1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an abstract sparse conditional propagation algorithm, 11 // modeled after SCCP, but with a customizable lattice function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "sparseprop" 16 #include "llvm/Analysis/SparsePropagation.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // AbstractLatticeFunction Implementation 26 //===----------------------------------------------------------------------===// 27 28 AbstractLatticeFunction::~AbstractLatticeFunction() {} 29 30 /// PrintValue - Render the specified lattice value to the specified stream. 31 void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) { 32 if (V == UndefVal) 33 OS << "undefined"; 34 else if (V == OverdefinedVal) 35 OS << "overdefined"; 36 else if (V == UntrackedVal) 37 OS << "untracked"; 38 else 39 OS << "unknown lattice value"; 40 } 41 42 //===----------------------------------------------------------------------===// 43 // SparseSolver Implementation 44 //===----------------------------------------------------------------------===// 45 46 /// getOrInitValueState - Return the LatticeVal object that corresponds to the 47 /// value, initializing the value's state if it hasn't been entered into the 48 /// map yet. This function is necessary because not all values should start 49 /// out in the underdefined state... Arguments should be overdefined, and 50 /// constants should be marked as constants. 51 /// 52 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { 53 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); 54 if (I != ValueState.end()) return I->second; // Common case, in the map 55 56 LatticeVal LV; 57 if (LatticeFunc->IsUntrackedValue(V)) 58 return LatticeFunc->getUntrackedVal(); 59 else if (Constant *C = dyn_cast<Constant>(V)) 60 LV = LatticeFunc->ComputeConstant(C); 61 else if (Argument *A = dyn_cast<Argument>(V)) 62 LV = LatticeFunc->ComputeArgument(A); 63 else if (!isa<Instruction>(V)) 64 // All other non-instructions are overdefined. 65 LV = LatticeFunc->getOverdefinedVal(); 66 else 67 // All instructions are underdefined by default. 68 LV = LatticeFunc->getUndefVal(); 69 70 // If this value is untracked, don't add it to the map. 71 if (LV == LatticeFunc->getUntrackedVal()) 72 return LV; 73 return ValueState[V] = LV; 74 } 75 76 /// UpdateState - When the state for some instruction is potentially updated, 77 /// this function notices and adds I to the worklist if needed. 78 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { 79 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); 80 if (I != ValueState.end() && I->second == V) 81 return; // No change. 82 83 // An update. Visit uses of I. 84 ValueState[&Inst] = V; 85 InstWorkList.push_back(&Inst); 86 } 87 88 /// MarkBlockExecutable - This method can be used by clients to mark all of 89 /// the blocks that are known to be intrinsically live in the processed unit. 90 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { 91 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 92 BBExecutable.insert(BB); // Basic block is executable! 93 BBWorkList.push_back(BB); // Add the block to the work list! 94 } 95 96 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 97 /// work list if it is not already executable... 98 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 99 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 100 return; // This edge is already known to be executable! 101 102 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 103 << " -> " << Dest->getName() << "\n"); 104 105 if (BBExecutable.count(Dest)) { 106 // The destination is already executable, but we just made an edge 107 // feasible that wasn't before. Revisit the PHI nodes in the block 108 // because they have potentially new operands. 109 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 110 visitPHINode(*cast<PHINode>(I)); 111 112 } else { 113 MarkBlockExecutable(Dest); 114 } 115 } 116 117 118 /// getFeasibleSuccessors - Return a vector of booleans to indicate which 119 /// successors are reachable from a given terminator instruction. 120 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, 121 SmallVectorImpl<bool> &Succs, 122 bool AggressiveUndef) { 123 Succs.resize(TI.getNumSuccessors()); 124 if (TI.getNumSuccessors() == 0) return; 125 126 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 127 if (BI->isUnconditional()) { 128 Succs[0] = true; 129 return; 130 } 131 132 LatticeVal BCValue; 133 if (AggressiveUndef) 134 BCValue = getOrInitValueState(BI->getCondition()); 135 else 136 BCValue = getLatticeState(BI->getCondition()); 137 138 if (BCValue == LatticeFunc->getOverdefinedVal() || 139 BCValue == LatticeFunc->getUntrackedVal()) { 140 // Overdefined condition variables can branch either way. 141 Succs[0] = Succs[1] = true; 142 return; 143 } 144 145 // If undefined, neither is feasible yet. 146 if (BCValue == LatticeFunc->getUndefVal()) 147 return; 148 149 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); 150 if (C == 0 || !isa<ConstantInt>(C)) { 151 // Non-constant values can go either way. 152 Succs[0] = Succs[1] = true; 153 return; 154 } 155 156 // Constant condition variables mean the branch can only go a single way 157 Succs[C->isNullValue()] = true; 158 return; 159 } 160 161 if (isa<InvokeInst>(TI)) { 162 // Invoke instructions successors are always executable. 163 // TODO: Could ask the lattice function if the value can throw. 164 Succs[0] = Succs[1] = true; 165 return; 166 } 167 168 if (isa<IndirectBrInst>(TI)) { 169 Succs.assign(Succs.size(), true); 170 return; 171 } 172 173 SwitchInst &SI = cast<SwitchInst>(TI); 174 LatticeVal SCValue; 175 if (AggressiveUndef) 176 SCValue = getOrInitValueState(SI.getCondition()); 177 else 178 SCValue = getLatticeState(SI.getCondition()); 179 180 if (SCValue == LatticeFunc->getOverdefinedVal() || 181 SCValue == LatticeFunc->getUntrackedVal()) { 182 // All destinations are executable! 183 Succs.assign(TI.getNumSuccessors(), true); 184 return; 185 } 186 187 // If undefined, neither is feasible yet. 188 if (SCValue == LatticeFunc->getUndefVal()) 189 return; 190 191 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); 192 if (C == 0 || !isa<ConstantInt>(C)) { 193 // All destinations are executable! 194 Succs.assign(TI.getNumSuccessors(), true); 195 return; 196 } 197 SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C)); 198 Succs[Case.getSuccessorIndex()] = true; 199 } 200 201 202 /// isEdgeFeasible - Return true if the control flow edge from the 'From' 203 /// basic block to the 'To' basic block is currently feasible... 204 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, 205 bool AggressiveUndef) { 206 SmallVector<bool, 16> SuccFeasible; 207 TerminatorInst *TI = From->getTerminator(); 208 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); 209 210 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 211 if (TI->getSuccessor(i) == To && SuccFeasible[i]) 212 return true; 213 214 return false; 215 } 216 217 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { 218 SmallVector<bool, 16> SuccFeasible; 219 getFeasibleSuccessors(TI, SuccFeasible, true); 220 221 BasicBlock *BB = TI.getParent(); 222 223 // Mark all feasible successors executable... 224 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 225 if (SuccFeasible[i]) 226 markEdgeExecutable(BB, TI.getSuccessor(i)); 227 } 228 229 void SparseSolver::visitPHINode(PHINode &PN) { 230 // The lattice function may store more information on a PHINode than could be 231 // computed from its incoming values. For example, SSI form stores its sigma 232 // functions as PHINodes with a single incoming value. 233 if (LatticeFunc->IsSpecialCasedPHI(&PN)) { 234 LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this); 235 if (IV != LatticeFunc->getUntrackedVal()) 236 UpdateState(PN, IV); 237 return; 238 } 239 240 LatticeVal PNIV = getOrInitValueState(&PN); 241 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); 242 243 // If this value is already overdefined (common) just return. 244 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) 245 return; // Quick exit 246 247 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, 248 // and slow us down a lot. Just mark them overdefined. 249 if (PN.getNumIncomingValues() > 64) { 250 UpdateState(PN, Overdefined); 251 return; 252 } 253 254 // Look at all of the executable operands of the PHI node. If any of them 255 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the 256 // transfer function to give us the merge of the incoming values. 257 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 258 // If the edge is not yet known to be feasible, it doesn't impact the PHI. 259 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) 260 continue; 261 262 // Merge in this value. 263 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); 264 if (OpVal != PNIV) 265 PNIV = LatticeFunc->MergeValues(PNIV, OpVal); 266 267 if (PNIV == Overdefined) 268 break; // Rest of input values don't matter. 269 } 270 271 // Update the PHI with the compute value, which is the merge of the inputs. 272 UpdateState(PN, PNIV); 273 } 274 275 276 void SparseSolver::visitInst(Instruction &I) { 277 // PHIs are handled by the propagation logic, they are never passed into the 278 // transfer functions. 279 if (PHINode *PN = dyn_cast<PHINode>(&I)) 280 return visitPHINode(*PN); 281 282 // Otherwise, ask the transfer function what the result is. If this is 283 // something that we care about, remember it. 284 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); 285 if (IV != LatticeFunc->getUntrackedVal()) 286 UpdateState(I, IV); 287 288 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) 289 visitTerminatorInst(*TI); 290 } 291 292 void SparseSolver::Solve(Function &F) { 293 MarkBlockExecutable(&F.getEntryBlock()); 294 295 // Process the work lists until they are empty! 296 while (!BBWorkList.empty() || !InstWorkList.empty()) { 297 // Process the instruction work list. 298 while (!InstWorkList.empty()) { 299 Instruction *I = InstWorkList.back(); 300 InstWorkList.pop_back(); 301 302 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n"); 303 304 // "I" got into the work list because it made a transition. See if any 305 // users are both live and in need of updating. 306 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 307 UI != E; ++UI) { 308 Instruction *U = cast<Instruction>(*UI); 309 if (BBExecutable.count(U->getParent())) // Inst is executable? 310 visitInst(*U); 311 } 312 } 313 314 // Process the basic block work list. 315 while (!BBWorkList.empty()) { 316 BasicBlock *BB = BBWorkList.back(); 317 BBWorkList.pop_back(); 318 319 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); 320 321 // Notify all instructions in this basic block that they are newly 322 // executable. 323 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 324 visitInst(*I); 325 } 326 } 327 } 328 329 void SparseSolver::Print(Function &F, raw_ostream &OS) const { 330 OS << "\nFUNCTION: " << F.getName() << "\n"; 331 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 332 if (!BBExecutable.count(BB)) 333 OS << "INFEASIBLE: "; 334 OS << "\t"; 335 if (BB->hasName()) 336 OS << BB->getName() << ":\n"; 337 else 338 OS << "; anon bb\n"; 339 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 340 LatticeFunc->PrintValue(getLatticeState(I), OS); 341 OS << *I << "\n"; 342 } 343 344 OS << "\n"; 345 } 346 } 347 348