1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * constant of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, constant, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above constantright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 /** 25 * \file opt_constant_propagation.cpp 26 * 27 * Tracks assignments of constants to channels of variables, and 28 * usage of those constant channels with direct usage of the constants. 29 * 30 * This can lead to constant folding and algebraic optimizations in 31 * those later expressions, while causing no increase in instruction 32 * count (due to constants being generally free to load from a 33 * constant push buffer or as instruction immediate values) and 34 * possibly reducing register pressure. 35 */ 36 37 #include "ir.h" 38 #include "ir_visitor.h" 39 #include "ir_rvalue_visitor.h" 40 #include "ir_basic_block.h" 41 #include "ir_optimization.h" 42 #include "glsl_types.h" 43 44 namespace { 45 46 class acp_entry : public exec_node 47 { 48 public: 49 acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant) 50 { 51 assert(var); 52 assert(constant); 53 this->var = var; 54 this->write_mask = write_mask; 55 this->constant = constant; 56 this->initial_values = write_mask; 57 } 58 59 acp_entry(const acp_entry *src) 60 { 61 this->var = src->var; 62 this->write_mask = src->write_mask; 63 this->constant = src->constant; 64 this->initial_values = src->initial_values; 65 } 66 67 ir_variable *var; 68 ir_constant *constant; 69 unsigned write_mask; 70 71 /** Mask of values initially available in the constant. */ 72 unsigned initial_values; 73 }; 74 75 76 class kill_entry : public exec_node 77 { 78 public: 79 kill_entry(ir_variable *var, unsigned write_mask) 80 { 81 assert(var); 82 this->var = var; 83 this->write_mask = write_mask; 84 } 85 86 ir_variable *var; 87 unsigned write_mask; 88 }; 89 90 class ir_constant_propagation_visitor : public ir_rvalue_visitor { 91 public: 92 ir_constant_propagation_visitor() 93 { 94 progress = false; 95 killed_all = false; 96 mem_ctx = ralloc_context(0); 97 this->acp = new(mem_ctx) exec_list; 98 this->kills = new(mem_ctx) exec_list; 99 } 100 ~ir_constant_propagation_visitor() 101 { 102 ralloc_free(mem_ctx); 103 } 104 105 virtual ir_visitor_status visit_enter(class ir_loop *); 106 virtual ir_visitor_status visit_enter(class ir_function_signature *); 107 virtual ir_visitor_status visit_enter(class ir_function *); 108 virtual ir_visitor_status visit_leave(class ir_assignment *); 109 virtual ir_visitor_status visit_enter(class ir_call *); 110 virtual ir_visitor_status visit_enter(class ir_if *); 111 112 void add_constant(ir_assignment *ir); 113 void kill(ir_variable *ir, unsigned write_mask); 114 void handle_if_block(exec_list *instructions); 115 void handle_rvalue(ir_rvalue **rvalue); 116 117 /** List of acp_entry: The available constants to propagate */ 118 exec_list *acp; 119 120 /** 121 * List of kill_entry: The masks of variables whose values were 122 * killed in this block. 123 */ 124 exec_list *kills; 125 126 bool progress; 127 128 bool killed_all; 129 130 void *mem_ctx; 131 }; 132 133 134 void 135 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue) 136 { 137 if (this->in_assignee || !*rvalue) 138 return; 139 140 const glsl_type *type = (*rvalue)->type; 141 if (!type->is_scalar() && !type->is_vector()) 142 return; 143 144 ir_swizzle *swiz = NULL; 145 ir_dereference_variable *deref = (*rvalue)->as_dereference_variable(); 146 if (!deref) { 147 swiz = (*rvalue)->as_swizzle(); 148 if (!swiz) 149 return; 150 151 deref = swiz->val->as_dereference_variable(); 152 if (!deref) 153 return; 154 } 155 156 ir_constant_data data; 157 memset(&data, 0, sizeof(data)); 158 159 for (unsigned int i = 0; i < type->components(); i++) { 160 int channel; 161 acp_entry *found = NULL; 162 163 if (swiz) { 164 switch (i) { 165 case 0: channel = swiz->mask.x; break; 166 case 1: channel = swiz->mask.y; break; 167 case 2: channel = swiz->mask.z; break; 168 case 3: channel = swiz->mask.w; break; 169 default: assert(!"shouldn't be reached"); channel = 0; break; 170 } 171 } else { 172 channel = i; 173 } 174 175 foreach_iter(exec_list_iterator, iter, *this->acp) { 176 acp_entry *entry = (acp_entry *)iter.get(); 177 if (entry->var == deref->var && entry->write_mask & (1 << channel)) { 178 found = entry; 179 break; 180 } 181 } 182 183 if (!found) 184 return; 185 186 int rhs_channel = 0; 187 for (int j = 0; j < 4; j++) { 188 if (j == channel) 189 break; 190 if (found->initial_values & (1 << j)) 191 rhs_channel++; 192 } 193 194 switch (type->base_type) { 195 case GLSL_TYPE_FLOAT: 196 data.f[i] = found->constant->value.f[rhs_channel]; 197 break; 198 case GLSL_TYPE_INT: 199 data.i[i] = found->constant->value.i[rhs_channel]; 200 break; 201 case GLSL_TYPE_UINT: 202 data.u[i] = found->constant->value.u[rhs_channel]; 203 break; 204 case GLSL_TYPE_BOOL: 205 data.b[i] = found->constant->value.b[rhs_channel]; 206 break; 207 default: 208 assert(!"not reached"); 209 break; 210 } 211 } 212 213 *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data); 214 this->progress = true; 215 } 216 217 ir_visitor_status 218 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir) 219 { 220 /* Treat entry into a function signature as a completely separate 221 * block. Any instructions at global scope will be shuffled into 222 * main() at link time, so they're irrelevant to us. 223 */ 224 exec_list *orig_acp = this->acp; 225 exec_list *orig_kills = this->kills; 226 bool orig_killed_all = this->killed_all; 227 228 this->acp = new(mem_ctx) exec_list; 229 this->kills = new(mem_ctx) exec_list; 230 this->killed_all = false; 231 232 visit_list_elements(this, &ir->body); 233 234 this->kills = orig_kills; 235 this->acp = orig_acp; 236 this->killed_all = orig_killed_all; 237 238 return visit_continue_with_parent; 239 } 240 241 ir_visitor_status 242 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir) 243 { 244 if (this->in_assignee) 245 return visit_continue; 246 247 unsigned kill_mask = ir->write_mask; 248 if (ir->lhs->as_dereference_array()) { 249 /* The LHS of the assignment uses an array indexing operator (e.g. v[i] 250 * = ...;). Since we only try to constant propagate vectors and 251 * scalars, this means that either (a) array indexing is being used to 252 * select a vector component, or (b) the variable in question is neither 253 * a scalar or a vector, so we don't care about it. In the former case, 254 * we want to kill the whole vector, since in general we can't predict 255 * which vector component will be selected by array indexing. In the 256 * latter case, it doesn't matter what we do, so go ahead and kill the 257 * whole variable anyway. 258 * 259 * Note that if the array index is constant (e.g. v[2] = ...;), we could 260 * in principle be smarter, but we don't need to, because a future 261 * optimization pass will convert it to a simple assignment with the 262 * correct mask. 263 */ 264 kill_mask = ~0; 265 } 266 kill(ir->lhs->variable_referenced(), kill_mask); 267 268 add_constant(ir); 269 270 return visit_continue; 271 } 272 273 ir_visitor_status 274 ir_constant_propagation_visitor::visit_enter(ir_function *ir) 275 { 276 (void) ir; 277 return visit_continue; 278 } 279 280 ir_visitor_status 281 ir_constant_propagation_visitor::visit_enter(ir_call *ir) 282 { 283 /* Do constant propagation on call parameters, but skip any out params */ 284 exec_list_iterator sig_param_iter = ir->callee->parameters.iterator(); 285 foreach_iter(exec_list_iterator, iter, ir->actual_parameters) { 286 ir_variable *sig_param = (ir_variable *)sig_param_iter.get(); 287 ir_rvalue *param = (ir_rvalue *)iter.get(); 288 if (sig_param->mode != ir_var_out && sig_param->mode != ir_var_inout) { 289 ir_rvalue *new_param = param; 290 handle_rvalue(&new_param); 291 if (new_param != param) 292 param->replace_with(new_param); 293 else 294 param->accept(this); 295 } 296 sig_param_iter.next(); 297 } 298 299 /* Since we're unlinked, we don't (necssarily) know the side effects of 300 * this call. So kill all copies. 301 */ 302 acp->make_empty(); 303 this->killed_all = true; 304 305 return visit_continue_with_parent; 306 } 307 308 void 309 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions) 310 { 311 exec_list *orig_acp = this->acp; 312 exec_list *orig_kills = this->kills; 313 bool orig_killed_all = this->killed_all; 314 315 this->acp = new(mem_ctx) exec_list; 316 this->kills = new(mem_ctx) exec_list; 317 this->killed_all = false; 318 319 /* Populate the initial acp with a constant of the original */ 320 foreach_iter(exec_list_iterator, iter, *orig_acp) { 321 acp_entry *a = (acp_entry *)iter.get(); 322 this->acp->push_tail(new(this->mem_ctx) acp_entry(a)); 323 } 324 325 visit_list_elements(this, instructions); 326 327 if (this->killed_all) { 328 orig_acp->make_empty(); 329 } 330 331 exec_list *new_kills = this->kills; 332 this->kills = orig_kills; 333 this->acp = orig_acp; 334 this->killed_all = this->killed_all || orig_killed_all; 335 336 foreach_iter(exec_list_iterator, iter, *new_kills) { 337 kill_entry *k = (kill_entry *)iter.get(); 338 kill(k->var, k->write_mask); 339 } 340 } 341 342 ir_visitor_status 343 ir_constant_propagation_visitor::visit_enter(ir_if *ir) 344 { 345 ir->condition->accept(this); 346 handle_rvalue(&ir->condition); 347 348 handle_if_block(&ir->then_instructions); 349 handle_if_block(&ir->else_instructions); 350 351 /* handle_if_block() already descended into the children. */ 352 return visit_continue_with_parent; 353 } 354 355 ir_visitor_status 356 ir_constant_propagation_visitor::visit_enter(ir_loop *ir) 357 { 358 exec_list *orig_acp = this->acp; 359 exec_list *orig_kills = this->kills; 360 bool orig_killed_all = this->killed_all; 361 362 /* FINISHME: For now, the initial acp for loops is totally empty. 363 * We could go through once, then go through again with the acp 364 * cloned minus the killed entries after the first run through. 365 */ 366 this->acp = new(mem_ctx) exec_list; 367 this->kills = new(mem_ctx) exec_list; 368 this->killed_all = false; 369 370 visit_list_elements(this, &ir->body_instructions); 371 372 if (this->killed_all) { 373 orig_acp->make_empty(); 374 } 375 376 exec_list *new_kills = this->kills; 377 this->kills = orig_kills; 378 this->acp = orig_acp; 379 this->killed_all = this->killed_all || orig_killed_all; 380 381 foreach_iter(exec_list_iterator, iter, *new_kills) { 382 kill_entry *k = (kill_entry *)iter.get(); 383 kill(k->var, k->write_mask); 384 } 385 386 /* already descended into the children. */ 387 return visit_continue_with_parent; 388 } 389 390 void 391 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask) 392 { 393 assert(var != NULL); 394 395 /* We don't track non-vectors. */ 396 if (!var->type->is_vector() && !var->type->is_scalar()) 397 return; 398 399 /* Remove any entries currently in the ACP for this kill. */ 400 foreach_iter(exec_list_iterator, iter, *this->acp) { 401 acp_entry *entry = (acp_entry *)iter.get(); 402 403 if (entry->var == var) { 404 entry->write_mask &= ~write_mask; 405 if (entry->write_mask == 0) 406 entry->remove(); 407 } 408 } 409 410 /* Add this writemask of the variable to the list of killed 411 * variables in this block. 412 */ 413 foreach_iter(exec_list_iterator, iter, *this->kills) { 414 kill_entry *entry = (kill_entry *)iter.get(); 415 416 if (entry->var == var) { 417 entry->write_mask |= write_mask; 418 return; 419 } 420 } 421 /* Not already in the list. Make new entry. */ 422 this->kills->push_tail(new(this->mem_ctx) kill_entry(var, write_mask)); 423 } 424 425 /** 426 * Adds an entry to the available constant list if it's a plain assignment 427 * of a variable to a variable. 428 */ 429 void 430 ir_constant_propagation_visitor::add_constant(ir_assignment *ir) 431 { 432 acp_entry *entry; 433 434 if (ir->condition) 435 return; 436 437 if (!ir->write_mask) 438 return; 439 440 ir_dereference_variable *deref = ir->lhs->as_dereference_variable(); 441 ir_constant *constant = ir->rhs->as_constant(); 442 443 if (!deref || !constant) 444 return; 445 446 /* Only do constant propagation on vectors. Constant matrices, 447 * arrays, or structures would require more work elsewhere. 448 */ 449 if (!deref->var->type->is_vector() && !deref->var->type->is_scalar()) 450 return; 451 452 entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant); 453 this->acp->push_tail(entry); 454 } 455 456 } /* unnamed namespace */ 457 458 /** 459 * Does a constant propagation pass on the code present in the instruction stream. 460 */ 461 bool 462 do_constant_propagation(exec_list *instructions) 463 { 464 ir_constant_propagation_visitor v; 465 466 visit_list_elements(&v, instructions); 467 468 return v.progress; 469 } 470