Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # ====================================================================
      4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 #
     10 # May 2011
     11 #
     12 # The module implements bn_GF2m_mul_2x2 polynomial multiplication used
     13 # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
     14 # the time being... Except that it has two code paths: code suitable
     15 # for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
     16 # later. Improvement varies from one benchmark and -arch to another.
     17 # Vanilla code path is at most 20% faster than compiler-generated code
     18 # [not very impressive], while PCLMULQDQ - whole 85%-160% better on
     19 # 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
     20 # these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
     21 # all CPU time is burnt in it...
     22 
     23 $flavour = shift;
     24 $output  = shift;
     25 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     26 
     27 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
     28 
     29 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     30 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
     31 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
     32 die "can't locate x86_64-xlate.pl";
     33 
     34 open STDOUT,"| \"$^X\" $xlate $flavour $output";
     35 
     36 ($lo,$hi)=("%rax","%rdx");	$a=$lo;
     37 ($i0,$i1)=("%rsi","%rdi");
     38 ($t0,$t1)=("%rbx","%rcx");
     39 ($b,$mask)=("%rbp","%r8");
     40 ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
     41 ($R,$Tx)=("%xmm0","%xmm1");
     42 
     43 $code.=<<___;
     44 .text
     45 
     46 .type	_mul_1x1,\@abi-omnipotent
     47 .align	16
     48 _mul_1x1:
     49 	sub	\$128+8,%rsp
     50 	mov	\$-1,$a1
     51 	lea	($a,$a),$i0
     52 	shr	\$3,$a1
     53 	lea	(,$a,4),$i1
     54 	and	$a,$a1			# a1=a&0x1fffffffffffffff
     55 	lea	(,$a,8),$a8
     56 	sar	\$63,$a			# broadcast 63rd bit
     57 	lea	($a1,$a1),$a2
     58 	sar	\$63,$i0		# broadcast 62nd bit
     59 	lea	(,$a1,4),$a4
     60 	and	$b,$a
     61 	sar	\$63,$i1		# boardcast 61st bit
     62 	mov	$a,$hi			# $a is $lo
     63 	shl	\$63,$lo
     64 	and	$b,$i0
     65 	shr	\$1,$hi
     66 	mov	$i0,$t1
     67 	shl	\$62,$i0
     68 	and	$b,$i1
     69 	shr	\$2,$t1
     70 	xor	$i0,$lo
     71 	mov	$i1,$t0
     72 	shl	\$61,$i1
     73 	xor	$t1,$hi
     74 	shr	\$3,$t0
     75 	xor	$i1,$lo
     76 	xor	$t0,$hi
     77 
     78 	mov	$a1,$a12
     79 	movq	\$0,0(%rsp)		# tab[0]=0
     80 	xor	$a2,$a12		# a1^a2
     81 	mov	$a1,8(%rsp)		# tab[1]=a1
     82 	 mov	$a4,$a48
     83 	mov	$a2,16(%rsp)		# tab[2]=a2
     84 	 xor	$a8,$a48		# a4^a8
     85 	mov	$a12,24(%rsp)		# tab[3]=a1^a2
     86 
     87 	xor	$a4,$a1
     88 	mov	$a4,32(%rsp)		# tab[4]=a4
     89 	xor	$a4,$a2
     90 	mov	$a1,40(%rsp)		# tab[5]=a1^a4
     91 	xor	$a4,$a12
     92 	mov	$a2,48(%rsp)		# tab[6]=a2^a4
     93 	 xor	$a48,$a1		# a1^a4^a4^a8=a1^a8
     94 	mov	$a12,56(%rsp)		# tab[7]=a1^a2^a4
     95 	 xor	$a48,$a2		# a2^a4^a4^a8=a1^a8
     96 
     97 	mov	$a8,64(%rsp)		# tab[8]=a8
     98 	xor	$a48,$a12		# a1^a2^a4^a4^a8=a1^a2^a8
     99 	mov	$a1,72(%rsp)		# tab[9]=a1^a8
    100 	 xor	$a4,$a1			# a1^a8^a4
    101 	mov	$a2,80(%rsp)		# tab[10]=a2^a8
    102 	 xor	$a4,$a2			# a2^a8^a4
    103 	mov	$a12,88(%rsp)		# tab[11]=a1^a2^a8
    104 
    105 	xor	$a4,$a12		# a1^a2^a8^a4
    106 	mov	$a48,96(%rsp)		# tab[12]=a4^a8
    107 	 mov	$mask,$i0
    108 	mov	$a1,104(%rsp)		# tab[13]=a1^a4^a8
    109 	 and	$b,$i0
    110 	mov	$a2,112(%rsp)		# tab[14]=a2^a4^a8
    111 	 shr	\$4,$b
    112 	mov	$a12,120(%rsp)		# tab[15]=a1^a2^a4^a8
    113 	 mov	$mask,$i1
    114 	 and	$b,$i1
    115 	 shr	\$4,$b
    116 
    117 	movq	(%rsp,$i0,8),$R		# half of calculations is done in SSE2
    118 	mov	$mask,$i0
    119 	and	$b,$i0
    120 	shr	\$4,$b
    121 ___
    122     for ($n=1;$n<8;$n++) {
    123 	$code.=<<___;
    124 	mov	(%rsp,$i1,8),$t1
    125 	mov	$mask,$i1
    126 	mov	$t1,$t0
    127 	shl	\$`8*$n-4`,$t1
    128 	and	$b,$i1
    129 	 movq	(%rsp,$i0,8),$Tx
    130 	shr	\$`64-(8*$n-4)`,$t0
    131 	xor	$t1,$lo
    132 	 pslldq	\$$n,$Tx
    133 	 mov	$mask,$i0
    134 	shr	\$4,$b
    135 	xor	$t0,$hi
    136 	 and	$b,$i0
    137 	 shr	\$4,$b
    138 	 pxor	$Tx,$R
    139 ___
    140     }
    141 $code.=<<___;
    142 	mov	(%rsp,$i1,8),$t1
    143 	mov	$t1,$t0
    144 	shl	\$`8*$n-4`,$t1
    145 	movq	$R,$i0
    146 	shr	\$`64-(8*$n-4)`,$t0
    147 	xor	$t1,$lo
    148 	psrldq	\$8,$R
    149 	xor	$t0,$hi
    150 	movq	$R,$i1
    151 	xor	$i0,$lo
    152 	xor	$i1,$hi
    153 
    154 	add	\$128+8,%rsp
    155 	ret
    156 .Lend_mul_1x1:
    157 .size	_mul_1x1,.-_mul_1x1
    158 ___
    159 
    160 ($rp,$a1,$a0,$b1,$b0) = $win64?	("%rcx","%rdx","%r8", "%r9","%r10") :	# Win64 order
    161 				("%rdi","%rsi","%rdx","%rcx","%r8");	# Unix order
    162 
    163 $code.=<<___;
    164 .extern	OPENSSL_ia32cap_P
    165 .globl	bn_GF2m_mul_2x2
    166 .type	bn_GF2m_mul_2x2,\@abi-omnipotent
    167 .align	16
    168 bn_GF2m_mul_2x2:
    169 	mov	OPENSSL_ia32cap_P(%rip),%rax
    170 	bt	\$33,%rax
    171 	jnc	.Lvanilla_mul_2x2
    172 
    173 	movq		$a1,%xmm0
    174 	movq		$b1,%xmm1
    175 	movq		$a0,%xmm2
    176 ___
    177 $code.=<<___ if ($win64);
    178 	movq		40(%rsp),%xmm3
    179 ___
    180 $code.=<<___ if (!$win64);
    181 	movq		$b0,%xmm3
    182 ___
    183 $code.=<<___;
    184 	movdqa		%xmm0,%xmm4
    185 	movdqa		%xmm1,%xmm5
    186 	pclmulqdq	\$0,%xmm1,%xmm0	# a1b1
    187 	pxor		%xmm2,%xmm4
    188 	pxor		%xmm3,%xmm5
    189 	pclmulqdq	\$0,%xmm3,%xmm2	# a0b0
    190 	pclmulqdq	\$0,%xmm5,%xmm4	# (a0+a1)(b0+b1)
    191 	xorps		%xmm0,%xmm4
    192 	xorps		%xmm2,%xmm4	# (a0+a1)(b0+b1)-a0b0-a1b1
    193 	movdqa		%xmm4,%xmm5
    194 	pslldq		\$8,%xmm4
    195 	psrldq		\$8,%xmm5
    196 	pxor		%xmm4,%xmm2
    197 	pxor		%xmm5,%xmm0
    198 	movdqu		%xmm2,0($rp)
    199 	movdqu		%xmm0,16($rp)
    200 	ret
    201 
    202 .align	16
    203 .Lvanilla_mul_2x2:
    204 	lea	-8*17(%rsp),%rsp
    205 ___
    206 $code.=<<___ if ($win64);
    207 	mov	`8*17+40`(%rsp),$b0
    208 	mov	%rdi,8*15(%rsp)
    209 	mov	%rsi,8*16(%rsp)
    210 ___
    211 $code.=<<___;
    212 	mov	%r14,8*10(%rsp)
    213 	mov	%r13,8*11(%rsp)
    214 	mov	%r12,8*12(%rsp)
    215 	mov	%rbp,8*13(%rsp)
    216 	mov	%rbx,8*14(%rsp)
    217 .Lbody_mul_2x2:
    218 	mov	$rp,32(%rsp)		# save the arguments
    219 	mov	$a1,40(%rsp)
    220 	mov	$a0,48(%rsp)
    221 	mov	$b1,56(%rsp)
    222 	mov	$b0,64(%rsp)
    223 
    224 	mov	\$0xf,$mask
    225 	mov	$a1,$a
    226 	mov	$b1,$b
    227 	call	_mul_1x1		# a1b1
    228 	mov	$lo,16(%rsp)
    229 	mov	$hi,24(%rsp)
    230 
    231 	mov	48(%rsp),$a
    232 	mov	64(%rsp),$b
    233 	call	_mul_1x1		# a0b0
    234 	mov	$lo,0(%rsp)
    235 	mov	$hi,8(%rsp)
    236 
    237 	mov	40(%rsp),$a
    238 	mov	56(%rsp),$b
    239 	xor	48(%rsp),$a
    240 	xor	64(%rsp),$b
    241 	call	_mul_1x1		# (a0+a1)(b0+b1)
    242 ___
    243 	@r=("%rbx","%rcx","%rdi","%rsi");
    244 $code.=<<___;
    245 	mov	0(%rsp),@r[0]
    246 	mov	8(%rsp),@r[1]
    247 	mov	16(%rsp),@r[2]
    248 	mov	24(%rsp),@r[3]
    249 	mov	32(%rsp),%rbp
    250 
    251 	xor	$hi,$lo
    252 	xor	@r[1],$hi
    253 	xor	@r[0],$lo
    254 	mov	@r[0],0(%rbp)
    255 	xor	@r[2],$hi
    256 	mov	@r[3],24(%rbp)
    257 	xor	@r[3],$lo
    258 	xor	@r[3],$hi
    259 	xor	$hi,$lo
    260 	mov	$hi,16(%rbp)
    261 	mov	$lo,8(%rbp)
    262 
    263 	mov	8*10(%rsp),%r14
    264 	mov	8*11(%rsp),%r13
    265 	mov	8*12(%rsp),%r12
    266 	mov	8*13(%rsp),%rbp
    267 	mov	8*14(%rsp),%rbx
    268 ___
    269 $code.=<<___ if ($win64);
    270 	mov	8*15(%rsp),%rdi
    271 	mov	8*16(%rsp),%rsi
    272 ___
    273 $code.=<<___;
    274 	lea	8*17(%rsp),%rsp
    275 	ret
    276 .Lend_mul_2x2:
    277 .size	bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
    278 .asciz	"GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
    279 .align	16
    280 ___
    281 
    282 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
    283 #               CONTEXT *context,DISPATCHER_CONTEXT *disp)
    284 if ($win64) {
    285 $rec="%rcx";
    286 $frame="%rdx";
    287 $context="%r8";
    288 $disp="%r9";
    289 
    290 $code.=<<___;
    291 .extern __imp_RtlVirtualUnwind
    292 
    293 .type	se_handler,\@abi-omnipotent
    294 .align	16
    295 se_handler:
    296 	push	%rsi
    297 	push	%rdi
    298 	push	%rbx
    299 	push	%rbp
    300 	push	%r12
    301 	push	%r13
    302 	push	%r14
    303 	push	%r15
    304 	pushfq
    305 	sub	\$64,%rsp
    306 
    307 	mov	152($context),%rax	# pull context->Rsp
    308 	mov	248($context),%rbx	# pull context->Rip
    309 
    310 	lea	.Lbody_mul_2x2(%rip),%r10
    311 	cmp	%r10,%rbx		# context->Rip<"prologue" label
    312 	jb	.Lin_prologue
    313 
    314 	mov	8*10(%rax),%r14		# mimic epilogue
    315 	mov	8*11(%rax),%r13
    316 	mov	8*12(%rax),%r12
    317 	mov	8*13(%rax),%rbp
    318 	mov	8*14(%rax),%rbx
    319 	mov	8*15(%rax),%rdi
    320 	mov	8*16(%rax),%rsi
    321 
    322 	mov	%rbx,144($context)	# restore context->Rbx
    323 	mov	%rbp,160($context)	# restore context->Rbp
    324 	mov	%rsi,168($context)	# restore context->Rsi
    325 	mov	%rdi,176($context)	# restore context->Rdi
    326 	mov	%r12,216($context)	# restore context->R12
    327 	mov	%r13,224($context)	# restore context->R13
    328 	mov	%r14,232($context)	# restore context->R14
    329 
    330 .Lin_prologue:
    331 	lea	8*17(%rax),%rax
    332 	mov	%rax,152($context)	# restore context->Rsp
    333 
    334 	mov	40($disp),%rdi		# disp->ContextRecord
    335 	mov	$context,%rsi		# context
    336 	mov	\$154,%ecx		# sizeof(CONTEXT)
    337 	.long	0xa548f3fc		# cld; rep movsq
    338 
    339 	mov	$disp,%rsi
    340 	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
    341 	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
    342 	mov	0(%rsi),%r8		# arg3, disp->ControlPc
    343 	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
    344 	mov	40(%rsi),%r10		# disp->ContextRecord
    345 	lea	56(%rsi),%r11		# &disp->HandlerData
    346 	lea	24(%rsi),%r12		# &disp->EstablisherFrame
    347 	mov	%r10,32(%rsp)		# arg5
    348 	mov	%r11,40(%rsp)		# arg6
    349 	mov	%r12,48(%rsp)		# arg7
    350 	mov	%rcx,56(%rsp)		# arg8, (NULL)
    351 	call	*__imp_RtlVirtualUnwind(%rip)
    352 
    353 	mov	\$1,%eax		# ExceptionContinueSearch
    354 	add	\$64,%rsp
    355 	popfq
    356 	pop	%r15
    357 	pop	%r14
    358 	pop	%r13
    359 	pop	%r12
    360 	pop	%rbp
    361 	pop	%rbx
    362 	pop	%rdi
    363 	pop	%rsi
    364 	ret
    365 .size	se_handler,.-se_handler
    366 
    367 .section	.pdata
    368 .align	4
    369 	.rva	_mul_1x1
    370 	.rva	.Lend_mul_1x1
    371 	.rva	.LSEH_info_1x1
    372 
    373 	.rva	.Lvanilla_mul_2x2
    374 	.rva	.Lend_mul_2x2
    375 	.rva	.LSEH_info_2x2
    376 .section	.xdata
    377 .align	8
    378 .LSEH_info_1x1:
    379 	.byte	0x01,0x07,0x02,0x00
    380 	.byte	0x07,0x01,0x11,0x00	# sub rsp,128+8
    381 .LSEH_info_2x2:
    382 	.byte	9,0,0,0
    383 	.rva	se_handler
    384 ___
    385 }
    386 
    387 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
    388 print $code;
    389 close STDOUT;
    390