Home | History | Annotate | Download | only in Scalar
      1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks, when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "sink"
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/Dominators.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/Assembly/Writer.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 STATISTIC(NumSunk, "Number of instructions sunk");
     30 STATISTIC(NumSinkIter, "Number of sinking iterations");
     31 
     32 namespace {
     33   class Sinking : public FunctionPass {
     34     DominatorTree *DT;
     35     LoopInfo *LI;
     36     AliasAnalysis *AA;
     37 
     38   public:
     39     static char ID; // Pass identification
     40     Sinking() : FunctionPass(ID) {
     41       initializeSinkingPass(*PassRegistry::getPassRegistry());
     42     }
     43 
     44     virtual bool runOnFunction(Function &F);
     45 
     46     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     47       AU.setPreservesCFG();
     48       FunctionPass::getAnalysisUsage(AU);
     49       AU.addRequired<AliasAnalysis>();
     50       AU.addRequired<DominatorTree>();
     51       AU.addRequired<LoopInfo>();
     52       AU.addPreserved<DominatorTree>();
     53       AU.addPreserved<LoopInfo>();
     54     }
     55   private:
     56     bool ProcessBlock(BasicBlock &BB);
     57     bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
     58     bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
     59     bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
     60   };
     61 } // end anonymous namespace
     62 
     63 char Sinking::ID = 0;
     64 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
     65 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     66 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     67 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     68 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
     69 
     70 FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
     71 
     72 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
     73 /// occur in blocks dominated by the specified block.
     74 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
     75                                       BasicBlock *BB) const {
     76   // Ignoring debug uses is necessary so debug info doesn't affect the code.
     77   // This may leave a referencing dbg_value in the original block, before
     78   // the definition of the vreg.  Dwarf generator handles this although the
     79   // user might not get the right info at runtime.
     80   for (Value::use_iterator I = Inst->use_begin(),
     81        E = Inst->use_end(); I != E; ++I) {
     82     // Determine the block of the use.
     83     Instruction *UseInst = cast<Instruction>(*I);
     84     BasicBlock *UseBlock = UseInst->getParent();
     85     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
     86       // PHI nodes use the operand in the predecessor block, not the block with
     87       // the PHI.
     88       unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
     89       UseBlock = PN->getIncomingBlock(Num);
     90     }
     91     // Check that it dominates.
     92     if (!DT->dominates(BB, UseBlock))
     93       return false;
     94   }
     95   return true;
     96 }
     97 
     98 bool Sinking::runOnFunction(Function &F) {
     99   DT = &getAnalysis<DominatorTree>();
    100   LI = &getAnalysis<LoopInfo>();
    101   AA = &getAnalysis<AliasAnalysis>();
    102 
    103   bool MadeChange, EverMadeChange = false;
    104 
    105   do {
    106     MadeChange = false;
    107     DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
    108     // Process all basic blocks.
    109     for (Function::iterator I = F.begin(), E = F.end();
    110          I != E; ++I)
    111       MadeChange |= ProcessBlock(*I);
    112     EverMadeChange |= MadeChange;
    113     NumSinkIter++;
    114   } while (MadeChange);
    115 
    116   return EverMadeChange;
    117 }
    118 
    119 bool Sinking::ProcessBlock(BasicBlock &BB) {
    120   // Can't sink anything out of a block that has less than two successors.
    121   if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
    122 
    123   // Don't bother sinking code out of unreachable blocks. In addition to being
    124   // unprofitable, it can also lead to infinite looping, because in an
    125   // unreachable loop there may be nowhere to stop.
    126   if (!DT->isReachableFromEntry(&BB)) return false;
    127 
    128   bool MadeChange = false;
    129 
    130   // Walk the basic block bottom-up.  Remember if we saw a store.
    131   BasicBlock::iterator I = BB.end();
    132   --I;
    133   bool ProcessedBegin = false;
    134   SmallPtrSet<Instruction *, 8> Stores;
    135   do {
    136     Instruction *Inst = I;  // The instruction to sink.
    137 
    138     // Predecrement I (if it's not begin) so that it isn't invalidated by
    139     // sinking.
    140     ProcessedBegin = I == BB.begin();
    141     if (!ProcessedBegin)
    142       --I;
    143 
    144     if (isa<DbgInfoIntrinsic>(Inst))
    145       continue;
    146 
    147     if (SinkInstruction(Inst, Stores))
    148       ++NumSunk, MadeChange = true;
    149 
    150     // If we just processed the first instruction in the block, we're done.
    151   } while (!ProcessedBegin);
    152 
    153   return MadeChange;
    154 }
    155 
    156 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
    157                          SmallPtrSet<Instruction *, 8> &Stores) {
    158 
    159   if (Inst->mayWriteToMemory()) {
    160     Stores.insert(Inst);
    161     return false;
    162   }
    163 
    164   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
    165     AliasAnalysis::Location Loc = AA->getLocation(L);
    166     for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
    167          E = Stores.end(); I != E; ++I)
    168       if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
    169         return false;
    170   }
    171 
    172   if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
    173     return false;
    174 
    175   return true;
    176 }
    177 
    178 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
    179 /// in the specified basic block.
    180 bool Sinking::IsAcceptableTarget(Instruction *Inst,
    181                                  BasicBlock *SuccToSinkTo) const {
    182   assert(Inst && "Instruction to be sunk is null");
    183   assert(SuccToSinkTo && "Candidate sink target is null");
    184 
    185   // It is not possible to sink an instruction into its own block.  This can
    186   // happen with loops.
    187   if (Inst->getParent() == SuccToSinkTo)
    188     return false;
    189 
    190   // If the block has multiple predecessors, this would introduce computation
    191   // on different code paths.  We could split the critical edge, but for now we
    192   // just punt.
    193   // FIXME: Split critical edges if not backedges.
    194   if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
    195     // We cannot sink a load across a critical edge - there may be stores in
    196     // other code paths.
    197     if (!isSafeToSpeculativelyExecute(Inst))
    198       return false;
    199 
    200     // We don't want to sink across a critical edge if we don't dominate the
    201     // successor. We could be introducing calculations to new code paths.
    202     if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
    203       return false;
    204 
    205     // Don't sink instructions into a loop.
    206     Loop *succ = LI->getLoopFor(SuccToSinkTo);
    207     Loop *cur = LI->getLoopFor(Inst->getParent());
    208     if (succ != 0 && succ != cur)
    209       return false;
    210   }
    211 
    212   // Finally, check that all the uses of the instruction are actually
    213   // dominated by the candidate
    214   return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
    215 }
    216 
    217 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    218 /// instruction out of its current block into a successor.
    219 bool Sinking::SinkInstruction(Instruction *Inst,
    220                               SmallPtrSet<Instruction *, 8> &Stores) {
    221   // Check if it's safe to move the instruction.
    222   if (!isSafeToMove(Inst, AA, Stores))
    223     return false;
    224 
    225   // FIXME: This should include support for sinking instructions within the
    226   // block they are currently in to shorten the live ranges.  We often get
    227   // instructions sunk into the top of a large block, but it would be better to
    228   // also sink them down before their first use in the block.  This xform has to
    229   // be careful not to *increase* register pressure though, e.g. sinking
    230   // "x = y + z" down if it kills y and z would increase the live ranges of y
    231   // and z and only shrink the live range of x.
    232 
    233   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    234   // decide.
    235   BasicBlock *SuccToSinkTo = 0;
    236 
    237   // Instructions can only be sunk if all their uses are in blocks
    238   // dominated by one of the successors.
    239   // Look at all the postdominators and see if we can sink it in one.
    240   DomTreeNode *DTN = DT->getNode(Inst->getParent());
    241   for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
    242       I != E && SuccToSinkTo == 0; ++I) {
    243     BasicBlock *Candidate = (*I)->getBlock();
    244     if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
    245         IsAcceptableTarget(Inst, Candidate))
    246       SuccToSinkTo = Candidate;
    247   }
    248 
    249   // If no suitable postdominator was found, look at all the successors and
    250   // decide which one we should sink to, if any.
    251   for (succ_iterator I = succ_begin(Inst->getParent()),
    252       E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) {
    253     if (IsAcceptableTarget(Inst, *I))
    254       SuccToSinkTo = *I;
    255   }
    256 
    257   // If we couldn't find a block to sink to, ignore this instruction.
    258   if (SuccToSinkTo == 0)
    259     return false;
    260 
    261   DEBUG(dbgs() << "Sink" << *Inst << " (";
    262         WriteAsOperand(dbgs(), Inst->getParent(), false);
    263         dbgs() << " -> ";
    264         WriteAsOperand(dbgs(), SuccToSinkTo, false);
    265         dbgs() << ")\n");
    266 
    267   // Move the instruction.
    268   Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt());
    269   return true;
    270 }
    271