1 ; RUN: opt < %s -sroa -S | FileCheck %s 2 ; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s 3 4 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64" 5 6 declare void @llvm.lifetime.start(i64, i8* nocapture) 7 declare void @llvm.lifetime.end(i64, i8* nocapture) 8 9 define i32 @test0() { 10 ; CHECK-LABEL: @test0( 11 ; CHECK-NOT: alloca 12 ; CHECK: ret i32 13 14 entry: 15 %a1 = alloca i32 16 %a2 = alloca float 17 18 %a1.i8 = bitcast i32* %a1 to i8* 19 call void @llvm.lifetime.start(i64 4, i8* %a1.i8) 20 21 store i32 0, i32* %a1 22 %v1 = load i32* %a1 23 24 call void @llvm.lifetime.end(i64 4, i8* %a1.i8) 25 26 %a2.i8 = bitcast float* %a2 to i8* 27 call void @llvm.lifetime.start(i64 4, i8* %a2.i8) 28 29 store float 0.0, float* %a2 30 %v2 = load float * %a2 31 %v2.int = bitcast float %v2 to i32 32 %sum1 = add i32 %v1, %v2.int 33 34 call void @llvm.lifetime.end(i64 4, i8* %a2.i8) 35 36 ret i32 %sum1 37 } 38 39 define i32 @test1() { 40 ; CHECK-LABEL: @test1( 41 ; CHECK-NOT: alloca 42 ; CHECK: ret i32 0 43 44 entry: 45 %X = alloca { i32, float } 46 %Y = getelementptr { i32, float }* %X, i64 0, i32 0 47 store i32 0, i32* %Y 48 %Z = load i32* %Y 49 ret i32 %Z 50 } 51 52 define i64 @test2(i64 %X) { 53 ; CHECK-LABEL: @test2( 54 ; CHECK-NOT: alloca 55 ; CHECK: ret i64 %X 56 57 entry: 58 %A = alloca [8 x i8] 59 %B = bitcast [8 x i8]* %A to i64* 60 store i64 %X, i64* %B 61 br label %L2 62 63 L2: 64 %Z = load i64* %B 65 ret i64 %Z 66 } 67 68 define void @test3(i8* %dst, i8* %src) { 69 ; CHECK-LABEL: @test3( 70 71 entry: 72 %a = alloca [300 x i8] 73 ; CHECK-NOT: alloca 74 ; CHECK: %[[test3_a1:.*]] = alloca [42 x i8] 75 ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8] 76 ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8] 77 ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8] 78 ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8] 79 ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8] 80 ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8] 81 82 %b = getelementptr [300 x i8]* %a, i64 0, i64 0 83 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false) 84 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0 85 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42 86 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42 87 ; CHECK-NEXT: %[[test3_r1:.*]] = load i8* %[[gep]] 88 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43 89 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0 90 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 91 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 142 92 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 93 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 94 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 158 95 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0 96 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 97 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 200 98 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 99 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 100 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 207 101 ; CHECK-NEXT: %[[test3_r2:.*]] = load i8* %[[gep]] 102 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 208 103 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 104 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 105 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 215 106 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 107 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 108 109 ; Clobber a single element of the array, this should be promotable. 110 %c = getelementptr [300 x i8]* %a, i64 0, i64 42 111 store i8 0, i8* %c 112 113 ; Make a sequence of overlapping stores to the array. These overlap both in 114 ; forward strides and in shrinking accesses. 115 %overlap.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 142 116 %overlap.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 143 117 %overlap.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 144 118 %overlap.4.i8 = getelementptr [300 x i8]* %a, i64 0, i64 145 119 %overlap.5.i8 = getelementptr [300 x i8]* %a, i64 0, i64 146 120 %overlap.6.i8 = getelementptr [300 x i8]* %a, i64 0, i64 147 121 %overlap.7.i8 = getelementptr [300 x i8]* %a, i64 0, i64 148 122 %overlap.8.i8 = getelementptr [300 x i8]* %a, i64 0, i64 149 123 %overlap.9.i8 = getelementptr [300 x i8]* %a, i64 0, i64 150 124 %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16* 125 %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32* 126 %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64* 127 %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64* 128 %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64* 129 %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64* 130 %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64* 131 %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64* 132 %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64* 133 %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64* 134 %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64* 135 store i8 1, i8* %overlap.1.i8 136 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 137 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 138 store i16 1, i16* %overlap.1.i16 139 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16* 140 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 141 store i32 1, i32* %overlap.1.i32 142 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32* 143 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 144 store i64 1, i64* %overlap.1.i64 145 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64* 146 ; CHECK-NEXT: store i64 1, i64* %[[bitcast]] 147 store i64 2, i64* %overlap.2.i64 148 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 1 149 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 150 ; CHECK-NEXT: store i64 2, i64* %[[bitcast]] 151 store i64 3, i64* %overlap.3.i64 152 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 2 153 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 154 ; CHECK-NEXT: store i64 3, i64* %[[bitcast]] 155 store i64 4, i64* %overlap.4.i64 156 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 3 157 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 158 ; CHECK-NEXT: store i64 4, i64* %[[bitcast]] 159 store i64 5, i64* %overlap.5.i64 160 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 4 161 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 162 ; CHECK-NEXT: store i64 5, i64* %[[bitcast]] 163 store i64 6, i64* %overlap.6.i64 164 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 5 165 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 166 ; CHECK-NEXT: store i64 6, i64* %[[bitcast]] 167 store i64 7, i64* %overlap.7.i64 168 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 6 169 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 170 ; CHECK-NEXT: store i64 7, i64* %[[bitcast]] 171 store i64 8, i64* %overlap.8.i64 172 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 7 173 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 174 ; CHECK-NEXT: store i64 8, i64* %[[bitcast]] 175 store i64 9, i64* %overlap.9.i64 176 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 8 177 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 178 ; CHECK-NEXT: store i64 9, i64* %[[bitcast]] 179 180 ; Make two sequences of overlapping stores with more gaps and irregularities. 181 %overlap2.1.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 200 182 %overlap2.1.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 201 183 %overlap2.1.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 202 184 %overlap2.1.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 203 185 186 %overlap2.2.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 208 187 %overlap2.2.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 209 188 %overlap2.2.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 210 189 %overlap2.2.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 211 190 191 %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16* 192 %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32* 193 %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32* 194 %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32* 195 %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32* 196 store i8 1, i8* %overlap2.1.0.i8 197 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 198 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 199 store i16 1, i16* %overlap2.1.0.i16 200 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16* 201 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 202 store i32 1, i32* %overlap2.1.0.i32 203 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32* 204 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 205 store i32 2, i32* %overlap2.1.1.i32 206 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 1 207 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 208 ; CHECK-NEXT: store i32 2, i32* %[[bitcast]] 209 store i32 3, i32* %overlap2.1.2.i32 210 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2 211 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 212 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] 213 store i32 4, i32* %overlap2.1.3.i32 214 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 3 215 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 216 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] 217 218 %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32* 219 %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16* 220 %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32* 221 %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32* 222 %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32* 223 store i32 1, i32* %overlap2.2.0.i32 224 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32* 225 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 226 store i8 1, i8* %overlap2.2.1.i8 227 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 228 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 229 store i16 1, i16* %overlap2.2.1.i16 230 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 231 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 232 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 233 store i32 1, i32* %overlap2.2.1.i32 234 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 235 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 236 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 237 store i32 3, i32* %overlap2.2.2.i32 238 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2 239 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 240 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] 241 store i32 4, i32* %overlap2.2.3.i32 242 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 3 243 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 244 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] 245 246 %overlap2.prefix = getelementptr i8* %overlap2.1.1.i8, i64 -4 247 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false) 248 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 39 249 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3 250 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 3 251 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 252 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5 253 254 ; Bridge between the overlapping areas 255 call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false) 256 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2 257 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5 258 ; ...promoted i8 store... 259 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 260 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2 261 262 ; Entirely within the second overlap. 263 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false) 264 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 265 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 266 267 ; Trailing past the second overlap. 268 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false) 269 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2 270 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 271 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 5 272 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 273 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3 274 275 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false) 276 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0 277 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42 278 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42 279 ; CHECK-NEXT: store i8 0, i8* %[[gep]] 280 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43 281 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0 282 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 283 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 142 284 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 285 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 286 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 158 287 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0 288 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 289 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 200 290 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 291 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 292 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 207 293 ; CHECK-NEXT: store i8 42, i8* %[[gep]] 294 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 208 295 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 296 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 297 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 215 298 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 299 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 300 301 ret void 302 } 303 304 define void @test4(i8* %dst, i8* %src) { 305 ; CHECK-LABEL: @test4( 306 307 entry: 308 %a = alloca [100 x i8] 309 ; CHECK-NOT: alloca 310 ; CHECK: %[[test4_a1:.*]] = alloca [20 x i8] 311 ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8] 312 ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8] 313 ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8] 314 ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8] 315 ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8] 316 317 %b = getelementptr [100 x i8]* %a, i64 0, i64 0 318 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false) 319 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0 320 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20 321 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 20 322 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 323 ; CHECK-NEXT: %[[test4_r1:.*]] = load i16* %[[bitcast]] 324 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 22 325 ; CHECK-NEXT: %[[test4_r2:.*]] = load i8* %[[gep]] 326 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 23 327 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 328 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 329 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 30 330 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0 331 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 332 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 40 333 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 334 ; CHECK-NEXT: %[[test4_r3:.*]] = load i16* %[[bitcast]] 335 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42 336 ; CHECK-NEXT: %[[test4_r4:.*]] = load i8* %[[gep]] 337 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43 338 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 339 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 340 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 50 341 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 342 ; CHECK-NEXT: %[[test4_r5:.*]] = load i16* %[[bitcast]] 343 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 52 344 ; CHECK-NEXT: %[[test4_r6:.*]] = load i8* %[[gep]] 345 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 53 346 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 347 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 348 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 60 349 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0 350 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 351 352 %a.src.1 = getelementptr [100 x i8]* %a, i64 0, i64 20 353 %a.dst.1 = getelementptr [100 x i8]* %a, i64 0, i64 40 354 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false) 355 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 356 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 357 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 358 359 ; Clobber a single element of the array, this should be promotable, and be deleted. 360 %c = getelementptr [100 x i8]* %a, i64 0, i64 42 361 store i8 0, i8* %c 362 363 %a.src.2 = getelementptr [100 x i8]* %a, i64 0, i64 50 364 call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false) 365 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 366 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 367 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 368 369 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false) 370 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0 371 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20 372 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 20 373 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 374 ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]] 375 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 22 376 ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]] 377 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 23 378 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 379 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 380 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 30 381 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0 382 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 383 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 40 384 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 385 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] 386 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42 387 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] 388 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43 389 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 390 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 391 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 50 392 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 393 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] 394 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 52 395 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] 396 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 53 397 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 398 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 399 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 60 400 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0 401 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 402 403 ret void 404 } 405 406 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind 407 declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind 408 declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind 409 410 define i16 @test5() { 411 ; CHECK-LABEL: @test5( 412 ; CHECK-NOT: alloca float 413 ; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32 414 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16 415 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16 416 ; CHECK-NEXT: ret i16 %[[trunc]] 417 418 entry: 419 %a = alloca [4 x i8] 420 %fptr = bitcast [4 x i8]* %a to float* 421 store float 0.0, float* %fptr 422 %ptr = getelementptr [4 x i8]* %a, i32 0, i32 2 423 %iptr = bitcast i8* %ptr to i16* 424 %val = load i16* %iptr 425 ret i16 %val 426 } 427 428 define i32 @test6() { 429 ; CHECK-LABEL: @test6( 430 ; CHECK: alloca i32 431 ; CHECK-NEXT: store volatile i32 432 ; CHECK-NEXT: load i32* 433 ; CHECK-NEXT: ret i32 434 435 entry: 436 %a = alloca [4 x i8] 437 %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0 438 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true) 439 %iptr = bitcast i8* %ptr to i32* 440 %val = load i32* %iptr 441 ret i32 %val 442 } 443 444 define void @test7(i8* %src, i8* %dst) { 445 ; CHECK-LABEL: @test7( 446 ; CHECK: alloca i32 447 ; CHECK-NEXT: bitcast i8* %src to i32* 448 ; CHECK-NEXT: load volatile i32* 449 ; CHECK-NEXT: store volatile i32 450 ; CHECK-NEXT: bitcast i8* %dst to i32* 451 ; CHECK-NEXT: load volatile i32* 452 ; CHECK-NEXT: store volatile i32 453 ; CHECK-NEXT: ret 454 455 entry: 456 %a = alloca [4 x i8] 457 %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0 458 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) 459 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) 460 ret void 461 } 462 463 464 %S1 = type { i32, i32, [16 x i8] } 465 %S2 = type { %S1*, %S2* } 466 467 define %S2 @test8(%S2* %s2) { 468 ; CHECK-LABEL: @test8( 469 entry: 470 %new = alloca %S2 471 ; CHECK-NOT: alloca 472 473 %s2.next.ptr = getelementptr %S2* %s2, i64 0, i32 1 474 %s2.next = load %S2** %s2.next.ptr 475 ; CHECK: %[[gep:.*]] = getelementptr %S2* %s2, i64 0, i32 1 476 ; CHECK-NEXT: %[[next:.*]] = load %S2** %[[gep]] 477 478 %s2.next.s1.ptr = getelementptr %S2* %s2.next, i64 0, i32 0 479 %s2.next.s1 = load %S1** %s2.next.s1.ptr 480 %new.s1.ptr = getelementptr %S2* %new, i64 0, i32 0 481 store %S1* %s2.next.s1, %S1** %new.s1.ptr 482 %s2.next.next.ptr = getelementptr %S2* %s2.next, i64 0, i32 1 483 %s2.next.next = load %S2** %s2.next.next.ptr 484 %new.next.ptr = getelementptr %S2* %new, i64 0, i32 1 485 store %S2* %s2.next.next, %S2** %new.next.ptr 486 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 0 487 ; CHECK-NEXT: %[[next_s1:.*]] = load %S1** %[[gep]] 488 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 1 489 ; CHECK-NEXT: %[[next_next:.*]] = load %S2** %[[gep]] 490 491 %new.s1 = load %S1** %new.s1.ptr 492 %result1 = insertvalue %S2 undef, %S1* %new.s1, 0 493 ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0 494 %new.next = load %S2** %new.next.ptr 495 %result2 = insertvalue %S2 %result1, %S2* %new.next, 1 496 ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1 497 ret %S2 %result2 498 ; CHECK-NEXT: ret %S2 %[[result2]] 499 } 500 501 define i64 @test9() { 502 ; Ensure we can handle loads off the end of an alloca even when wrapped in 503 ; weird bit casts and types. This is valid IR due to the alignment and masking 504 ; off the bits past the end of the alloca. 505 ; 506 ; CHECK-LABEL: @test9( 507 ; CHECK-NOT: alloca 508 ; CHECK: %[[b2:.*]] = zext i8 26 to i64 509 ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16 510 ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681 511 ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]] 512 ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64 513 ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8 514 ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281 515 ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]] 516 ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64 517 ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256 518 ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]] 519 ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215 520 ; CHECK-NEXT: ret i64 %[[result]] 521 522 entry: 523 %a = alloca { [3 x i8] }, align 8 524 %gep1 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 0 525 store i8 0, i8* %gep1, align 1 526 %gep2 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 1 527 store i8 0, i8* %gep2, align 1 528 %gep3 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 2 529 store i8 26, i8* %gep3, align 1 530 %cast = bitcast { [3 x i8] }* %a to { i64 }* 531 %elt = getelementptr inbounds { i64 }* %cast, i32 0, i32 0 532 %load = load i64* %elt 533 %result = and i64 %load, 16777215 534 ret i64 %result 535 } 536 537 define %S2* @test10() { 538 ; CHECK-LABEL: @test10( 539 ; CHECK-NOT: alloca %S2* 540 ; CHECK: ret %S2* null 541 542 entry: 543 %a = alloca [8 x i8] 544 %ptr = getelementptr [8 x i8]* %a, i32 0, i32 0 545 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false) 546 %s2ptrptr = bitcast i8* %ptr to %S2** 547 %s2ptr = load %S2** %s2ptrptr 548 ret %S2* %s2ptr 549 } 550 551 define i32 @test11() { 552 ; CHECK-LABEL: @test11( 553 ; CHECK-NOT: alloca 554 ; CHECK: ret i32 0 555 556 entry: 557 %X = alloca i32 558 br i1 undef, label %good, label %bad 559 560 good: 561 %Y = getelementptr i32* %X, i64 0 562 store i32 0, i32* %Y 563 %Z = load i32* %Y 564 ret i32 %Z 565 566 bad: 567 %Y2 = getelementptr i32* %X, i64 1 568 store i32 0, i32* %Y2 569 %Z2 = load i32* %Y2 570 ret i32 %Z2 571 } 572 573 define i8 @test12() { 574 ; We fully promote these to the i24 load or store size, resulting in just masks 575 ; and other operations that instcombine will fold, but no alloca. 576 ; 577 ; CHECK-LABEL: @test12( 578 579 entry: 580 %a = alloca [3 x i8] 581 %b = alloca [3 x i8] 582 ; CHECK-NOT: alloca 583 584 %a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0 585 store i8 0, i8* %a0ptr 586 %a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1 587 store i8 0, i8* %a1ptr 588 %a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2 589 store i8 0, i8* %a2ptr 590 %aiptr = bitcast [3 x i8]* %a to i24* 591 %ai = load i24* %aiptr 592 ; CHECK-NOT: store 593 ; CHECK-NOT: load 594 ; CHECK: %[[ext2:.*]] = zext i8 0 to i24 595 ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16 596 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535 597 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]] 598 ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24 599 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8 600 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281 601 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]] 602 ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24 603 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256 604 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]] 605 606 %biptr = bitcast [3 x i8]* %b to i24* 607 store i24 %ai, i24* %biptr 608 %b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0 609 %b0 = load i8* %b0ptr 610 %b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1 611 %b1 = load i8* %b1ptr 612 %b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2 613 %b2 = load i8* %b2ptr 614 ; CHECK-NOT: store 615 ; CHECK-NOT: load 616 ; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8 617 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8 618 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8 619 ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16 620 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8 621 622 %bsum0 = add i8 %b0, %b1 623 %bsum1 = add i8 %bsum0, %b2 624 ret i8 %bsum1 625 ; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]] 626 ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]] 627 ; CHECK-NEXT: ret i8 %[[sum1]] 628 } 629 630 define i32 @test13() { 631 ; Ensure we don't crash and handle undefined loads that straddle the end of the 632 ; allocation. 633 ; CHECK-LABEL: @test13( 634 ; CHECK: %[[value:.*]] = zext i8 0 to i16 635 ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32 636 ; CHECK-NEXT: ret i32 %[[ret]] 637 638 entry: 639 %a = alloca [3 x i8], align 2 640 %b0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0 641 store i8 0, i8* %b0ptr 642 %b1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1 643 store i8 0, i8* %b1ptr 644 %b2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2 645 store i8 0, i8* %b2ptr 646 %iptrcast = bitcast [3 x i8]* %a to i16* 647 %iptrgep = getelementptr i16* %iptrcast, i64 1 648 %i = load i16* %iptrgep 649 %ret = zext i16 %i to i32 650 ret i32 %ret 651 } 652 653 %test14.struct = type { [3 x i32] } 654 655 define void @test14(...) nounwind uwtable { 656 ; This is a strange case where we split allocas into promotable partitions, but 657 ; also gain enough data to prove they must be dead allocas due to GEPs that walk 658 ; across two adjacent allocas. Test that we don't try to promote or otherwise 659 ; do bad things to these dead allocas, they should just be removed. 660 ; CHECK-LABEL: @test14( 661 ; CHECK-NEXT: entry: 662 ; CHECK-NEXT: ret void 663 664 entry: 665 %a = alloca %test14.struct 666 %p = alloca %test14.struct* 667 %0 = bitcast %test14.struct* %a to i8* 668 %1 = getelementptr i8* %0, i64 12 669 %2 = bitcast i8* %1 to %test14.struct* 670 %3 = getelementptr inbounds %test14.struct* %2, i32 0, i32 0 671 %4 = getelementptr inbounds %test14.struct* %a, i32 0, i32 0 672 %5 = bitcast [3 x i32]* %3 to i32* 673 %6 = bitcast [3 x i32]* %4 to i32* 674 %7 = load i32* %6, align 4 675 store i32 %7, i32* %5, align 4 676 %8 = getelementptr inbounds i32* %5, i32 1 677 %9 = getelementptr inbounds i32* %6, i32 1 678 %10 = load i32* %9, align 4 679 store i32 %10, i32* %8, align 4 680 %11 = getelementptr inbounds i32* %5, i32 2 681 %12 = getelementptr inbounds i32* %6, i32 2 682 %13 = load i32* %12, align 4 683 store i32 %13, i32* %11, align 4 684 ret void 685 } 686 687 define i32 @test15(i1 %flag) nounwind uwtable { 688 ; Ensure that when there are dead instructions using an alloca that are not 689 ; loads or stores we still delete them during partitioning and rewriting. 690 ; Otherwise we'll go to promote them while thy still have unpromotable uses. 691 ; CHECK-LABEL: @test15( 692 ; CHECK-NEXT: entry: 693 ; CHECK-NEXT: br label %loop 694 ; CHECK: loop: 695 ; CHECK-NEXT: br label %loop 696 697 entry: 698 %l0 = alloca i64 699 %l1 = alloca i64 700 %l2 = alloca i64 701 %l3 = alloca i64 702 br label %loop 703 704 loop: 705 %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ] 706 707 store i64 1879048192, i64* %l0, align 8 708 %bc0 = bitcast i64* %l0 to i8* 709 %gep0 = getelementptr i8* %bc0, i64 3 710 %dead0 = bitcast i8* %gep0 to i64* 711 712 store i64 1879048192, i64* %l1, align 8 713 %bc1 = bitcast i64* %l1 to i8* 714 %gep1 = getelementptr i8* %bc1, i64 3 715 %dead1 = getelementptr i8* %gep1, i64 1 716 717 store i64 1879048192, i64* %l2, align 8 718 %bc2 = bitcast i64* %l2 to i8* 719 %gep2.1 = getelementptr i8* %bc2, i64 1 720 %gep2.2 = getelementptr i8* %bc2, i64 3 721 ; Note that this select should get visited multiple times due to using two 722 ; different GEPs off the same alloca. We should only delete it once. 723 %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2 724 725 store i64 1879048192, i64* %l3, align 8 726 %bc3 = bitcast i64* %l3 to i8* 727 %gep3 = getelementptr i8* %bc3, i64 3 728 729 br label %loop 730 } 731 732 define void @test16(i8* %src, i8* %dst) { 733 ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value. 734 ; CHECK-LABEL: @test16( 735 ; CHECK-NOT: alloca 736 ; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24* 737 ; CHECK-NEXT: load i24* %[[srccast]] 738 ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24* 739 ; CHECK-NEXT: store i24 0, i24* %[[dstcast]] 740 ; CHECK-NEXT: ret void 741 742 entry: 743 %a = alloca [3 x i8] 744 %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0 745 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false) 746 %cast = bitcast i8* %ptr to i24* 747 store i24 0, i24* %cast 748 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false) 749 ret void 750 } 751 752 define void @test17(i8* %src, i8* %dst) { 753 ; Ensure that we can rewrite unpromotable memcpys which extend past the end of 754 ; the alloca. 755 ; CHECK-LABEL: @test17( 756 ; CHECK: %[[a:.*]] = alloca [3 x i8] 757 ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8]* %[[a]], i32 0, i32 0 758 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, 759 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], 760 ; CHECK-NEXT: ret void 761 762 entry: 763 %a = alloca [3 x i8] 764 %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0 765 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) 766 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) 767 ret void 768 } 769 770 define void @test18(i8* %src, i8* %dst, i32 %size) { 771 ; Preserve transfer instrinsics with a variable size, even if they overlap with 772 ; fixed size operations. Further, continue to split and promote allocas preceding 773 ; the variable sized intrinsic. 774 ; CHECK-LABEL: @test18( 775 ; CHECK: %[[a:.*]] = alloca [34 x i8] 776 ; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8* %src, i64 4 777 ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32* 778 ; CHECK-NEXT: %[[srcload:.*]] = load i32* %[[srccast1]] 779 ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 780 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size, 781 ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 782 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size, 783 ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32* 784 ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]] 785 ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8* %dst, i64 4 786 ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32* 787 ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]] 788 ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 789 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size, 790 ; CHECK-NEXT: ret void 791 792 entry: 793 %a = alloca [42 x i8] 794 %ptr = getelementptr [42 x i8]* %a, i32 0, i32 0 795 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false) 796 %ptr2 = getelementptr [42 x i8]* %a, i32 0, i32 8 797 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false) 798 call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false) 799 %cast = bitcast i8* %ptr to i32* 800 store i32 42, i32* %cast 801 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false) 802 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false) 803 ret void 804 } 805 806 %opaque = type opaque 807 808 define i32 @test19(%opaque* %x) { 809 ; This input will cause us to try to compute a natural GEP when rewriting 810 ; pointers in such a way that we try to GEP through the opaque type. Previously, 811 ; a check for an unsized type was missing and this crashed. Ensure it behaves 812 ; reasonably now. 813 ; CHECK-LABEL: @test19( 814 ; CHECK-NOT: alloca 815 ; CHECK: ret i32 undef 816 817 entry: 818 %a = alloca { i64, i8* } 819 %cast1 = bitcast %opaque* %x to i8* 820 %cast2 = bitcast { i64, i8* }* %a to i8* 821 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false) 822 %gep = getelementptr inbounds { i64, i8* }* %a, i32 0, i32 0 823 %val = load i64* %gep 824 ret i32 undef 825 } 826 827 define i32 @test20() { 828 ; Ensure we can track negative offsets (before the beginning of the alloca) and 829 ; negative relative offsets from offsets starting past the end of the alloca. 830 ; CHECK-LABEL: @test20( 831 ; CHECK-NOT: alloca 832 ; CHECK: %[[sum1:.*]] = add i32 1, 2 833 ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3 834 ; CHECK: ret i32 %[[sum2]] 835 836 entry: 837 %a = alloca [3 x i32] 838 %gep1 = getelementptr [3 x i32]* %a, i32 0, i32 0 839 store i32 1, i32* %gep1 840 %gep2.1 = getelementptr [3 x i32]* %a, i32 0, i32 -2 841 %gep2.2 = getelementptr i32* %gep2.1, i32 3 842 store i32 2, i32* %gep2.2 843 %gep3.1 = getelementptr [3 x i32]* %a, i32 0, i32 14 844 %gep3.2 = getelementptr i32* %gep3.1, i32 -12 845 store i32 3, i32* %gep3.2 846 847 %load1 = load i32* %gep1 848 %load2 = load i32* %gep2.2 849 %load3 = load i32* %gep3.2 850 %sum1 = add i32 %load1, %load2 851 %sum2 = add i32 %sum1, %load3 852 ret i32 %sum2 853 } 854 855 declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind 856 857 define i8 @test21() { 858 ; Test allocations and offsets which border on overflow of the int64_t used 859 ; internally. This is really awkward to really test as LLVM doesn't really 860 ; support such extreme constructs cleanly. 861 ; CHECK-LABEL: @test21( 862 ; CHECK-NOT: alloca 863 ; CHECK: or i8 -1, -1 864 865 entry: 866 %a = alloca [2305843009213693951 x i8] 867 %gep0 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949 868 store i8 255, i8* %gep0 869 %gep1 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807 870 %gep2 = getelementptr i8* %gep1, i64 -1 871 call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false) 872 %gep3 = getelementptr i8* %gep1, i64 9223372036854775807 873 %gep4 = getelementptr i8* %gep3, i64 9223372036854775807 874 %gep5 = getelementptr i8* %gep4, i64 -6917529027641081857 875 store i8 255, i8* %gep5 876 %cast1 = bitcast i8* %gep4 to i32* 877 store i32 0, i32* %cast1 878 %load = load i8* %gep0 879 %gep6 = getelementptr i8* %gep0, i32 1 880 %load2 = load i8* %gep6 881 %result = or i8 %load, %load2 882 ret i8 %result 883 } 884 885 %PR13916.struct = type { i8 } 886 887 define void @PR13916.1() { 888 ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in 889 ; the case where there is a directly identical value for both source and dest. 890 ; CHECK: @PR13916.1 891 ; CHECK-NOT: alloca 892 ; CHECK: ret void 893 894 entry: 895 %a = alloca i8 896 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false) 897 %tmp2 = load i8* %a 898 ret void 899 } 900 901 define void @PR13916.2() { 902 ; Check whether we continue to handle them correctly when they start off with 903 ; different pointer value chains, but during rewriting we coalesce them into the 904 ; same value. 905 ; CHECK: @PR13916.2 906 ; CHECK-NOT: alloca 907 ; CHECK: ret void 908 909 entry: 910 %a = alloca %PR13916.struct, align 1 911 br i1 undef, label %if.then, label %if.end 912 913 if.then: 914 %tmp0 = bitcast %PR13916.struct* %a to i8* 915 %tmp1 = bitcast %PR13916.struct* %a to i8* 916 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false) 917 br label %if.end 918 919 if.end: 920 %gep = getelementptr %PR13916.struct* %a, i32 0, i32 0 921 %tmp2 = load i8* %gep 922 ret void 923 } 924 925 define void @PR13990() { 926 ; Ensure we can handle cases where processing one alloca causes the other 927 ; alloca to become dead and get deleted. This might crash or fail under 928 ; Valgrind if we regress. 929 ; CHECK-LABEL: @PR13990( 930 ; CHECK-NOT: alloca 931 ; CHECK: unreachable 932 ; CHECK: unreachable 933 934 entry: 935 %tmp1 = alloca i8* 936 %tmp2 = alloca i8* 937 br i1 undef, label %bb1, label %bb2 938 939 bb1: 940 store i8* undef, i8** %tmp2 941 br i1 undef, label %bb2, label %bb3 942 943 bb2: 944 %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1 945 br i1 undef, label %bb3, label %bb4 946 947 bb3: 948 unreachable 949 950 bb4: 951 unreachable 952 } 953 954 define double @PR13969(double %x) { 955 ; Check that we detect when promotion will un-escape an alloca and iterate to 956 ; re-try running SROA over that alloca. Without that, the two allocas that are 957 ; stored into a dead alloca don't get rewritten and promoted. 958 ; CHECK-LABEL: @PR13969( 959 960 entry: 961 %a = alloca double 962 %b = alloca double* 963 %c = alloca double 964 ; CHECK-NOT: alloca 965 966 store double %x, double* %a 967 store double* %c, double** %b 968 store double* %a, double** %b 969 store double %x, double* %c 970 %ret = load double* %a 971 ; CHECK-NOT: store 972 ; CHECK-NOT: load 973 974 ret double %ret 975 ; CHECK: ret double %x 976 } 977 978 %PR14034.struct = type { { {} }, i32, %PR14034.list } 979 %PR14034.list = type { %PR14034.list*, %PR14034.list* } 980 981 define void @PR14034() { 982 ; This test case tries to form GEPs into the empty leading struct members, and 983 ; subsequently crashed (under valgrind) before we fixed the PR. The important 984 ; thing is to handle empty structs gracefully. 985 ; CHECK-LABEL: @PR14034( 986 987 entry: 988 %a = alloca %PR14034.struct 989 %list = getelementptr %PR14034.struct* %a, i32 0, i32 2 990 %prev = getelementptr %PR14034.list* %list, i32 0, i32 1 991 store %PR14034.list* undef, %PR14034.list** %prev 992 %cast0 = bitcast %PR14034.struct* undef to i8* 993 %cast1 = bitcast %PR14034.struct* %a to i8* 994 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false) 995 ret void 996 } 997 998 define i32 @test22(i32 %x) { 999 ; Test that SROA and promotion is not confused by a grab bax mixture of pointer 1000 ; types involving wrapper aggregates and zero-length aggregate members. 1001 ; CHECK-LABEL: @test22( 1002 1003 entry: 1004 %a1 = alloca { { [1 x { i32 }] } } 1005 %a2 = alloca { {}, { float }, [0 x i8] } 1006 %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } } 1007 ; CHECK-NOT: alloca 1008 1009 %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0 1010 %gep1 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0 1011 store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1 1012 1013 %gep2 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0 1014 %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }* 1015 %load1 = load { [1 x { float }] }* %ptrcast1 1016 %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0 1017 1018 %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1 1019 store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2 1020 1021 %gep3 = getelementptr { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0 1022 %ptrcast2 = bitcast float* %gep3 to <4 x i8>* 1023 %load3 = load <4 x i8>* %ptrcast2 1024 %valcast1 = bitcast <4 x i8> %load3 to i32 1025 1026 %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0 1027 %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0 1028 %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1 1029 %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }* 1030 store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3 1031 1032 %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0 1033 %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }* 1034 %load4 = load { {}, float, {} }* %ptrcast4 1035 %unwrap2 = extractvalue { {}, float, {} } %load4, 1 1036 %valcast2 = bitcast float %unwrap2 to i32 1037 1038 ret i32 %valcast2 1039 ; CHECK: ret i32 1040 } 1041 1042 define void @PR14059.1(double* %d) { 1043 ; In PR14059 a peculiar construct was identified as something that is used 1044 ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct 1045 ; of doubles via an array of i32 in order to place the data into integer 1046 ; registers. This in turn was missed as an optimization by SROA due to the 1047 ; partial loads and stores of integers to the double alloca we were trying to 1048 ; form and promote. The solution is to widen the integer operations to be 1049 ; whole-alloca operations, and perform the appropriate bitcasting on the 1050 ; *values* rather than the pointers. When this works, partial reads and writes 1051 ; via integers can be promoted away. 1052 ; CHECK: @PR14059.1 1053 ; CHECK-NOT: alloca 1054 ; CHECK: ret void 1055 1056 entry: 1057 %X.sroa.0.i = alloca double, align 8 1058 %0 = bitcast double* %X.sroa.0.i to i8* 1059 call void @llvm.lifetime.start(i64 -1, i8* %0) 1060 1061 ; Store to the low 32-bits... 1062 %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32* 1063 store i32 0, i32* %X.sroa.0.0.cast2.i, align 8 1064 1065 ; Also use a memset to the middle 32-bits for fun. 1066 %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8* %0, i32 2 1067 call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false) 1068 1069 ; Or a memset of the whole thing. 1070 call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false) 1071 1072 ; Write to the high 32-bits with a memcpy. 1073 %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8* %0, i32 4 1074 %d.raw = bitcast double* %d to i8* 1075 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false) 1076 1077 ; Store to the high 32-bits... 1078 %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32* 1079 store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4 1080 1081 ; Do the actual math... 1082 %X.sroa.0.0.load1.i = load double* %X.sroa.0.i, align 8 1083 %accum.real.i = load double* %d, align 8 1084 %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i 1085 store double %add.r.i, double* %d, align 8 1086 call void @llvm.lifetime.end(i64 -1, i8* %0) 1087 ret void 1088 } 1089 1090 define i64 @PR14059.2({ float, float }* %phi) { 1091 ; Check that SROA can split up alloca-wide integer loads and stores where the 1092 ; underlying alloca has smaller components that are accessed independently. This 1093 ; shows up particularly with ABI lowering patterns coming out of Clang that rely 1094 ; on the particular register placement of a single large integer return value. 1095 ; CHECK: @PR14059.2 1096 1097 entry: 1098 %retval = alloca { float, float }, align 4 1099 ; CHECK-NOT: alloca 1100 1101 %0 = bitcast { float, float }* %retval to i64* 1102 store i64 0, i64* %0 1103 ; CHECK-NOT: store 1104 1105 %phi.realp = getelementptr inbounds { float, float }* %phi, i32 0, i32 0 1106 %phi.real = load float* %phi.realp 1107 %phi.imagp = getelementptr inbounds { float, float }* %phi, i32 0, i32 1 1108 %phi.imag = load float* %phi.imagp 1109 ; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 0 1110 ; CHECK-NEXT: %[[real:.*]] = load float* %[[realp]] 1111 ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 1 1112 ; CHECK-NEXT: %[[imag:.*]] = load float* %[[imagp]] 1113 1114 %real = getelementptr inbounds { float, float }* %retval, i32 0, i32 0 1115 %imag = getelementptr inbounds { float, float }* %retval, i32 0, i32 1 1116 store float %phi.real, float* %real 1117 store float %phi.imag, float* %imag 1118 ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32 1119 ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32 1120 ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64 1121 ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32 1122 ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295 1123 ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]] 1124 ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64 1125 ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296 1126 ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]] 1127 1128 %1 = load i64* %0, align 1 1129 ret i64 %1 1130 ; CHECK-NEXT: ret i64 %[[real_insert]] 1131 } 1132 1133 define void @PR14105({ [16 x i8] }* %ptr) { 1134 ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is 1135 ; sign as negative. We use a volatile memcpy to ensure promotion never actually 1136 ; occurs. 1137 ; CHECK-LABEL: @PR14105( 1138 1139 entry: 1140 %a = alloca { [16 x i8] }, align 8 1141 ; CHECK: alloca [16 x i8], align 8 1142 1143 %gep = getelementptr inbounds { [16 x i8] }* %ptr, i64 -1 1144 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0 1145 1146 %cast1 = bitcast { [16 x i8 ] }* %gep to i8* 1147 %cast2 = bitcast { [16 x i8 ] }* %a to i8* 1148 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true) 1149 ret void 1150 ; CHECK: ret 1151 } 1152 1153 define void @PR14465() { 1154 ; Ensure that we don't crash when analyzing a alloca larger than the maximum 1155 ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1). 1156 ; CHECK-LABEL: @PR14465( 1157 1158 %stack = alloca [1048576 x i32], align 16 1159 ; CHECK: alloca [1048576 x i32] 1160 %cast = bitcast [1048576 x i32]* %stack to i8* 1161 call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false) 1162 ret void 1163 ; CHECK: ret 1164 } 1165 1166 define void @PR14548(i1 %x) { 1167 ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular 1168 ; pattern caused crashes and invalid output in the PR, and its nature will 1169 ; trigger a mixture in several permutations as we resolve each alloca 1170 ; iteratively. 1171 ; Note that we don't do a particularly good *job* of handling these mixtures, 1172 ; but the hope is that this is very rare. 1173 ; CHECK-LABEL: @PR14548( 1174 1175 entry: 1176 %a = alloca <{ i1 }>, align 8 1177 %b = alloca <{ i1 }>, align 8 1178 ; CHECK: %[[a:.*]] = alloca i8, align 8 1179 1180 %b.i1 = bitcast <{ i1 }>* %b to i1* 1181 store i1 %x, i1* %b.i1, align 8 1182 %b.i8 = bitcast <{ i1 }>* %b to i8* 1183 %foo = load i8* %b.i8, align 1 1184 ; CHECK-NEXT: {{.*}} = zext i1 %x to i8 1185 ; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8 1186 ; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8 1187 ; CHECK-NEXT: {{.*}} = load i8* %[[a]], align 8 1188 1189 %a.i8 = bitcast <{ i1 }>* %a to i8* 1190 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind 1191 %bar = load i8* %a.i8, align 1 1192 %a.i1 = getelementptr inbounds <{ i1 }>* %a, i32 0, i32 0 1193 %baz = load i1* %a.i1, align 1 1194 ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1* 1195 ; CHECK-NEXT: {{.*}} = load i1* %[[a_cast]], align 8 1196 1197 ret void 1198 } 1199 1200 define <3 x i8> @PR14572.1(i32 %x) { 1201 ; Ensure that a split integer store which is wider than the type size of the 1202 ; alloca (relying on the alloc size padding) doesn't trigger an assert. 1203 ; CHECK: @PR14572.1 1204 1205 entry: 1206 %a = alloca <3 x i8>, align 4 1207 ; CHECK-NOT: alloca 1208 1209 %cast = bitcast <3 x i8>* %a to i32* 1210 store i32 %x, i32* %cast, align 1 1211 %y = load <3 x i8>* %a, align 4 1212 ret <3 x i8> %y 1213 ; CHECK: ret <3 x i8> 1214 } 1215 1216 define i32 @PR14572.2(<3 x i8> %x) { 1217 ; Ensure that a split integer load which is wider than the type size of the 1218 ; alloca (relying on the alloc size padding) doesn't trigger an assert. 1219 ; CHECK: @PR14572.2 1220 1221 entry: 1222 %a = alloca <3 x i8>, align 4 1223 ; CHECK-NOT: alloca 1224 1225 store <3 x i8> %x, <3 x i8>* %a, align 1 1226 %cast = bitcast <3 x i8>* %a to i32* 1227 %y = load i32* %cast, align 4 1228 ret i32 %y 1229 ; CHECK: ret i32 1230 } 1231 1232 define i32 @PR14601(i32 %x) { 1233 ; Don't try to form a promotable integer alloca when there is a variable length 1234 ; memory intrinsic. 1235 ; CHECK-LABEL: @PR14601( 1236 1237 entry: 1238 %a = alloca i32 1239 ; CHECK: alloca 1240 1241 %a.i8 = bitcast i32* %a to i8* 1242 call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false) 1243 %v = load i32* %a 1244 ret i32 %v 1245 } 1246 1247 define void @PR15674(i8* %data, i8* %src, i32 %size) { 1248 ; Arrange (via control flow) to have unmerged stores of a particular width to 1249 ; an alloca where we incrementally store from the end of the array toward the 1250 ; beginning of the array. Ensure that the final integer store, despite being 1251 ; convertable to the integer type that we end up promoting this alloca toward, 1252 ; doesn't get widened to a full alloca store. 1253 ; CHECK-LABEL: @PR15674( 1254 1255 entry: 1256 %tmp = alloca [4 x i8], align 1 1257 ; CHECK: alloca i32 1258 1259 switch i32 %size, label %end [ 1260 i32 4, label %bb4 1261 i32 3, label %bb3 1262 i32 2, label %bb2 1263 i32 1, label %bb1 1264 ] 1265 1266 bb4: 1267 %src.gep3 = getelementptr inbounds i8* %src, i32 3 1268 %src.3 = load i8* %src.gep3 1269 %tmp.gep3 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 3 1270 store i8 %src.3, i8* %tmp.gep3 1271 ; CHECK: store i8 1272 1273 br label %bb3 1274 1275 bb3: 1276 %src.gep2 = getelementptr inbounds i8* %src, i32 2 1277 %src.2 = load i8* %src.gep2 1278 %tmp.gep2 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 2 1279 store i8 %src.2, i8* %tmp.gep2 1280 ; CHECK: store i8 1281 1282 br label %bb2 1283 1284 bb2: 1285 %src.gep1 = getelementptr inbounds i8* %src, i32 1 1286 %src.1 = load i8* %src.gep1 1287 %tmp.gep1 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 1 1288 store i8 %src.1, i8* %tmp.gep1 1289 ; CHECK: store i8 1290 1291 br label %bb1 1292 1293 bb1: 1294 %src.gep0 = getelementptr inbounds i8* %src, i32 0 1295 %src.0 = load i8* %src.gep0 1296 %tmp.gep0 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 0 1297 store i8 %src.0, i8* %tmp.gep0 1298 ; CHECK: store i8 1299 1300 br label %end 1301 1302 end: 1303 %tmp.raw = bitcast [4 x i8]* %tmp to i8* 1304 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false) 1305 ret void 1306 ; CHECK: ret void 1307 } 1308 1309 define void @PR15805(i1 %a, i1 %b) { 1310 ; CHECK-LABEL: @PR15805( 1311 ; CHECK-NOT: alloca 1312 ; CHECK: ret void 1313 1314 %c = alloca i64, align 8 1315 %p.0.c = select i1 undef, i64* %c, i64* %c 1316 %cond.in = select i1 undef, i64* %p.0.c, i64* %c 1317 %cond = load i64* %cond.in, align 8 1318 ret void 1319 } 1320 1321 define void @PR16651.1(i8* %a) { 1322 ; This test case caused a crash due to the volatile memcpy in combination with 1323 ; lowering to integer loads and stores of a width other than that of the original 1324 ; memcpy. 1325 ; 1326 ; CHECK-LABEL: @PR16651.1( 1327 ; CHECK: alloca i16 1328 ; CHECK: alloca i8 1329 ; CHECK: alloca i8 1330 ; CHECK: unreachable 1331 1332 entry: 1333 %b = alloca i32, align 4 1334 %b.cast = bitcast i32* %b to i8* 1335 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true) 1336 %b.gep = getelementptr inbounds i8* %b.cast, i32 2 1337 load i8* %b.gep, align 2 1338 unreachable 1339 } 1340 1341 define void @PR16651.2() { 1342 ; This test case caused a crash due to failing to promote given a select that 1343 ; can't be speculated. It shouldn't be promoted, but we missed that fact when 1344 ; analyzing whether we could form a vector promotion because that code didn't 1345 ; bail on select instructions. 1346 ; 1347 ; CHECK-LABEL: @PR16651.2( 1348 ; CHECK: alloca <2 x float> 1349 ; CHECK: ret void 1350 1351 entry: 1352 %tv1 = alloca { <2 x float>, <2 x float> }, align 8 1353 %0 = getelementptr { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1 1354 store <2 x float> undef, <2 x float>* %0, align 8 1355 %1 = getelementptr inbounds { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0 1356 %cond105.in.i.i = select i1 undef, float* null, float* %1 1357 %cond105.i.i = load float* %cond105.in.i.i, align 8 1358 ret void 1359 } 1360