
    991 
    992           | [< >] ->
    993               raise (Stream.Error "expected function name in prototype")
    994 
    995         (* definition ::= 'def' prototype expression *)
    996         let parse_definition = parser
    997           | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
    998               Ast.Function (p, e)
    999 
   1000         (* toplevelexpr ::= expression *)
   1001         let parse_toplevel = parser
   1002           | [< e=parse_expr >] ->
   1003               (* Make an anonymous proto. *)
   1004               Ast.Function (Ast.Prototype ("", [||]), e)
   1005 
   1006         (*  external ::= 'extern' prototype *)
   1007         let parse_extern = parser
   1008           | [< 'Token.Extern; e=parse_prototype >] -> e
   1009 
   1010 codegen.ml:
   1011     .. code-block:: ocaml
   1012 
   1013         (*===----------------------------------------------------------------------===
   1014          * Code Generation
   1015          *===----------------------------------------------------------------------===*)
   1016 
   1017         open Llvm
   1018 
   1019         exception Error of string
   1020 
   1021         let context = global_context ()
   1022         let the_module = create_module context "my cool jit"
   1023         let builder = builder context
   1024         let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
   1025         let double_type = double_type context
   1026 
   1027         let rec codegen_expr = function
   1028           | Ast.Number n -> const_float double_type n
   1029           | Ast.Variable name ->
   1030               (try Hashtbl.find named_values name with
   1031                 | Not_found -> raise (Error "unknown variable name"))
   1032           | Ast.Binary (op, lhs, rhs) ->
   1033               let lhs_val = codegen_expr lhs in
   1034               let rhs_val = codegen_expr rhs in
   1035               begin
   1036                 match op with
   1037                 | '+' -> build_add lhs_val rhs_val "addtmp" builder
   1038                 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
   1039                 | '*' -> build_mul lhs_val rhs_val "multmp" builder
   1040                 | '<' ->
   1041                     (* Convert bool 0/1 to double 0.0 or 1.0 *)
   1042                     let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
   1043                     build_uitofp i double_type "booltmp" builder
   1044                 | _ -> raise (Error "invalid binary operator")
   1045               end
   1046           | Ast.Call (callee, args) ->
   1047               (* Look up the name in the module table. *)
   1048               let callee =
   1049                 match lookup_function callee the_module with
   1050                 | Some callee -> callee
   1051                 | None -> raise (Error "unknown function referenced")
   1052               in
   1053               let params = params callee in
   1054 
   1055               (* If argument mismatch error. *)
   1056               if Array.length params == Array.length args then () else
   1057                 raise (Error "incorrect # arguments passed");
   1058               let args = Array.map codegen_expr args in
   1059               build_call callee args "calltmp" builder
   1060           | Ast.If (cond, then_, else_) ->
   1061               let cond = codegen_expr cond in
   1062 
   1063               (* Convert condition to a bool by comparing equal to 0.0 *)
   1064               let zero = const_float double_type 0.0 in
   1065               let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
   1066 
   1067               (* Grab the first block so that we might later add the conditional branch
   1068                * to it at the end of the function. *)
   1069               let start_bb = insertion_block builder in
   1070               let the_function = block_parent start_bb in
   1071 
   1072               let then_bb = append_block context "then" the_function in
   1073 
   1074               (* Emit 'then' value. *)
   1075               position_at_end then_bb builder;
   1076               let then_val = codegen_expr then_ in
   1077 
   1078               (* Codegen of 'then' can change the current block, update then_bb for the
   1079                * phi. We create a new name because one is used for the phi node, and the
   1080                * other is used for the conditional branch. *)
   1081               let new_then_bb = insertion_block builder in
   1082 
   1083               (* Emit 'else' value. *)
   1084               let else_bb = append_block context "else" the_function in
   1085               position_at_end else_bb builder;
   1086               let else_val = codegen_expr else_ in
   1087 
   1088               (* Codegen of 'else' can change the current block, update else_bb for the
   1089                * phi. *)
   1090               let new_else_bb = insertion_block builder in
   1091 
   1092               (* Emit merge block. *)
   1093               let merge_bb = append_block context "ifcont" the_function in
   1094               position_at_end merge_bb builder;
   1095               let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
   1096               let phi = build_phi incoming "iftmp" builder in
   1097 
   1098               (* Return to the start block to add the conditional branch. *)
   1099               position_at_end start_bb builder;
   1100               ignore (build_cond_br cond_val then_bb else_bb builder);
   1101 
   1102               (* Set a unconditional branch at the end of the 'then' block and the
   1103                * 'else' block to the 'merge' block. *)
   1104               position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
   1105               position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
   1106 
   1107               (* Finally, set the builder to the end of the merge block. *)
   1108               position_at_end merge_bb builder;
   1109 
   1110               phi
   1111           | Ast.For (var_name, start, end_, step, body) ->
   1112               (* Emit the start code first, without 'variable' in scope. *)
   1113               let start_val = codegen_expr start in
   1114 
   1115               (* Make the new basic block for the loop header, inserting after current
   1116                * block. *)
   1117               let preheader_bb = insertion_block builder in
   1118               let the_function = block_parent preheader_bb in
   1119               let loop_bb = append_block context "loop" the_function in
   1120 
   1121               (* Insert an explicit fall through from the current block to the
   1122                * loop_bb. *)
   1123               ignore (build_br loop_bb builder);
   1124 
   1125               (* Start insertion in loop_bb. *)
   1126               position_at_end loop_bb builder;
   1127 
   1128               (* Start the PHI node with an entry for start. *)
   1129               let variable = build_phi [(start_val, preheader_bb)] var_name builder in
   1130 
   1131               (* Within the loop, the variable is defined equal to the PHI node. If it
   1132                * shadows an existing variable, we have to restore it, so save it
   1133                * now. *)
   1134               let old_val =
   1135                 try Some (Hashtbl.find named_values var_name) with Not_found -> None
   1136               in
   1137               Hashtbl.add named_values var_name variable;
   1138 
   1139               (* Emit the body of the loop.  This, like any other expr, can change the
   1140                * current BB.  Note that we ignore the value computed by the body, but
   1141                * don't allow an error *)
   1142               ignore (codegen_expr body);
   1143 
   1144               (* Emit the step value. *)
   1145               let step_val =
   1146                 match step with
   1147                 | Some step -> codegen_expr step
   1148                 (* If not specified, use 1.0. *)
   1149                 | None -> const_float double_type 1.0
   1150               in
   1151 
   1152               let next_var = build_add variable step_val "nextvar" builder in
   1153 
   1154               (* Compute the end condition. *)
   1155               let end_cond = codegen_expr end_ in
   1156 
   1157               (* Convert condition to a bool by comparing equal to 0.0. *)
   1158               let zero = const_float double_type 0.0 in
   1159               let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
   1160 
   1161               (* Create the "after loop" block and insert it. *)
   1162               let loop_end_bb = insertion_block builder in
   1163               let after_bb = append_block context "afterloop" the_function in
   1164 
   1165               (* Insert the conditional branch into the end of loop_end_bb. *)
   1166               ignore (build_cond_br end_cond loop_bb after_bb builder);
   1167 
   1168               (* Any new code will be inserted in after_bb. *)
   1169               position_at_end after_bb builder;
   1170 
   1171               (* Add a new entry to the PHI node for the backedge. *)
   1172               add_incoming (next_var, loop_end_bb) variable;
   1173 
   1174               (* Restore the unshadowed variable. *)
   1175               begin match old_val with
   1176               | Some old_val -> Hashtbl.add named_values var_name old_val
   1177               | None -> ()
   1178               end;
   1179 
   1180               (* for expr always returns 0.0. *)
   1181               const_null double_type
   1182 
   1183         let codegen_proto = function
   1184           | Ast.Prototype (name, args) ->
   1185               (* Make the function type: double(double,double) etc. *)
   1186               let doubles = Array.make (Array.length args) double_type in
   1187               let ft = function_type double_type doubles in
   1188               let f =
   1189                 match lookup_function name the_module with
   1190                 | None -> declare_function name ft the_module
   1191 
   1192                 (* If 'f' conflicted, there was already something named 'name'. If it
   1193                  * has a body, don't allow redefinition or reextern. *)
   1194                 | Some f ->
   1195                     (* If 'f' already has a body, reject this. *)
   1196                     if block_begin f <> At_end f then
   1197                       raise (Error "redefinition of function");
   1198 
   1199                     (* If 'f' took a different number of arguments, reject. *)
   1200                     if element_type (type_of f) <> ft then
   1201                       raise (Error "redefinition of function with different # args");
   1202                     f
   1203               in
   1204 
   1205               (* Set names for all arguments. *)
   1206               Array.iteri (fun i a ->
   1207                 let n = args.(i) in
   1208                 set_value_name n a;
   1209                 Hashtbl.add named_values n a;
   1210               ) (params f);
   1211               f
   1212 
   1213         let codegen_func the_fpm = function
   1214           | Ast.Function (proto, body) ->
   1215               Hashtbl.clear named_values;
   1216               let the_function = codegen_proto proto in
   1217 
   1218               (* Create a new basic block to start insertion into. *)
   1219               let bb = append_block context "entry" the_function in
   1220               position_at_end bb builder;
   1221 
   1222               try
   1223                 let ret_val = codegen_expr body in
   1224 
   1225                 (* Finish off the function. *)
   1226                 let _ = build_ret ret_val builder in
   1227 
   1228                 (* Validate the generated code, checking for consistency. *)
   1229                 Llvm_analysis.assert_valid_function the_function;
   1230 
   1231                 (* Optimize the function. *)
   1232                 let _ = PassManager.run_function the_function the_fpm in
   1233 
   1234                 the_function
   1235               with e ->
   1236                 delete_function the_function;
   1237                 raise e
   1238 
   1239 toplevel.ml:
   1240     .. code-block:: ocaml
   1241 
   1242         (*===----------------------------------------------------------------------===
   1243          * Top-Level parsing and JIT Driver
   1244          *===----------------------------------------------------------------------===*)
   1245 
   1246         open Llvm
   1247         open Llvm_executionengine
   1248 
   1249         (* top ::= definition | external | expression | ';' *)
   1250         let rec main_loop the_fpm the_execution_engine stream =
   1251           match Stream.peek stream with
   1252           | None -> ()
   1253 
   1254           (* ignore top-level semicolons. *)
   1255           | Some (Token.Kwd ';') ->
   1256               Stream.junk stream;
   1257               main_loop the_fpm the_execution_engine stream
   1258 
   1259           | Some token ->
   1260               begin
   1261                 try match token with
   1262                 | Token.Def ->
   1263                     let e = Parser.parse_definition stream in
   1264                     print_endline "parsed a function definition.";
   1265                     dump_value (Codegen.codegen_func the_fpm e);
   1266                 | Token.Extern ->
   1267                     let e = Parser.parse_extern stream in
   1268                     print_endline "parsed an extern.";
   1269                     dump_value (Codegen.codegen_proto e);
   1270                 | _ ->
   1271                     (* Evaluate a top-level expression into an anonymous function. *)
   1272                     let e = Parser.parse_toplevel stream in
   1273                     print_endline "parsed a top-level expr";
   1274                     let the_function = Codegen.codegen_func the_fpm e in
   1275                     dump_value the_function;
   1276 
   1277                     (* JIT the function, returning a function pointer. *)
   1278                     let result = ExecutionEngine.run_function the_function [||]
   1279                       the_execution_engine in
   1280 
   1281                     print_string "Evaluated to ";
   1282                     print_float (GenericValue.as_float Codegen.double_type result);
   1283                     print_newline ();
   1284                 with Stream.Error s | Codegen.Error s ->
   1285                   (* Skip token for error recovery. *)
   1286                   Stream.junk stream;
   1287                   print_endline s;
   1288               end;
   1289               print_string "ready> "; flush stdout;
   1290               main_loop the_fpm the_execution_engine stream
   1291 
   1292 toy.ml:
   1293     .. code-block:: ocaml
   1294 
   1295         (*===----------------------------------------------------------------------===
   1296          * Main driver code.
   1297          *===----------------------------------------------------------------------===*)
   1298 
   1299         open Llvm
   1300         open Llvm_executionengine
   1301         open Llvm_target
   1302         open Llvm_scalar_opts
   1303 
   1304         let main () =
   1305           ignore (initialize_native_target ());
   1306 
   1307           (* Install standard binary operators.
   1308            * 1 is the lowest precedence. *)
   1309           Hashtbl.add Parser.binop_precedence '<' 10;
   1310           Hashtbl.add Parser.binop_precedence '+' 20;
   1311           Hashtbl.add Parser.binop_precedence '-' 20;
   1312           Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
   1313 
   1314           (* Prime the first token. *)
   1315           print_string "ready> "; flush stdout;
   1316           let stream = Lexer.lex (Stream.of_channel stdin) in
   1317 
   1318           (* Create the JIT. *)
   1319           let the_execution_engine = ExecutionEngine.create Codegen.the_module in
   1320           let the_fpm = PassManager.create_function Codegen.the_module in
   1321 
   1322           (* Set up the optimizer pipeline.  Start with registering info about how the
   1323            * target lays out data structures. *)
   1324           DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
   1325 
   1326           (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
   1327           add_instruction_combination the_fpm;
   1328 
   1329           (* reassociate expressions. *)
   1330           add_reassociation the_fpm;
   1331 
   1332           (* Eliminate Common SubExpressions. *)
   1333           add_gvn the_fpm;
   1334 
   1335           (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
   1336           add_cfg_simplification the_fpm;
   1337 
   1338           ignore (PassManager.initialize the_fpm);
   1339 
   1340           (* Run the main "interpreter loop" now. *)
   1341           Toplevel.main_loop the_fpm the_execution_engine stream;
   1342 
   1343           (* Print out all the generated code. *)
   1344           dump_module Codegen.the_module
   1345         ;;
   1346 
   1347         main ()
   1348 
   1349 bindings.c
   1350     .. code-block:: c
   1351 
   1352         #include <stdio.h>
   1353 
   1354         /* putchard - putchar that takes a double and returns 0. */
   1355         extern double putchard(double X) {
   1356           putchar((char)X);
   1357           return 0;
   1358         }
   1359 
   1360 `Next: Extending the language: user-defined
   1361 operators <OCamlLangImpl6.html>`_
   1362 
   1363