1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks, when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "sink" 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/Dominators.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Assembly/Writer.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CFG.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 STATISTIC(NumSunk, "Number of instructions sunk"); 30 STATISTIC(NumSinkIter, "Number of sinking iterations"); 31 32 namespace { 33 class Sinking : public FunctionPass { 34 DominatorTree *DT; 35 LoopInfo *LI; 36 AliasAnalysis *AA; 37 38 public: 39 static char ID; // Pass identification 40 Sinking() : FunctionPass(ID) { 41 initializeSinkingPass(*PassRegistry::getPassRegistry()); 42 } 43 44 virtual bool runOnFunction(Function &F); 45 46 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesCFG(); 48 FunctionPass::getAnalysisUsage(AU); 49 AU.addRequired<AliasAnalysis>(); 50 AU.addRequired<DominatorTree>(); 51 AU.addRequired<LoopInfo>(); 52 AU.addPreserved<DominatorTree>(); 53 AU.addPreserved<LoopInfo>(); 54 } 55 private: 56 bool ProcessBlock(BasicBlock &BB); 57 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); 58 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 59 bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const; 60 }; 61 } // end anonymous namespace 62 63 char Sinking::ID = 0; 64 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) 65 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 66 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 67 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 68 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) 69 70 FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 71 72 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 73 /// occur in blocks dominated by the specified block. 74 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 75 BasicBlock *BB) const { 76 // Ignoring debug uses is necessary so debug info doesn't affect the code. 77 // This may leave a referencing dbg_value in the original block, before 78 // the definition of the vreg. Dwarf generator handles this although the 79 // user might not get the right info at runtime. 80 for (Value::use_iterator I = Inst->use_begin(), 81 E = Inst->use_end(); I != E; ++I) { 82 // Determine the block of the use. 83 Instruction *UseInst = cast<Instruction>(*I); 84 BasicBlock *UseBlock = UseInst->getParent(); 85 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 86 // PHI nodes use the operand in the predecessor block, not the block with 87 // the PHI. 88 unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); 89 UseBlock = PN->getIncomingBlock(Num); 90 } 91 // Check that it dominates. 92 if (!DT->dominates(BB, UseBlock)) 93 return false; 94 } 95 return true; 96 } 97 98 bool Sinking::runOnFunction(Function &F) { 99 DT = &getAnalysis<DominatorTree>(); 100 LI = &getAnalysis<LoopInfo>(); 101 AA = &getAnalysis<AliasAnalysis>(); 102 103 bool MadeChange, EverMadeChange = false; 104 105 do { 106 MadeChange = false; 107 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 108 // Process all basic blocks. 109 for (Function::iterator I = F.begin(), E = F.end(); 110 I != E; ++I) 111 MadeChange |= ProcessBlock(*I); 112 EverMadeChange |= MadeChange; 113 NumSinkIter++; 114 } while (MadeChange); 115 116 return EverMadeChange; 117 } 118 119 bool Sinking::ProcessBlock(BasicBlock &BB) { 120 // Can't sink anything out of a block that has less than two successors. 121 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 122 123 // Don't bother sinking code out of unreachable blocks. In addition to being 124 // unprofitable, it can also lead to infinite looping, because in an 125 // unreachable loop there may be nowhere to stop. 126 if (!DT->isReachableFromEntry(&BB)) return false; 127 128 bool MadeChange = false; 129 130 // Walk the basic block bottom-up. Remember if we saw a store. 131 BasicBlock::iterator I = BB.end(); 132 --I; 133 bool ProcessedBegin = false; 134 SmallPtrSet<Instruction *, 8> Stores; 135 do { 136 Instruction *Inst = I; // The instruction to sink. 137 138 // Predecrement I (if it's not begin) so that it isn't invalidated by 139 // sinking. 140 ProcessedBegin = I == BB.begin(); 141 if (!ProcessedBegin) 142 --I; 143 144 if (isa<DbgInfoIntrinsic>(Inst)) 145 continue; 146 147 if (SinkInstruction(Inst, Stores)) 148 ++NumSunk, MadeChange = true; 149 150 // If we just processed the first instruction in the block, we're done. 151 } while (!ProcessedBegin); 152 153 return MadeChange; 154 } 155 156 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 157 SmallPtrSet<Instruction *, 8> &Stores) { 158 159 if (Inst->mayWriteToMemory()) { 160 Stores.insert(Inst); 161 return false; 162 } 163 164 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 165 AliasAnalysis::Location Loc = AA->getLocation(L); 166 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), 167 E = Stores.end(); I != E; ++I) 168 if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) 169 return false; 170 } 171 172 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) 173 return false; 174 175 return true; 176 } 177 178 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 179 /// in the specified basic block. 180 bool Sinking::IsAcceptableTarget(Instruction *Inst, 181 BasicBlock *SuccToSinkTo) const { 182 assert(Inst && "Instruction to be sunk is null"); 183 assert(SuccToSinkTo && "Candidate sink target is null"); 184 185 // It is not possible to sink an instruction into its own block. This can 186 // happen with loops. 187 if (Inst->getParent() == SuccToSinkTo) 188 return false; 189 190 // If the block has multiple predecessors, this would introduce computation 191 // on different code paths. We could split the critical edge, but for now we 192 // just punt. 193 // FIXME: Split critical edges if not backedges. 194 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 195 // We cannot sink a load across a critical edge - there may be stores in 196 // other code paths. 197 if (!isSafeToSpeculativelyExecute(Inst)) 198 return false; 199 200 // We don't want to sink across a critical edge if we don't dominate the 201 // successor. We could be introducing calculations to new code paths. 202 if (!DT->dominates(Inst->getParent(), SuccToSinkTo)) 203 return false; 204 205 // Don't sink instructions into a loop. 206 Loop *succ = LI->getLoopFor(SuccToSinkTo); 207 Loop *cur = LI->getLoopFor(Inst->getParent()); 208 if (succ != 0 && succ != cur) 209 return false; 210 } 211 212 // Finally, check that all the uses of the instruction are actually 213 // dominated by the candidate 214 return AllUsesDominatedByBlock(Inst, SuccToSinkTo); 215 } 216 217 /// SinkInstruction - Determine whether it is safe to sink the specified machine 218 /// instruction out of its current block into a successor. 219 bool Sinking::SinkInstruction(Instruction *Inst, 220 SmallPtrSet<Instruction *, 8> &Stores) { 221 // Check if it's safe to move the instruction. 222 if (!isSafeToMove(Inst, AA, Stores)) 223 return false; 224 225 // FIXME: This should include support for sinking instructions within the 226 // block they are currently in to shorten the live ranges. We often get 227 // instructions sunk into the top of a large block, but it would be better to 228 // also sink them down before their first use in the block. This xform has to 229 // be careful not to *increase* register pressure though, e.g. sinking 230 // "x = y + z" down if it kills y and z would increase the live ranges of y 231 // and z and only shrink the live range of x. 232 233 // SuccToSinkTo - This is the successor to sink this instruction to, once we 234 // decide. 235 BasicBlock *SuccToSinkTo = 0; 236 237 // Instructions can only be sunk if all their uses are in blocks 238 // dominated by one of the successors. 239 // Look at all the postdominators and see if we can sink it in one. 240 DomTreeNode *DTN = DT->getNode(Inst->getParent()); 241 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 242 I != E && SuccToSinkTo == 0; ++I) { 243 BasicBlock *Candidate = (*I)->getBlock(); 244 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 245 IsAcceptableTarget(Inst, Candidate)) 246 SuccToSinkTo = Candidate; 247 } 248 249 // If no suitable postdominator was found, look at all the successors and 250 // decide which one we should sink to, if any. 251 for (succ_iterator I = succ_begin(Inst->getParent()), 252 E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) { 253 if (IsAcceptableTarget(Inst, *I)) 254 SuccToSinkTo = *I; 255 } 256 257 // If we couldn't find a block to sink to, ignore this instruction. 258 if (SuccToSinkTo == 0) 259 return false; 260 261 DEBUG(dbgs() << "Sink" << *Inst << " ("; 262 WriteAsOperand(dbgs(), Inst->getParent(), false); 263 dbgs() << " -> "; 264 WriteAsOperand(dbgs(), SuccToSinkTo, false); 265 dbgs() << ")\n"); 266 267 // Move the instruction. 268 Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt()); 269 return true; 270 } 271