Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Stack allocation
     12 //===----------------------------------------------------------------------===//
     13 
     14 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
     15                               [(callseq_start timm:$amt)]>;
     16 def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
     17                               [(callseq_end timm:$amt1, timm:$amt2)]>;
     18 
     19 let neverHasSideEffects = 1 in {
     20   // Takes as input the value of the stack pointer after a dynamic allocation
     21   // has been made.  Sets the output to the address of the dynamically-
     22   // allocated area itself, skipping the outgoing arguments.
     23   //
     24   // This expands to an LA or LAY instruction.  We restrict the offset
     25   // to the range of LA and keep the LAY range in reserve for when
     26   // the size of the outgoing arguments is added.
     27   def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
     28                            [(set GR64:$dst, dynalloc12only:$src)]>;
     29 }
     30 
     31 //===----------------------------------------------------------------------===//
     32 // Control flow instructions
     33 //===----------------------------------------------------------------------===//
     34 
     35 // A return instruction.  R1 is the condition-code mask (all 1s)
     36 // and R2 is the target address, which is always stored in %r14.
     37 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
     38     R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
     39   def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
     40 }
     41 
     42 // Unconditional branches.  R1 is the condition-code mask (all 1s).
     43 let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
     44   let isIndirectBranch = 1 in
     45     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
     46                     "br\t$R2", [(brind ADDR64:$R2)]>;
     47 
     48   // An assembler extended mnemonic for BRC.
     49   def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
     50                  [(br bb:$I2)]>;
     51 
     52   // An assembler extended mnemonic for BRCL.  (The extension is "G"
     53   // rather than "L" because "JL" is "Jump if Less".)
     54   def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
     55 }
     56 
     57 // Conditional branches.  It's easier for LLVM to handle these branches
     58 // in their raw BRC/BRCL form, with the 4-bit condition-code mask being
     59 // the first operand.  It seems friendlier to use mnemonic forms like
     60 // JE and JLH when writing out the assembly though.
     61 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
     62   let isCodeGenOnly = 1, CCMaskFirst = 1 in {
     63     def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
     64                                          brtarget16:$I2), "j$R1\t$I2",
     65                      [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
     66     def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
     67                                            brtarget32:$I2), "jg$R1\t$I2", []>;
     68   }
     69   def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2),
     70                       "brc\t$R1, $I2", []>;
     71   def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2),
     72                         "brcl\t$R1, $I2", []>;
     73 }
     74 
     75 // Fused compare-and-branch instructions.  As for normal branches,
     76 // we handle these instructions internally in their raw CRJ-like form,
     77 // but use assembly macros like CRJE when writing them out.
     78 //
     79 // These instructions do not use or clobber the condition codes.
     80 // We nevertheless pretend that they clobber CC, so that we can lower
     81 // them to separate comparisons and BRCLs if the branch ends up being
     82 // out of range.
     83 multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
     84   let isBranch = 1, isTerminator = 1, Defs = [CC] in {
     85     def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
     86                                             brtarget16:$RI4),
     87                        "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     88     def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
     89                                             brtarget16:$RI4),
     90                        "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     91     def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
     92                                             brtarget16:$RI4),
     93                        "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     94     def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
     95                                             brtarget16:$RI4),
     96                        "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     97   }
     98 }
     99 let isCodeGenOnly = 1 in
    100   defm C : CompareBranches<cond4, "$M3", "">;
    101 defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
    102 
    103 // Define AsmParser mnemonics for each general condition-code mask
    104 // (integer or floating-point)
    105 multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
    106   let R1 = ccmask in {
    107     def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
    108                    "j"##name##"\t$I2", []>;
    109     def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
    110                      "jg"##name##"\t$I2", []>;
    111   }
    112   def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
    113   def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
    114   def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
    115   def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
    116   def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
    117   def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
    118 }
    119 defm AsmO   : CondExtendedMnemonic<1,  "o">;
    120 defm AsmH   : CondExtendedMnemonic<2,  "h">;
    121 defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
    122 defm AsmL   : CondExtendedMnemonic<4,  "l">;
    123 defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
    124 defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
    125 defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
    126 defm AsmE   : CondExtendedMnemonic<8,  "e">;
    127 defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
    128 defm AsmHE  : CondExtendedMnemonic<10, "he">;
    129 defm AsmNL  : CondExtendedMnemonic<11, "nl">;
    130 defm AsmLE  : CondExtendedMnemonic<12, "le">;
    131 defm AsmNH  : CondExtendedMnemonic<13, "nh">;
    132 defm AsmNO  : CondExtendedMnemonic<14, "no">;
    133 
    134 // Define AsmParser mnemonics for each integer condition-code mask.
    135 // This is like the list above, except that condition 3 is not possible
    136 // and that the low bit of the mask is therefore always 0.  This means
    137 // that each condition has two names.  Conditions "o" and "no" are not used.
    138 //
    139 // We don't make one of the two names an alias of the other because
    140 // we need the custom parsing routines to select the correct register class.
    141 multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
    142   let M3 = ccmask in {
    143     def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
    144                                             brtarget16:$RI4),
    145                        "crj"##name##"\t$R1, $R2, $RI4", []>;
    146     def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
    147                                             brtarget16:$RI4),
    148                        "cgrj"##name##"\t$R1, $R2, $RI4", []>;
    149     def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
    150                                             brtarget16:$RI4),
    151                        "cij"##name##"\t$R1, $I2, $RI4", []>;
    152     def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
    153                                             brtarget16:$RI4),
    154                        "cgij"##name##"\t$R1, $I2, $RI4", []>;
    155   }
    156 }
    157 multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
    158   : IntCondExtendedMnemonicA<ccmask, name1> {
    159   let isAsmParserOnly = 1 in
    160     defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
    161 }
    162 defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
    163 defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
    164 defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
    165 defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
    166 defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
    167 defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
    168 
    169 // Decrement a register and branch if it is nonzero.  These don't clobber CC,
    170 // but we might need to split long branches into sequences that do.
    171 let Defs = [CC] in {
    172   def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    173   def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
    174 }
    175 
    176 //===----------------------------------------------------------------------===//
    177 // Select instructions
    178 //===----------------------------------------------------------------------===//
    179 
    180 def Select32 : SelectWrapper<GR32>;
    181 def Select64 : SelectWrapper<GR64>;
    182 
    183 defm CondStore8_32  : CondStores<GR32, nonvolatile_truncstorei8,
    184                                  nonvolatile_anyextloadi8, bdxaddr20only>;
    185 defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
    186                                  nonvolatile_anyextloadi16, bdxaddr20only>;
    187 defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
    188                                  nonvolatile_load, bdxaddr20only>;
    189 
    190 defm CondStore8  : CondStores<GR64, nonvolatile_truncstorei8,
    191                               nonvolatile_anyextloadi8, bdxaddr20only>;
    192 defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
    193                               nonvolatile_anyextloadi16, bdxaddr20only>;
    194 defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
    195                               nonvolatile_anyextloadi32, bdxaddr20only>;
    196 defm CondStore64 : CondStores<GR64, nonvolatile_store,
    197                               nonvolatile_load, bdxaddr20only>;
    198 
    199 //===----------------------------------------------------------------------===//
    200 // Call instructions
    201 //===----------------------------------------------------------------------===//
    202 
    203 // The definitions here are for the call-clobbered registers.
    204 let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
    205                         F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC],
    206     R1 = 14, isCodeGenOnly = 1 in {
    207   def BRAS  : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
    208                      "bras\t%r14, $I2", []>;
    209   def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
    210                       "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
    211   def BASR  : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
    212                      "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
    213 }
    214 
    215 // Define the general form of the call instructions for the asm parser.
    216 // These instructions don't hard-code %r14 as the return address register.
    217 def AsmBRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
    218                       "bras\t$R1, $I2", []>;
    219 def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
    220                        "brasl\t$R1, $I2", []>;
    221 def AsmBASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
    222                       "basr\t$R1, $R2", []>;
    223 
    224 //===----------------------------------------------------------------------===//
    225 // Move instructions
    226 //===----------------------------------------------------------------------===//
    227 
    228 // Register moves.
    229 let neverHasSideEffects = 1 in {
    230   def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
    231   def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
    232 }
    233 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    234   def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
    235   def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
    236 }
    237 
    238 // Move on condition.
    239 let isCodeGenOnly = 1, Uses = [CC] in {
    240   def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    241   def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    242 }
    243 let Uses = [CC] in {
    244   def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    245   def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    246 }
    247 
    248 // Immediate moves.
    249 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    250     isReMaterializable = 1 in {
    251   // 16-bit sign-extended immediates.
    252   def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
    253   def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
    254 
    255   // Other 16-bit immediates.
    256   def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
    257   def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
    258   def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
    259   def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
    260 
    261   // 32-bit immediates.
    262   def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
    263   def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
    264   def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
    265 }
    266 
    267 // Register loads.
    268 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
    269   defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
    270   def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
    271 
    272   // These instructions are split after register allocation, so we don't
    273   // want a custom inserter.
    274   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    275     def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
    276                       [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
    277   }
    278 }
    279 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    280   def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
    281   def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
    282 }
    283 
    284 let canFoldAsLoad = 1 in {
    285   def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
    286   def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
    287 }
    288 
    289 // Load on condition.
    290 let isCodeGenOnly = 1, Uses = [CC] in {
    291   def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
    292   def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
    293 }
    294 let Uses = [CC] in {
    295   def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
    296   def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
    297 }
    298 
    299 // Register stores.
    300 let SimpleBDXStore = 1 in {
    301   let isCodeGenOnly = 1 in
    302     defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
    303   def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
    304 
    305   // These instructions are split after register allocation, so we don't
    306   // want a custom inserter.
    307   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    308     def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
    309                        [(store GR128:$src, bdxaddr20only128:$dst)]>;
    310   }
    311 }
    312 let isCodeGenOnly = 1 in
    313   def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
    314 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
    315 
    316 // Store on condition.
    317 let isCodeGenOnly = 1, Uses = [CC] in {
    318   def STOC32 : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    319   def STOC   : CondStoreRSY<"stoc",  0xEBF3, GR64, 4>;
    320   def STOCG  : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    321 }
    322 let Uses = [CC] in {
    323   def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    324   def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    325 }
    326 
    327 // 8-bit immediate stores to 8-bit fields.
    328 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
    329 
    330 // 16-bit immediate stores to 16-, 32- or 64-bit fields.
    331 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
    332 def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
    333 def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
    334 
    335 // Memory-to-memory moves.
    336 let mayLoad = 1, mayStore = 1 in
    337   def MVC : InstSS<0xD2, (outs), (ins bdladdr12onlylen8:$BDL1,
    338                                       bdaddr12only:$BD2),
    339                    "mvc\t$BDL1, $BD2", []>;
    340 
    341 let mayLoad = 1, mayStore = 1, usesCustomInserter = 1 in
    342   def MVCWrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
    343                                        imm32len8:$length),
    344                           [(z_mvc bdaddr12only:$dest, bdaddr12only:$src,
    345                                   imm32len8:$length)]>;
    346 
    347 defm LoadStore8_32  : MVCLoadStore<anyextloadi8, truncstorei8, i32,
    348                                    MVCWrapper, 1>;
    349 defm LoadStore16_32 : MVCLoadStore<anyextloadi16, truncstorei16, i32,
    350                                    MVCWrapper, 2>;
    351 defm LoadStore32_32 : MVCLoadStore<load, store, i32, MVCWrapper, 4>;
    352 
    353 defm LoadStore8  : MVCLoadStore<anyextloadi8, truncstorei8, i64,
    354                                 MVCWrapper, 1>;
    355 defm LoadStore16 : MVCLoadStore<anyextloadi16, truncstorei16, i64,
    356                                 MVCWrapper, 2>;
    357 defm LoadStore32 : MVCLoadStore<anyextloadi32, truncstorei32, i64,
    358                                 MVCWrapper, 4>;
    359 defm LoadStore64 : MVCLoadStore<load, store, i64, MVCWrapper, 8>;
    360 
    361 //===----------------------------------------------------------------------===//
    362 // Sign extensions
    363 //===----------------------------------------------------------------------===//
    364 
    365 // 32-bit extensions from registers.
    366 let neverHasSideEffects = 1 in {
    367   def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
    368   def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
    369 }
    370 
    371 // 64-bit extensions from registers.
    372 let neverHasSideEffects = 1 in {
    373   def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
    374   def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
    375   def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
    376 }
    377 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    378   def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
    379 
    380 // Match 32-to-64-bit sign extensions in which the source is already
    381 // in a 64-bit register.
    382 def : Pat<(sext_inreg GR64:$src, i32),
    383           (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
    384 
    385 // 32-bit extensions from memory.
    386 def  LB   : UnaryRXY<"lb", 0xE376, sextloadi8, GR32, 1>;
    387 defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32, 2>;
    388 def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
    389 
    390 // 64-bit extensions from memory.
    391 def LGB   : UnaryRXY<"lgb", 0xE377, sextloadi8,  GR64, 1>;
    392 def LGH   : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64, 2>;
    393 def LGF   : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64, 4>;
    394 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
    395 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
    396 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    397   def LTGF : UnaryRXY<"ltgf", 0xE332, sextloadi32, GR64, 4>;
    398 
    399 // If the sign of a load-extend operation doesn't matter, use the signed ones.
    400 // There's not really much to choose between the sign and zero extensions,
    401 // but LH is more compact than LLH for small offsets.
    402 def : Pat<(i32 (extloadi8  bdxaddr20only:$src)), (LB  bdxaddr20only:$src)>;
    403 def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH  bdxaddr12pair:$src)>;
    404 def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
    405 
    406 def : Pat<(i64 (extloadi8  bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
    407 def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
    408 def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
    409 
    410 // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
    411 // However, BDXs have two extra operands and are therefore 6 units more
    412 // complex.
    413 let AddedComplexity = 7 in {
    414   def : Pat<(i32 (extloadi16 pcrel32:$src)), (LHRL  pcrel32:$src)>;
    415   def : Pat<(i64 (extloadi16 pcrel32:$src)), (LGHRL pcrel32:$src)>;
    416 }
    417 
    418 //===----------------------------------------------------------------------===//
    419 // Zero extensions
    420 //===----------------------------------------------------------------------===//
    421 
    422 // 32-bit extensions from registers.
    423 let neverHasSideEffects = 1 in {
    424   def LLCR : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
    425   def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
    426 }
    427 
    428 // 64-bit extensions from registers.
    429 let neverHasSideEffects = 1 in {
    430   def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
    431   def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
    432   def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
    433 }
    434 
    435 // Match 32-to-64-bit zero extensions in which the source is already
    436 // in a 64-bit register.
    437 def : Pat<(and GR64:$src, 0xffffffff),
    438           (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
    439 
    440 // 32-bit extensions from memory.
    441 def LLC   : UnaryRXY<"llc", 0xE394, zextloadi8,  GR32, 1>;
    442 def LLH   : UnaryRXY<"llh", 0xE395, zextloadi16, GR32, 2>;
    443 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
    444 
    445 // 64-bit extensions from memory.
    446 def LLGC   : UnaryRXY<"llgc", 0xE390, zextloadi8,  GR64, 1>;
    447 def LLGH   : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64, 2>;
    448 def LLGF   : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64, 4>;
    449 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
    450 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
    451 
    452 //===----------------------------------------------------------------------===//
    453 // Truncations
    454 //===----------------------------------------------------------------------===//
    455 
    456 // Truncations of 64-bit registers to 32-bit registers.
    457 def : Pat<(i32 (trunc GR64:$src)),
    458           (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
    459 
    460 // Truncations of 32-bit registers to memory.
    461 let isCodeGenOnly = 1 in {
    462   defm STC32   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR32, 1>;
    463   defm STH32   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
    464   def  STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
    465 }
    466 
    467 // Truncations of 64-bit registers to memory.
    468 defm STC   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR64, 1>;
    469 defm STH   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64, 2>;
    470 def  STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
    471 defm ST    : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64, 4>;
    472 def  STRL  : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
    473 
    474 //===----------------------------------------------------------------------===//
    475 // Multi-register moves
    476 //===----------------------------------------------------------------------===//
    477 
    478 // Multi-register loads.
    479 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
    480 
    481 // Multi-register stores.
    482 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
    483 
    484 //===----------------------------------------------------------------------===//
    485 // Byte swaps
    486 //===----------------------------------------------------------------------===//
    487 
    488 // Byte-swapping register moves.
    489 let neverHasSideEffects = 1 in {
    490   def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
    491   def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
    492 }
    493 
    494 // Byte-swapping loads.  Unlike normal loads, these instructions are
    495 // allowed to access storage more than once.
    496 def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
    497 def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
    498 
    499 // Likewise byte-swapping stores.
    500 def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
    501 def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
    502                      GR64, 8>;
    503 
    504 //===----------------------------------------------------------------------===//
    505 // Load address instructions
    506 //===----------------------------------------------------------------------===//
    507 
    508 // Load BDX-style addresses.
    509 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
    510     DispKey = "la" in {
    511   let DispSize = "12" in
    512     def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
    513                     "la\t$R1, $XBD2",
    514                     [(set GR64:$R1, laaddr12pair:$XBD2)]>;
    515   let DispSize = "20" in
    516     def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
    517                       "lay\t$R1, $XBD2",
    518                       [(set GR64:$R1, laaddr20pair:$XBD2)]>;
    519 }
    520 
    521 // Load a PC-relative address.  There's no version of this instruction
    522 // with a 16-bit offset, so there's no relaxation.
    523 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    524     isReMaterializable = 1 in {
    525   def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
    526                      "larl\t$R1, $I2",
    527                      [(set GR64:$R1, pcrel32:$I2)]>;
    528 }
    529 
    530 //===----------------------------------------------------------------------===//
    531 // Negation
    532 //===----------------------------------------------------------------------===//
    533 
    534 let Defs = [CC] in {
    535   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    536     def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
    537     def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
    538   }
    539   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    540     def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
    541 }
    542 defm : SXU<ineg, LCGFR>;
    543 
    544 //===----------------------------------------------------------------------===//
    545 // Insertion
    546 //===----------------------------------------------------------------------===//
    547 
    548 let isCodeGenOnly = 1 in
    549   defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8, 1>;
    550 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8, 1>;
    551 
    552 defm : InsertMem<"inserti8", IC32,  GR32, zextloadi8, bdxaddr12pair>;
    553 defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
    554 
    555 defm : InsertMem<"inserti8", IC,  GR64, zextloadi8, bdxaddr12pair>;
    556 defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
    557 
    558 // Insertions of a 16-bit immediate, leaving other bits unaffected.
    559 // We don't have or_as_insert equivalents of these operations because
    560 // OI is available instead.
    561 let isCodeGenOnly = 1 in {
    562   def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
    563   def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
    564 }
    565 def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
    566 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
    567 def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
    568 def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
    569 
    570 // ...likewise for 32-bit immediates.  For GR32s this is a general
    571 // full-width move.  (We use IILF rather than something like LLILF
    572 // for 32-bit moves because IILF leaves the upper 32 bits of the
    573 // GR64 unchanged.)
    574 let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    575     isReMaterializable = 1 in {
    576   def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
    577 }
    578 def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
    579 def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
    580 
    581 // An alternative model of inserthf, with the first operand being
    582 // a zero-extended value.
    583 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
    584           (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
    585                 imm64hf32:$imm)>;
    586 
    587 //===----------------------------------------------------------------------===//
    588 // Addition
    589 //===----------------------------------------------------------------------===//
    590 
    591 // Plain addition.
    592 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    593   // Addition of a register.
    594   let isCommutable = 1 in {
    595     defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
    596     defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
    597   }
    598   def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
    599 
    600   // Addition of signed 16-bit immediates.
    601   defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
    602   defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
    603 
    604   // Addition of signed 32-bit immediates.
    605   def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
    606   def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
    607 
    608   // Addition of memory.
    609   defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16, 2>;
    610   defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
    611   def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32, 4>;
    612   def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
    613 
    614   // Addition to memory.
    615   def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
    616   def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
    617 }
    618 defm : SXB<add, GR64, AGFR>;
    619 
    620 // Addition producing a carry.
    621 let Defs = [CC] in {
    622   // Addition of a register.
    623   let isCommutable = 1 in {
    624     defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
    625     defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
    626   }
    627   def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
    628 
    629   // Addition of signed 16-bit immediates.
    630   def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
    631                 Requires<[FeatureDistinctOps]>;
    632   def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
    633                 Requires<[FeatureDistinctOps]>;
    634 
    635   // Addition of unsigned 32-bit immediates.
    636   def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
    637   def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
    638 
    639   // Addition of memory.
    640   defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
    641   def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32, 4>;
    642   def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
    643 }
    644 defm : ZXB<addc, GR64, ALGFR>;
    645 
    646 // Addition producing and using a carry.
    647 let Defs = [CC], Uses = [CC] in {
    648   // Addition of a register.
    649   def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
    650   def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
    651 
    652   // Addition of memory.
    653   def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
    654   def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
    655 }
    656 
    657 //===----------------------------------------------------------------------===//
    658 // Subtraction
    659 //===----------------------------------------------------------------------===//
    660 
    661 // Plain substraction.  Although immediate forms exist, we use the
    662 // add-immediate instruction instead.
    663 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    664   // Subtraction of a register.
    665   defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
    666   def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
    667   defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
    668 
    669   // Subtraction of memory.
    670   defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16, 2>;
    671   defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
    672   def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32, 4>;
    673   def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
    674 }
    675 defm : SXB<sub, GR64, SGFR>;
    676 
    677 // Subtraction producing a carry.
    678 let Defs = [CC] in {
    679   // Subtraction of a register.
    680   defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
    681   def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
    682   defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
    683 
    684   // Subtraction of unsigned 32-bit immediates.  These don't match
    685   // subc because we prefer addc for constants.
    686   def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
    687   def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
    688 
    689   // Subtraction of memory.
    690   defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
    691   def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32, 4>;
    692   def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
    693 }
    694 defm : ZXB<subc, GR64, SLGFR>;
    695 
    696 // Subtraction producing and using a carry.
    697 let Defs = [CC], Uses = [CC] in {
    698   // Subtraction of a register.
    699   def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
    700   def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
    701 
    702   // Subtraction of memory.
    703   def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
    704   def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
    705 }
    706 
    707 //===----------------------------------------------------------------------===//
    708 // AND
    709 //===----------------------------------------------------------------------===//
    710 
    711 let Defs = [CC] in {
    712   // ANDs of a register.
    713   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    714     defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
    715     defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
    716   }
    717 
    718   let isConvertibleToThreeAddress = 1 in {
    719     // ANDs of a 16-bit immediate, leaving other bits unaffected.
    720     // The CC result only reflects the 16-bit field, not the full register.
    721     let isCodeGenOnly = 1 in {
    722       def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    723       def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    724     }
    725     def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
    726     def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
    727     def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
    728     def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
    729 
    730     // ANDs of a 32-bit immediate, leaving other bits unaffected.
    731     // The CC result only reflects the 32-bit field, which means we can
    732     // use it as a zero indicator for i32 operations but not otherwise.
    733     let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
    734       def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
    735     def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
    736     def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
    737   }
    738 
    739   // ANDs of memory.
    740   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    741     defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
    742     def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
    743   }
    744 
    745   // AND to memory
    746   defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
    747 }
    748 defm : RMWIByte<and, bdaddr12pair, NI>;
    749 defm : RMWIByte<and, bdaddr20pair, NIY>;
    750 
    751 //===----------------------------------------------------------------------===//
    752 // OR
    753 //===----------------------------------------------------------------------===//
    754 
    755 let Defs = [CC] in {
    756   // ORs of a register.
    757   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    758     defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
    759     defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
    760   }
    761 
    762   // ORs of a 16-bit immediate, leaving other bits unaffected.
    763   // The CC result only reflects the 16-bit field, not the full register.
    764   let isCodeGenOnly = 1 in {
    765     def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
    766     def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
    767   }
    768   def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
    769   def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
    770   def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
    771   def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
    772 
    773   // ORs of a 32-bit immediate, leaving other bits unaffected.
    774   // The CC result only reflects the 32-bit field, which means we can
    775   // use it as a zero indicator for i32 operations but not otherwise.
    776   let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
    777     def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    778   def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
    779   def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
    780 
    781   // ORs of memory.
    782   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    783     defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
    784     def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
    785   }
    786 
    787   // OR to memory
    788   defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
    789 }
    790 defm : RMWIByte<or, bdaddr12pair, OI>;
    791 defm : RMWIByte<or, bdaddr20pair, OIY>;
    792 
    793 //===----------------------------------------------------------------------===//
    794 // XOR
    795 //===----------------------------------------------------------------------===//
    796 
    797 let Defs = [CC] in {
    798   // XORs of a register.
    799   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    800     defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
    801     defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
    802   }
    803 
    804   // XORs of a 32-bit immediate, leaving other bits unaffected.
    805   // The CC result only reflects the 32-bit field, which means we can
    806   // use it as a zero indicator for i32 operations but not otherwise.
    807   let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
    808     def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    809   def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
    810   def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
    811 
    812   // XORs of memory.
    813   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    814     defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
    815     def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
    816   }
    817 
    818   // XOR to memory
    819   defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
    820 }
    821 defm : RMWIByte<xor, bdaddr12pair, XI>;
    822 defm : RMWIByte<xor, bdaddr20pair, XIY>;
    823 
    824 //===----------------------------------------------------------------------===//
    825 // Multiplication
    826 //===----------------------------------------------------------------------===//
    827 
    828 // Multiplication of a register.
    829 let isCommutable = 1 in {
    830   def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
    831   def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
    832 }
    833 def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
    834 defm : SXB<mul, GR64, MSGFR>;
    835 
    836 // Multiplication of a signed 16-bit immediate.
    837 def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
    838 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
    839 
    840 // Multiplication of a signed 32-bit immediate.
    841 def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
    842 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
    843 
    844 // Multiplication of memory.
    845 defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16, 2>;
    846 defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
    847 def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32, 4>;
    848 def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
    849 
    850 // Multiplication of a register, producing two results.
    851 def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
    852 
    853 // Multiplication of memory, producing two results.
    854 def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
    855 
    856 //===----------------------------------------------------------------------===//
    857 // Division and remainder
    858 //===----------------------------------------------------------------------===//
    859 
    860 // Division and remainder, from registers.
    861 def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
    862 def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
    863 def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
    864 def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
    865 
    866 // Division and remainder, from memory.
    867 def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
    868 def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
    869 def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
    870 def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
    871 
    872 //===----------------------------------------------------------------------===//
    873 // Shifts
    874 //===----------------------------------------------------------------------===//
    875 
    876 // Shift left.
    877 let neverHasSideEffects = 1 in {
    878   defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
    879   def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>;
    880 }
    881 
    882 // Logical shift right.
    883 let neverHasSideEffects = 1 in {
    884   defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
    885   def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>;
    886 }
    887 
    888 // Arithmetic shift right.
    889 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    890   defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
    891   def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>;
    892 }
    893 
    894 // Rotate left.
    895 let neverHasSideEffects = 1 in {
    896   def RLL  : ShiftRSY<"rll",  0xEB1D, rotl, GR32>;
    897   def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>;
    898 }
    899 
    900 // Rotate second operand left and inserted selected bits into first operand.
    901 // These can act like 32-bit operands provided that the constant start and
    902 // end bits (operands 2 and 3) are in the range [32, 64).
    903 let Defs = [CC] in {
    904   let isCodeGenOnly = 1 in
    905     def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
    906   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    907     def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
    908 }
    909 
    910 // Forms of RISBG that only affect one word of the destination register.
    911 // They do not set CC.
    912 let isCodeGenOnly = 1 in
    913   def RISBLG32 : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR32>,
    914                  Requires<[FeatureHighWord]>;
    915 def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GR64, GR64>,
    916              Requires<[FeatureHighWord]>;
    917 def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR64, GR64>,
    918              Requires<[FeatureHighWord]>;
    919 
    920 // Rotate second operand left and perform a logical operation with selected
    921 // bits of the first operand.  The CC result only describes the selected bits,
    922 // so isn't useful for a full comparison against zero.
    923 let Defs = [CC] in {
    924   def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
    925   def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
    926   def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
    927 }
    928 
    929 //===----------------------------------------------------------------------===//
    930 // Comparison
    931 //===----------------------------------------------------------------------===//
    932 
    933 // Signed comparisons.
    934 let Defs = [CC], CCValues = 0xE in {
    935   // Comparison with a register.
    936   def CR   : CompareRR <"c",   0x19,   z_cmp,     GR32, GR32>;
    937   def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
    938   def CGR  : CompareRRE<"cg",  0xB920, z_cmp,     GR64, GR64>;
    939 
    940   // Comparison with a signed 16-bit immediate.
    941   def CHI  : CompareRI<"chi",  0xA7E, z_cmp, GR32, imm32sx16>;
    942   def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
    943 
    944   // Comparison with a signed 32-bit immediate.
    945   def CFI  : CompareRIL<"cfi",  0xC2D, z_cmp, GR32, simm32>;
    946   def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
    947 
    948   // Comparison with memory.
    949   defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16, 2>;
    950   defm C     : CompareRXPair<"c",  0x59, 0xE359, z_cmp, GR32, load, 4>;
    951   def  CGH   : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16, 2>;
    952   def  CGF   : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32, 4>;
    953   def  CG    : CompareRXY<"cg",  0xE320, z_cmp, GR64, load, 8>;
    954   def  CHRL  : CompareRILPC<"chrl",  0xC65, z_cmp, GR32, aligned_sextloadi16>;
    955   def  CRL   : CompareRILPC<"crl",   0xC6D, z_cmp, GR32, aligned_load>;
    956   def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
    957   def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
    958   def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_cmp, GR64, aligned_load>;
    959 
    960   // Comparison between memory and a signed 16-bit immediate.
    961   def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
    962   def CHSI  : CompareSIL<"chsi",  0xE55C, z_cmp, load,        imm32sx16>;
    963   def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load,        imm64sx16>;
    964 }
    965 defm : SXB<z_cmp, GR64, CGFR>;
    966 
    967 // Unsigned comparisons.
    968 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
    969   // Comparison with a register.
    970   def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
    971   def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
    972   def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
    973 
    974   // Comparison with a signed 32-bit immediate.
    975   def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
    976   def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
    977 
    978   // Comparison with memory.
    979   defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
    980   def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32, 4>;
    981   def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
    982   def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
    983                              aligned_zextloadi16>;
    984   def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
    985                              aligned_load>;
    986   def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
    987                              aligned_zextloadi16>;
    988   def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
    989                              aligned_zextloadi32>;
    990   def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
    991                              aligned_load>;
    992 
    993   // Comparison between memory and an unsigned 8-bit immediate.
    994   defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
    995 
    996   // Comparison between memory and an unsigned 16-bit immediate.
    997   def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
    998   def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load,        imm32zx16>;
    999   def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load,        imm64zx16>;
   1000 }
   1001 defm : ZXB<z_ucmp, GR64, CLGFR>;
   1002 
   1003 //===----------------------------------------------------------------------===//
   1004 // Atomic operations
   1005 //===----------------------------------------------------------------------===//
   1006 
   1007 def ATOMIC_SWAPW        : AtomicLoadWBinaryReg<z_atomic_swapw>;
   1008 def ATOMIC_SWAP_32      : AtomicLoadBinaryReg32<atomic_swap_32>;
   1009 def ATOMIC_SWAP_64      : AtomicLoadBinaryReg64<atomic_swap_64>;
   1010 
   1011 def ATOMIC_LOADW_AR     : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
   1012 def ATOMIC_LOADW_AFI    : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
   1013 def ATOMIC_LOAD_AR      : AtomicLoadBinaryReg32<atomic_load_add_32>;
   1014 def ATOMIC_LOAD_AHI     : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
   1015 def ATOMIC_LOAD_AFI     : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
   1016 def ATOMIC_LOAD_AGR     : AtomicLoadBinaryReg64<atomic_load_add_64>;
   1017 def ATOMIC_LOAD_AGHI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
   1018 def ATOMIC_LOAD_AGFI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
   1019 
   1020 def ATOMIC_LOADW_SR     : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
   1021 def ATOMIC_LOAD_SR      : AtomicLoadBinaryReg32<atomic_load_sub_32>;
   1022 def ATOMIC_LOAD_SGR     : AtomicLoadBinaryReg64<atomic_load_sub_64>;
   1023 
   1024 def ATOMIC_LOADW_NR     : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
   1025 def ATOMIC_LOADW_NILH   : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
   1026 def ATOMIC_LOAD_NR      : AtomicLoadBinaryReg32<atomic_load_and_32>;
   1027 def ATOMIC_LOAD_NILL32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
   1028 def ATOMIC_LOAD_NILH32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
   1029 def ATOMIC_LOAD_NILF32  : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
   1030 def ATOMIC_LOAD_NGR     : AtomicLoadBinaryReg64<atomic_load_and_64>;
   1031 def ATOMIC_LOAD_NILL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
   1032 def ATOMIC_LOAD_NILH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
   1033 def ATOMIC_LOAD_NIHL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
   1034 def ATOMIC_LOAD_NIHH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
   1035 def ATOMIC_LOAD_NILF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
   1036 def ATOMIC_LOAD_NIHF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
   1037 
   1038 def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
   1039 def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
   1040 def ATOMIC_LOAD_OR      : AtomicLoadBinaryReg32<atomic_load_or_32>;
   1041 def ATOMIC_LOAD_OILL32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
   1042 def ATOMIC_LOAD_OILH32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
   1043 def ATOMIC_LOAD_OILF32  : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
   1044 def ATOMIC_LOAD_OGR     : AtomicLoadBinaryReg64<atomic_load_or_64>;
   1045 def ATOMIC_LOAD_OILL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
   1046 def ATOMIC_LOAD_OILH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
   1047 def ATOMIC_LOAD_OIHL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
   1048 def ATOMIC_LOAD_OIHH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
   1049 def ATOMIC_LOAD_OILF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
   1050 def ATOMIC_LOAD_OIHF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
   1051 
   1052 def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
   1053 def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
   1054 def ATOMIC_LOAD_XR      : AtomicLoadBinaryReg32<atomic_load_xor_32>;
   1055 def ATOMIC_LOAD_XILF32  : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
   1056 def ATOMIC_LOAD_XGR     : AtomicLoadBinaryReg64<atomic_load_xor_64>;
   1057 def ATOMIC_LOAD_XILF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
   1058 def ATOMIC_LOAD_XIHF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
   1059 
   1060 def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
   1061 def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
   1062                                                imm32lh16c>;
   1063 def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
   1064 def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1065                                                 imm32ll16c>;
   1066 def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1067                                                 imm32lh16c>;
   1068 def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
   1069 def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
   1070 def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1071                                                 imm64ll16c>;
   1072 def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1073                                                 imm64lh16c>;
   1074 def ATOMIC_LOAD_NIHLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1075                                                 imm64hl16c>;
   1076 def ATOMIC_LOAD_NIHHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1077                                                 imm64hh16c>;
   1078 def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1079                                                 imm64lf32c>;
   1080 def ATOMIC_LOAD_NIHFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1081                                                 imm64hf32c>;
   1082 
   1083 def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
   1084 def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
   1085 def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
   1086 
   1087 def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
   1088 def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
   1089 def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
   1090 
   1091 def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
   1092 def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
   1093 def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
   1094 
   1095 def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
   1096 def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
   1097 def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
   1098 
   1099 def ATOMIC_CMP_SWAPW
   1100   : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1101                                   ADDR32:$bitshift, ADDR32:$negbitshift,
   1102                                   uimm32:$bitsize),
   1103            [(set GR32:$dst,
   1104                  (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1105                                      ADDR32:$bitshift, ADDR32:$negbitshift,
   1106                                      uimm32:$bitsize))]> {
   1107   let Defs = [CC];
   1108   let mayLoad = 1;
   1109   let mayStore = 1;
   1110   let usesCustomInserter = 1;
   1111 }
   1112 
   1113 let Defs = [CC] in {
   1114   defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
   1115   def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
   1116 }
   1117 
   1118 //===----------------------------------------------------------------------===//
   1119 // Miscellaneous Instructions.
   1120 //===----------------------------------------------------------------------===//
   1121 
   1122 // Read a 32-bit access register into a GR32.  As with all GR32 operations,
   1123 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
   1124 // when a 64-bit address is stored in a pair of access registers.
   1125 def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
   1126                   "ear\t$R1, $R2",
   1127                   [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
   1128 
   1129 // Find leftmost one, AKA count leading zeros.  The instruction actually
   1130 // returns a pair of GR64s, the first giving the number of leading zeros
   1131 // and the second giving a copy of the source with the leftmost one bit
   1132 // cleared.  We only use the first result here.
   1133 let Defs = [CC] in {
   1134   def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
   1135 }
   1136 def : Pat<(ctlz GR64:$src),
   1137           (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
   1138 
   1139 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
   1140 def : Pat<(i64 (anyext GR32:$src)),
   1141           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
   1142 
   1143 // There are no 32-bit equivalents of LLILL and LLILH, so use a full
   1144 // 64-bit move followed by a subreg.  This preserves the invariant that
   1145 // all GR32 operations only modify the low 32 bits.
   1146 def : Pat<(i32 imm32ll16:$src),
   1147           (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
   1148 def : Pat<(i32 imm32lh16:$src),
   1149           (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
   1150 
   1151 // Extend GR32s and GR64s to GR128s.
   1152 let usesCustomInserter = 1 in {
   1153   def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1154   def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
   1155   def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1156 }
   1157 
   1158 //===----------------------------------------------------------------------===//
   1159 // Peepholes.
   1160 //===----------------------------------------------------------------------===//
   1161 
   1162 // Use AL* for GR64 additions of unsigned 32-bit values.
   1163 defm : ZXB<add, GR64, ALGFR>;
   1164 def  : Pat<(add GR64:$src1, imm64zx32:$src2),
   1165            (ALGFI GR64:$src1, imm64zx32:$src2)>;
   1166 def  : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
   1167            (ALGF GR64:$src1, bdxaddr20only:$addr)>;
   1168 
   1169 // Use SL* for GR64 subtractions of unsigned 32-bit values.
   1170 defm : ZXB<sub, GR64, SLGFR>;
   1171 def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
   1172            (SLGFI GR64:$src1, imm64zx32n:$src2)>;
   1173 def  : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
   1174            (SLGF GR64:$src1, bdxaddr20only:$addr)>;
   1175 
   1176 // Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
   1177 // for vector legalization.
   1178 def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)),
   1179                          (i32 31)),
   1180                     (i32 31)),
   1181           (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
   1182 def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid,
   1183                                                        uimm8zx4:$cc)))),
   1184                     (i32 63)),
   1185                (i32 63)),
   1186           (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
   1187