Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include <gtest/gtest.h>
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(throw_on_failure);
     55   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     56 }
     57 
     58 #include <gtest/gtest-spi.h>
     59 
     60 // Indicates that this translation unit is part of Google Test's
     61 // implementation.  It must come before gtest-internal-inl.h is
     62 // included, or there will be a compiler error.  This trick is to
     63 // prevent a user from accidentally including gtest-internal-inl.h in
     64 // his code.
     65 #define GTEST_IMPLEMENTATION_ 1
     66 #include "src/gtest-internal-inl.h"
     67 #undef GTEST_IMPLEMENTATION_
     68 
     69 #include <limits.h>  // For INT_MAX.
     70 #include <stdlib.h>
     71 #include <time.h>
     72 
     73 #if GTEST_HAS_PTHREAD
     74 #include <pthread.h>
     75 #endif  // GTEST_HAS_PTHREAD
     76 
     77 #ifdef __BORLANDC__
     78 #include <map>
     79 #endif
     80 
     81 namespace testing {
     82 namespace internal {
     83 
     84 bool ShouldUseColor(bool stdout_is_tty);
     85 const char* FormatTimeInMillisAsSeconds(TimeInMillis ms);
     86 bool ParseInt32Flag(const char* str, const char* flag, Int32* value);
     87 
     88 // Provides access to otherwise private parts of the TestEventListeners class
     89 // that are needed to test it.
     90 class TestEventListenersAccessor {
     91  public:
     92   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
     93     return listeners->repeater();
     94   }
     95 
     96   static void SetDefaultResultPrinter(TestEventListeners* listeners,
     97                                       TestEventListener* listener) {
     98     listeners->SetDefaultResultPrinter(listener);
     99   }
    100   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    101                                      TestEventListener* listener) {
    102     listeners->SetDefaultXmlGenerator(listener);
    103   }
    104 
    105   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    106     return listeners.EventForwardingEnabled();
    107   }
    108 
    109   static void SuppressEventForwarding(TestEventListeners* listeners) {
    110     listeners->SuppressEventForwarding();
    111   }
    112 };
    113 
    114 }  // namespace internal
    115 }  // namespace testing
    116 
    117 using testing::AssertionFailure;
    118 using testing::AssertionResult;
    119 using testing::AssertionSuccess;
    120 using testing::DoubleLE;
    121 using testing::EmptyTestEventListener;
    122 using testing::FloatLE;
    123 using testing::GTEST_FLAG(also_run_disabled_tests);
    124 using testing::GTEST_FLAG(break_on_failure);
    125 using testing::GTEST_FLAG(catch_exceptions);
    126 using testing::GTEST_FLAG(color);
    127 using testing::GTEST_FLAG(death_test_use_fork);
    128 using testing::GTEST_FLAG(filter);
    129 using testing::GTEST_FLAG(list_tests);
    130 using testing::GTEST_FLAG(output);
    131 using testing::GTEST_FLAG(print_time);
    132 using testing::GTEST_FLAG(random_seed);
    133 using testing::GTEST_FLAG(repeat);
    134 using testing::GTEST_FLAG(show_internal_stack_frames);
    135 using testing::GTEST_FLAG(shuffle);
    136 using testing::GTEST_FLAG(stack_trace_depth);
    137 using testing::GTEST_FLAG(throw_on_failure);
    138 using testing::IsNotSubstring;
    139 using testing::IsSubstring;
    140 using testing::Message;
    141 using testing::ScopedFakeTestPartResultReporter;
    142 using testing::StaticAssertTypeEq;
    143 using testing::Test;
    144 using testing::TestEventListeners;
    145 using testing::TestCase;
    146 using testing::TestPartResult;
    147 using testing::TestPartResultArray;
    148 using testing::TestProperty;
    149 using testing::TestResult;
    150 using testing::UnitTest;
    151 using testing::internal::AlwaysFalse;
    152 using testing::internal::AlwaysTrue;
    153 using testing::internal::AppendUserMessage;
    154 using testing::internal::CodePointToUtf8;
    155 using testing::internal::EqFailure;
    156 using testing::internal::FloatingPoint;
    157 using testing::internal::FormatTimeInMillisAsSeconds;
    158 using testing::internal::GTestFlagSaver;
    159 using testing::internal::GetCurrentOsStackTraceExceptTop;
    160 using testing::internal::GetNextRandomSeed;
    161 using testing::internal::GetRandomSeedFromFlag;
    162 using testing::internal::GetTestTypeId;
    163 using testing::internal::GetTypeId;
    164 using testing::internal::GetUnitTestImpl;
    165 using testing::internal::Int32;
    166 using testing::internal::Int32FromEnvOrDie;
    167 using testing::internal::ParseInt32Flag;
    168 using testing::internal::ShouldRunTestOnShard;
    169 using testing::internal::ShouldShard;
    170 using testing::internal::ShouldUseColor;
    171 using testing::internal::StreamableToString;
    172 using testing::internal::String;
    173 using testing::internal::TestEventListenersAccessor;
    174 using testing::internal::TestResultAccessor;
    175 using testing::internal::ThreadLocal;
    176 using testing::internal::UInt32;
    177 using testing::internal::Vector;
    178 using testing::internal::WideStringToUtf8;
    179 using testing::internal::kMaxRandomSeed;
    180 using testing::internal::kTestTypeIdInGoogleTest;
    181 using testing::internal::scoped_ptr;
    182 
    183 class TestingVector : public Vector<int> {
    184 };
    185 
    186 ::std::ostream& operator<<(::std::ostream& os,
    187                            const TestingVector& vector) {
    188   os << "{ ";
    189   for (int i = 0; i < vector.size(); i++) {
    190     os << vector.GetElement(i) << " ";
    191   }
    192   os << "}";
    193   return os;
    194 }
    195 
    196 // This line tests that we can define tests in an unnamed namespace.
    197 namespace {
    198 
    199 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    200   const int seed = GetRandomSeedFromFlag(0);
    201   EXPECT_LE(1, seed);
    202   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    203 }
    204 
    205 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    206   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    207   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    208   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    209   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    210             GetRandomSeedFromFlag(kMaxRandomSeed));
    211 }
    212 
    213 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    214   const int seed1 = GetRandomSeedFromFlag(-1);
    215   EXPECT_LE(1, seed1);
    216   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    217 
    218   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    219   EXPECT_LE(1, seed2);
    220   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    221 }
    222 
    223 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    224   EXPECT_EQ(2, GetNextRandomSeed(1));
    225   EXPECT_EQ(3, GetNextRandomSeed(2));
    226   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    227             GetNextRandomSeed(kMaxRandomSeed - 1));
    228   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    229 
    230   // We deliberately don't test GetNextRandomSeed() with invalid
    231   // inputs, as that requires death tests, which are expensive.  This
    232   // is fine as GetNextRandomSeed() is internal and has a
    233   // straightforward definition.
    234 }
    235 
    236 static void ClearCurrentTestPartResults() {
    237   TestResultAccessor::ClearTestPartResults(
    238       GetUnitTestImpl()->current_test_result());
    239 }
    240 
    241 // Tests GetTypeId.
    242 
    243 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    244   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    245   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    246 }
    247 
    248 class SubClassOfTest : public Test {};
    249 class AnotherSubClassOfTest : public Test {};
    250 
    251 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    252   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    253   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    254   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    255   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    256   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    257   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    258 }
    259 
    260 // Verifies that GetTestTypeId() returns the same value, no matter it
    261 // is called from inside Google Test or outside of it.
    262 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    263   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    264 }
    265 
    266 // Tests FormatTimeInMillisAsSeconds().
    267 
    268 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    269   EXPECT_STREQ("0", FormatTimeInMillisAsSeconds(0));
    270 }
    271 
    272 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    273   EXPECT_STREQ("0.003", FormatTimeInMillisAsSeconds(3));
    274   EXPECT_STREQ("0.01", FormatTimeInMillisAsSeconds(10));
    275   EXPECT_STREQ("0.2", FormatTimeInMillisAsSeconds(200));
    276   EXPECT_STREQ("1.2", FormatTimeInMillisAsSeconds(1200));
    277   EXPECT_STREQ("3", FormatTimeInMillisAsSeconds(3000));
    278 }
    279 
    280 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    281   EXPECT_STREQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    282   EXPECT_STREQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    283   EXPECT_STREQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    284   EXPECT_STREQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    285   EXPECT_STREQ("-3", FormatTimeInMillisAsSeconds(-3000));
    286 }
    287 
    288 #if !GTEST_OS_SYMBIAN
    289 // NULL testing does not work with Symbian compilers.
    290 
    291 #ifdef __BORLANDC__
    292 // Silences warnings: "Condition is always true", "Unreachable code"
    293 #pragma option push -w-ccc -w-rch
    294 #endif
    295 
    296 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    297 // pointer literal.
    298 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    299   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    300   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    301   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    302   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    303   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(false));
    304 #ifndef __BORLANDC__
    305   // Some compilers may fail to detect some null pointer literals;
    306   // as long as users of the framework don't use such literals, this
    307   // is harmless.
    308   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
    309   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(true && false));
    310 #endif
    311 }
    312 
    313 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    314 // pointer literal.
    315 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    316   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    317   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    318   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    319   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    320 }
    321 
    322 #ifdef __BORLANDC__
    323 // Restores warnings after previous "#pragma option push" supressed them
    324 #pragma option pop
    325 #endif
    326 
    327 #endif  // !GTEST_OS_SYMBIAN
    328 //
    329 // Tests CodePointToUtf8().
    330 
    331 // Tests that the NUL character L'\0' is encoded correctly.
    332 TEST(CodePointToUtf8Test, CanEncodeNul) {
    333   char buffer[32];
    334   EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
    335 }
    336 
    337 // Tests that ASCII characters are encoded correctly.
    338 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    339   char buffer[32];
    340   EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
    341   EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
    342   EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
    343   EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
    344 }
    345 
    346 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    347 // as 110xxxxx 10xxxxxx.
    348 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    349   char buffer[32];
    350   // 000 1101 0011 => 110-00011 10-010011
    351   EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
    352 
    353   // 101 0111 0110 => 110-10101 10-110110
    354   EXPECT_STREQ("\xD5\xB6", CodePointToUtf8(L'\x576', buffer));
    355 }
    356 
    357 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    358 // as 1110xxxx 10xxxxxx 10xxxxxx.
    359 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    360   char buffer[32];
    361   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    362   EXPECT_STREQ("\xE0\xA3\x93", CodePointToUtf8(L'\x8D3', buffer));
    363 
    364   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    365   EXPECT_STREQ("\xEC\x9D\x8D", CodePointToUtf8(L'\xC74D', buffer));
    366 }
    367 
    368 #if !GTEST_WIDE_STRING_USES_UTF16_
    369 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    370 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    371 // 16-bit wide. This code may not compile on those systems.
    372 
    373 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    374 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    375 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    376   char buffer[32];
    377   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    378   EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
    379 
    380   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    381   EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
    382 
    383   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    384   EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
    385 }
    386 
    387 // Tests that encoding an invalid code-point generates the expected result.
    388 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    389   char buffer[32];
    390   EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
    391                CodePointToUtf8(L'\x1234ABCD', buffer));
    392 }
    393 
    394 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    395 
    396 // Tests WideStringToUtf8().
    397 
    398 // Tests that the NUL character L'\0' is encoded correctly.
    399 TEST(WideStringToUtf8Test, CanEncodeNul) {
    400   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    401   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    402 }
    403 
    404 // Tests that ASCII strings are encoded correctly.
    405 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    406   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    407   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    408   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    409   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    410 }
    411 
    412 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    413 // as 110xxxxx 10xxxxxx.
    414 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    415   // 000 1101 0011 => 110-00011 10-010011
    416   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    417   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    418 
    419   // 101 0111 0110 => 110-10101 10-110110
    420   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", 1).c_str());
    421   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", -1).c_str());
    422 }
    423 
    424 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    425 // as 1110xxxx 10xxxxxx 10xxxxxx.
    426 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    427   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    428   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", 1).c_str());
    429   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", -1).c_str());
    430 
    431   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    432   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", 1).c_str());
    433   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", -1).c_str());
    434 }
    435 
    436 // Tests that the conversion stops when the function encounters \0 character.
    437 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    438   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    439 }
    440 
    441 // Tests that the conversion stops when the function reaches the limit
    442 // specified by the 'length' parameter.
    443 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    444   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    445 }
    446 
    447 
    448 #if !GTEST_WIDE_STRING_USES_UTF16_
    449 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    450 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    451 // on the systems using UTF-16 encoding.
    452 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    453   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    454   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    455   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    456 
    457   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    458   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    459   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    460 }
    461 
    462 // Tests that encoding an invalid code-point generates the expected result.
    463 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    464   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    465                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    466 }
    467 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    468 // Tests that surrogate pairs are encoded correctly on the systems using
    469 // UTF-16 encoding in the wide strings.
    470 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    471   EXPECT_STREQ("\xF0\x90\x90\x80",
    472                WideStringToUtf8(L"\xD801\xDC00", -1).c_str());
    473 }
    474 
    475 // Tests that encoding an invalid UTF-16 surrogate pair
    476 // generates the expected result.
    477 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    478   // Leading surrogate is at the end of the string.
    479   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(L"\xD800", -1).c_str());
    480   // Leading surrogate is not followed by the trailing surrogate.
    481   EXPECT_STREQ("\xED\xA0\x80$", WideStringToUtf8(L"\xD800$", -1).c_str());
    482   // Trailing surrogate appearas without a leading surrogate.
    483   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(L"\xDC00PQR", -1).c_str());
    484 }
    485 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    486 
    487 // Tests that codepoint concatenation works correctly.
    488 #if !GTEST_WIDE_STRING_USES_UTF16_
    489 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    490   EXPECT_STREQ(
    491       "\xF4\x88\x98\xB4"
    492           "\xEC\x9D\x8D"
    493           "\n"
    494           "\xD5\xB6"
    495           "\xE0\xA3\x93"
    496           "\xF4\x88\x98\xB4",
    497       WideStringToUtf8(L"\x108634\xC74D\n\x576\x8D3\x108634", -1).c_str());
    498 }
    499 #else
    500 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    501   EXPECT_STREQ(
    502       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    503       WideStringToUtf8(L"\xC74D\n\x576\x8D3", -1).c_str());
    504 }
    505 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    506 
    507 // Tests the Random class.
    508 
    509 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    510   testing::internal::Random random(42);
    511   EXPECT_DEATH_IF_SUPPORTED(
    512       random.Generate(0),
    513       "Cannot generate a number in the range \\[0, 0\\)");
    514   EXPECT_DEATH_IF_SUPPORTED(
    515       random.Generate(testing::internal::Random::kMaxRange + 1),
    516       "Generation of a number in \\[0, 2147483649\\) was requested, "
    517       "but this can only generate numbers in \\[0, 2147483648\\)");
    518 }
    519 
    520 TEST(RandomTest, GeneratesNumbersWithinRange) {
    521   const UInt32 kRange = 10000;
    522   testing::internal::Random random(12345);
    523   for (int i = 0; i < 10; i++) {
    524     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    525   }
    526 
    527   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    528   for (int i = 0; i < 10; i++) {
    529     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    530   }
    531 }
    532 
    533 TEST(RandomTest, RepeatsWhenReseeded) {
    534   const int kSeed = 123;
    535   const int kArraySize = 10;
    536   const UInt32 kRange = 10000;
    537   UInt32 values[kArraySize];
    538 
    539   testing::internal::Random random(kSeed);
    540   for (int i = 0; i < kArraySize; i++) {
    541     values[i] = random.Generate(kRange);
    542   }
    543 
    544   random.Reseed(kSeed);
    545   for (int i = 0; i < kArraySize; i++) {
    546     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    547   }
    548 }
    549 
    550 // Tests the Vector class template.
    551 
    552 // Tests Vector::Clear().
    553 TEST(VectorTest, Clear) {
    554   Vector<int> a;
    555   a.PushBack(1);
    556   a.Clear();
    557   EXPECT_EQ(0, a.size());
    558 
    559   a.PushBack(2);
    560   a.PushBack(3);
    561   a.Clear();
    562   EXPECT_EQ(0, a.size());
    563 }
    564 
    565 // Tests Vector::PushBack().
    566 TEST(VectorTest, PushBack) {
    567   Vector<char> a;
    568   a.PushBack('a');
    569   ASSERT_EQ(1, a.size());
    570   EXPECT_EQ('a', a.GetElement(0));
    571 
    572   a.PushBack('b');
    573   ASSERT_EQ(2, a.size());
    574   EXPECT_EQ('a', a.GetElement(0));
    575   EXPECT_EQ('b', a.GetElement(1));
    576 }
    577 
    578 // Tests Vector::PushFront().
    579 TEST(VectorTest, PushFront) {
    580   Vector<int> a;
    581   ASSERT_EQ(0, a.size());
    582 
    583   // Calls PushFront() on an empty Vector.
    584   a.PushFront(1);
    585   ASSERT_EQ(1, a.size());
    586   EXPECT_EQ(1, a.GetElement(0));
    587 
    588   // Calls PushFront() on a singleton Vector.
    589   a.PushFront(2);
    590   ASSERT_EQ(2, a.size());
    591   EXPECT_EQ(2, a.GetElement(0));
    592   EXPECT_EQ(1, a.GetElement(1));
    593 
    594   // Calls PushFront() on a Vector with more than one elements.
    595   a.PushFront(3);
    596   ASSERT_EQ(3, a.size());
    597   EXPECT_EQ(3, a.GetElement(0));
    598   EXPECT_EQ(2, a.GetElement(1));
    599   EXPECT_EQ(1, a.GetElement(2));
    600 }
    601 
    602 // Tests Vector::PopFront().
    603 TEST(VectorTest, PopFront) {
    604   Vector<int> a;
    605 
    606   // Popping on an empty Vector should fail.
    607   EXPECT_FALSE(a.PopFront(NULL));
    608 
    609   // Popping again on an empty Vector should fail, and the result element
    610   // shouldn't be overwritten.
    611   int element = 1;
    612   EXPECT_FALSE(a.PopFront(&element));
    613   EXPECT_EQ(1, element);
    614 
    615   a.PushFront(2);
    616   a.PushFront(3);
    617 
    618   // PopFront() should pop the element in the front of the Vector.
    619   EXPECT_TRUE(a.PopFront(&element));
    620   EXPECT_EQ(3, element);
    621 
    622   // After popping the last element, the Vector should be empty.
    623   EXPECT_TRUE(a.PopFront(NULL));
    624   EXPECT_EQ(0, a.size());
    625 }
    626 
    627 // Tests inserting at the beginning using Vector::Insert().
    628 TEST(VectorTest, InsertAtBeginning) {
    629   Vector<int> a;
    630   ASSERT_EQ(0, a.size());
    631 
    632   // Inserts into an empty Vector.
    633   a.Insert(1, 0);
    634   ASSERT_EQ(1, a.size());
    635   EXPECT_EQ(1, a.GetElement(0));
    636 
    637   // Inserts at the beginning of a singleton Vector.
    638   a.Insert(2, 0);
    639   ASSERT_EQ(2, a.size());
    640   EXPECT_EQ(2, a.GetElement(0));
    641   EXPECT_EQ(1, a.GetElement(1));
    642 
    643   // Inserts at the beginning of a Vector with more than one elements.
    644   a.Insert(3, 0);
    645   ASSERT_EQ(3, a.size());
    646   EXPECT_EQ(3, a.GetElement(0));
    647   EXPECT_EQ(2, a.GetElement(1));
    648   EXPECT_EQ(1, a.GetElement(2));
    649 }
    650 
    651 // Tests inserting at a location other than the beginning using
    652 // Vector::Insert().
    653 TEST(VectorTest, InsertNotAtBeginning) {
    654   // Prepares a singleton Vector.
    655   Vector<int> a;
    656   a.PushBack(1);
    657 
    658   // Inserts at the end of a singleton Vector.
    659   a.Insert(2, a.size());
    660   ASSERT_EQ(2, a.size());
    661   EXPECT_EQ(1, a.GetElement(0));
    662   EXPECT_EQ(2, a.GetElement(1));
    663 
    664   // Inserts at the end of a Vector with more than one elements.
    665   a.Insert(3, a.size());
    666   ASSERT_EQ(3, a.size());
    667   EXPECT_EQ(1, a.GetElement(0));
    668   EXPECT_EQ(2, a.GetElement(1));
    669   EXPECT_EQ(3, a.GetElement(2));
    670 
    671   // Inserts in the middle of a Vector.
    672   a.Insert(4, 1);
    673   ASSERT_EQ(4, a.size());
    674   EXPECT_EQ(1, a.GetElement(0));
    675   EXPECT_EQ(4, a.GetElement(1));
    676   EXPECT_EQ(2, a.GetElement(2));
    677   EXPECT_EQ(3, a.GetElement(3));
    678 }
    679 
    680 // Tests Vector::GetElementOr().
    681 TEST(VectorTest, GetElementOr) {
    682   Vector<char> a;
    683   EXPECT_EQ('x', a.GetElementOr(0, 'x'));
    684 
    685   a.PushBack('a');
    686   a.PushBack('b');
    687   EXPECT_EQ('a', a.GetElementOr(0, 'x'));
    688   EXPECT_EQ('b', a.GetElementOr(1, 'x'));
    689   EXPECT_EQ('x', a.GetElementOr(-2, 'x'));
    690   EXPECT_EQ('x', a.GetElementOr(2, 'x'));
    691 }
    692 
    693 TEST(VectorTest, Swap) {
    694   Vector<int> a;
    695   a.PushBack(0);
    696   a.PushBack(1);
    697   a.PushBack(2);
    698 
    699   // Swaps an element with itself.
    700   a.Swap(0, 0);
    701   ASSERT_EQ(0, a.GetElement(0));
    702   ASSERT_EQ(1, a.GetElement(1));
    703   ASSERT_EQ(2, a.GetElement(2));
    704 
    705   // Swaps two different elements where the indices go up.
    706   a.Swap(0, 1);
    707   ASSERT_EQ(1, a.GetElement(0));
    708   ASSERT_EQ(0, a.GetElement(1));
    709   ASSERT_EQ(2, a.GetElement(2));
    710 
    711   // Swaps two different elements where the indices go down.
    712   a.Swap(2, 0);
    713   ASSERT_EQ(2, a.GetElement(0));
    714   ASSERT_EQ(0, a.GetElement(1));
    715   ASSERT_EQ(1, a.GetElement(2));
    716 }
    717 
    718 TEST(VectorTest, Clone) {
    719   // Clones an empty Vector.
    720   Vector<int> a;
    721   scoped_ptr<Vector<int> > empty(a.Clone());
    722   EXPECT_EQ(0, empty->size());
    723 
    724   // Clones a singleton.
    725   a.PushBack(42);
    726   scoped_ptr<Vector<int> > singleton(a.Clone());
    727   ASSERT_EQ(1, singleton->size());
    728   EXPECT_EQ(42, singleton->GetElement(0));
    729 
    730   // Clones a Vector with more elements.
    731   a.PushBack(43);
    732   a.PushBack(44);
    733   scoped_ptr<Vector<int> > big(a.Clone());
    734   ASSERT_EQ(3, big->size());
    735   EXPECT_EQ(42, big->GetElement(0));
    736   EXPECT_EQ(43, big->GetElement(1));
    737   EXPECT_EQ(44, big->GetElement(2));
    738 }
    739 
    740 // Tests Vector::Erase().
    741 TEST(VectorDeathTest, Erase) {
    742   Vector<int> a;
    743 
    744   // Tests erasing from an empty vector.
    745   EXPECT_DEATH_IF_SUPPORTED(
    746       a.Erase(0),
    747       "Invalid Vector index 0: must be in range \\[0, -1\\]\\.");
    748 
    749   // Tests erasing from a singleton vector.
    750   a.PushBack(0);
    751 
    752   a.Erase(0);
    753   EXPECT_EQ(0, a.size());
    754 
    755   // Tests Erase parameters beyond the bounds of the vector.
    756   Vector<int> a1;
    757   a1.PushBack(0);
    758   a1.PushBack(1);
    759   a1.PushBack(2);
    760 
    761   EXPECT_DEATH_IF_SUPPORTED(
    762       a1.Erase(3),
    763       "Invalid Vector index 3: must be in range \\[0, 2\\]\\.");
    764   EXPECT_DEATH_IF_SUPPORTED(
    765       a1.Erase(-1),
    766       "Invalid Vector index -1: must be in range \\[0, 2\\]\\.");
    767 
    768   // Tests erasing at the end of the vector.
    769   Vector<int> a2;
    770   a2.PushBack(0);
    771   a2.PushBack(1);
    772   a2.PushBack(2);
    773 
    774   a2.Erase(2);
    775   ASSERT_EQ(2, a2.size());
    776   EXPECT_EQ(0, a2.GetElement(0));
    777   EXPECT_EQ(1, a2.GetElement(1));
    778 
    779   // Tests erasing in the middle of the vector.
    780   Vector<int> a3;
    781   a3.PushBack(0);
    782   a3.PushBack(1);
    783   a3.PushBack(2);
    784 
    785   a3.Erase(1);
    786   ASSERT_EQ(2, a3.size());
    787   EXPECT_EQ(0, a3.GetElement(0));
    788   EXPECT_EQ(2, a3.GetElement(1));
    789 
    790   // Tests erasing at the beginning of the vector.
    791   Vector<int> a4;
    792   a4.PushBack(0);
    793   a4.PushBack(1);
    794   a4.PushBack(2);
    795 
    796   a4.Erase(0);
    797   ASSERT_EQ(2, a4.size());
    798   EXPECT_EQ(1, a4.GetElement(0));
    799   EXPECT_EQ(2, a4.GetElement(1));
    800 }
    801 
    802 // Tests the GetElement accessor.
    803 TEST(VectorDeathTest, GetElement) {
    804   Vector<int> a;
    805   a.PushBack(0);
    806   a.PushBack(1);
    807   a.PushBack(2);
    808   const Vector<int>& b = a;
    809 
    810   EXPECT_EQ(0, b.GetElement(0));
    811   EXPECT_EQ(1, b.GetElement(1));
    812   EXPECT_EQ(2, b.GetElement(2));
    813   EXPECT_DEATH_IF_SUPPORTED(
    814       b.GetElement(3),
    815       "Invalid Vector index 3: must be in range \\[0, 2\\]\\.");
    816   EXPECT_DEATH_IF_SUPPORTED(
    817       b.GetElement(-1),
    818       "Invalid Vector index -1: must be in range \\[0, 2\\]\\.");
    819 }
    820 
    821 // Tests the GetMutableElement accessor.
    822 TEST(VectorDeathTest, GetMutableElement) {
    823   Vector<int> a;
    824   a.PushBack(0);
    825   a.PushBack(1);
    826   a.PushBack(2);
    827 
    828   EXPECT_EQ(0, a.GetMutableElement(0));
    829   EXPECT_EQ(1, a.GetMutableElement(1));
    830   EXPECT_EQ(2, a.GetMutableElement(2));
    831 
    832   a.GetMutableElement(0) = 42;
    833   EXPECT_EQ(42, a.GetMutableElement(0));
    834   EXPECT_EQ(1, a.GetMutableElement(1));
    835   EXPECT_EQ(2, a.GetMutableElement(2));
    836 
    837   EXPECT_DEATH_IF_SUPPORTED(
    838       a.GetMutableElement(3),
    839       "Invalid Vector index 3: must be in range \\[0, 2\\]\\.");
    840   EXPECT_DEATH_IF_SUPPORTED(
    841       a.GetMutableElement(-1),
    842       "Invalid Vector index -1: must be in range \\[0, 2\\]\\.");
    843 }
    844 
    845 TEST(VectorDeathTest, Swap) {
    846   Vector<int> a;
    847   a.PushBack(0);
    848   a.PushBack(1);
    849   a.PushBack(2);
    850 
    851   EXPECT_DEATH_IF_SUPPORTED(
    852       a.Swap(-1, 1),
    853       "Invalid first swap element -1: must be in range \\[0, 2\\]");
    854   EXPECT_DEATH_IF_SUPPORTED(
    855       a.Swap(3, 1),
    856       "Invalid first swap element 3: must be in range \\[0, 2\\]");
    857   EXPECT_DEATH_IF_SUPPORTED(
    858       a.Swap(1, -1),
    859       "Invalid second swap element -1: must be in range \\[0, 2\\]");
    860   EXPECT_DEATH_IF_SUPPORTED(
    861       a.Swap(1, 3),
    862       "Invalid second swap element 3: must be in range \\[0, 2\\]");
    863 }
    864 
    865 TEST(VectorDeathTest, ShuffleRange) {
    866   Vector<int> a;
    867   a.PushBack(0);
    868   a.PushBack(1);
    869   a.PushBack(2);
    870   testing::internal::Random random(1);
    871 
    872   EXPECT_DEATH_IF_SUPPORTED(
    873       a.ShuffleRange(&random, -1, 1),
    874       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    875   EXPECT_DEATH_IF_SUPPORTED(
    876       a.ShuffleRange(&random, 4, 4),
    877       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    878   EXPECT_DEATH_IF_SUPPORTED(
    879       a.ShuffleRange(&random, 3, 2),
    880       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    881   EXPECT_DEATH_IF_SUPPORTED(
    882       a.ShuffleRange(&random, 3, 4),
    883       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    884 }
    885 
    886 class VectorShuffleTest : public Test {
    887  protected:
    888   static const int kVectorSize = 20;
    889 
    890   VectorShuffleTest() : random_(1) {
    891     for (int i = 0; i < kVectorSize; i++) {
    892       vector_.PushBack(i);
    893     }
    894   }
    895 
    896   static bool VectorIsCorrupt(const TestingVector& vector) {
    897     if (kVectorSize != vector.size()) {
    898       return true;
    899     }
    900 
    901     bool found_in_vector[kVectorSize] = { false };
    902     for (int i = 0; i < vector.size(); i++) {
    903       const int e = vector.GetElement(i);
    904       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    905         return true;
    906       }
    907       found_in_vector[e] = true;
    908     }
    909 
    910     // Vector size is correct, elements' range is correct, no
    911     // duplicate elements.  Therefore no corruption has occurred.
    912     return false;
    913   }
    914 
    915   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    916     return !VectorIsCorrupt(vector);
    917   }
    918 
    919   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    920     for (int i = begin; i < end; i++) {
    921       if (i != vector.GetElement(i)) {
    922         return true;
    923       }
    924     }
    925     return false;
    926   }
    927 
    928   static bool RangeIsUnshuffled(
    929       const TestingVector& vector, int begin, int end) {
    930     return !RangeIsShuffled(vector, begin, end);
    931   }
    932 
    933   static bool VectorIsShuffled(const TestingVector& vector) {
    934     return RangeIsShuffled(vector, 0, vector.size());
    935   }
    936 
    937   static bool VectorIsUnshuffled(const TestingVector& vector) {
    938     return !VectorIsShuffled(vector);
    939   }
    940 
    941   testing::internal::Random random_;
    942   TestingVector vector_;
    943 };  // class VectorShuffleTest
    944 
    945 const int VectorShuffleTest::kVectorSize;
    946 
    947 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    948   // Tests an empty range at the beginning...
    949   vector_.ShuffleRange(&random_, 0, 0);
    950   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    951   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    952 
    953   // ...in the middle...
    954   vector_.ShuffleRange(&random_, kVectorSize/2, kVectorSize/2);
    955   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    956   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    957 
    958   // ...at the end...
    959   vector_.ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1);
    960   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    961   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    962 
    963   // ...and past the end.
    964   vector_.ShuffleRange(&random_, kVectorSize, kVectorSize);
    965   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    966   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    967 }
    968 
    969 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    970   // Tests a size one range at the beginning...
    971   vector_.ShuffleRange(&random_, 0, 1);
    972   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    973   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    974 
    975   // ...in the middle...
    976   vector_.ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1);
    977   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    978   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    979 
    980   // ...and at the end.
    981   vector_.ShuffleRange(&random_, kVectorSize - 1, kVectorSize);
    982   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    983   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    984 }
    985 
    986 // Because we use our own random number generator and a fixed seed,
    987 // we can guarantee that the following "random" tests will succeed.
    988 
    989 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    990   vector_.Shuffle(&random_);
    991   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    992   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    993 
    994   // Tests the first and last elements in particular to ensure that
    995   // there are no off-by-one problems in our shuffle algorithm.
    996   EXPECT_NE(0, vector_.GetElement(0));
    997   EXPECT_NE(kVectorSize - 1, vector_.GetElement(kVectorSize - 1));
    998 }
    999 
   1000 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
   1001   const int kRangeSize = kVectorSize/2;
   1002 
   1003   vector_.ShuffleRange(&random_, 0, kRangeSize);
   1004 
   1005   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
   1006   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
   1007   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
   1008 }
   1009 
   1010 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
   1011   const int kRangeSize = kVectorSize / 2;
   1012   vector_.ShuffleRange(&random_, kRangeSize, kVectorSize);
   1013 
   1014   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
   1015   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
   1016   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
   1017 }
   1018 
   1019 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
   1020   int kRangeSize = kVectorSize/3;
   1021   vector_.ShuffleRange(&random_, kRangeSize, 2*kRangeSize);
   1022 
   1023   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
   1024   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
   1025   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
   1026   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
   1027 }
   1028 
   1029 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
   1030   TestingVector vector2;
   1031   for (int i = 0; i < kVectorSize; i++) {
   1032     vector2.PushBack(i);
   1033   }
   1034 
   1035   random_.Reseed(1234);
   1036   vector_.Shuffle(&random_);
   1037   random_.Reseed(1234);
   1038   vector2.Shuffle(&random_);
   1039 
   1040   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
   1041   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
   1042 
   1043   for (int i = 0; i < kVectorSize; i++) {
   1044     EXPECT_EQ(vector_.GetElement(i), vector2.GetElement(i))
   1045         << " where i is " << i;
   1046   }
   1047 }
   1048 
   1049 // Tests the size of the AssertHelper class.
   1050 
   1051 TEST(AssertHelperTest, AssertHelperIsSmall) {
   1052   // To avoid breaking clients that use lots of assertions in one
   1053   // function, we cannot grow the size of AssertHelper.
   1054   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
   1055 }
   1056 
   1057 // Tests the String class.
   1058 
   1059 // Tests String's constructors.
   1060 TEST(StringTest, Constructors) {
   1061   // Default ctor.
   1062   String s1;
   1063   // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
   1064   // pointers with NULL isn't supported on all platforms.
   1065   EXPECT_EQ(0U, s1.length());
   1066   EXPECT_TRUE(NULL == s1.c_str());
   1067 
   1068   // Implicitly constructs from a C-string.
   1069   String s2 = "Hi";
   1070   EXPECT_EQ(2U, s2.length());
   1071   EXPECT_STREQ("Hi", s2.c_str());
   1072 
   1073   // Constructs from a C-string and a length.
   1074   String s3("hello", 3);
   1075   EXPECT_EQ(3U, s3.length());
   1076   EXPECT_STREQ("hel", s3.c_str());
   1077 
   1078   // The empty String should be created when String is constructed with
   1079   // a NULL pointer and length 0.
   1080   EXPECT_EQ(0U, String(NULL, 0).length());
   1081   EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
   1082 
   1083   // Constructs a String that contains '\0'.
   1084   String s4("a\0bcd", 4);
   1085   EXPECT_EQ(4U, s4.length());
   1086   EXPECT_EQ('a', s4.c_str()[0]);
   1087   EXPECT_EQ('\0', s4.c_str()[1]);
   1088   EXPECT_EQ('b', s4.c_str()[2]);
   1089   EXPECT_EQ('c', s4.c_str()[3]);
   1090 
   1091   // Copy ctor where the source is NULL.
   1092   const String null_str;
   1093   String s5 = null_str;
   1094   EXPECT_TRUE(s5.c_str() == NULL);
   1095 
   1096   // Copy ctor where the source isn't NULL.
   1097   String s6 = s3;
   1098   EXPECT_EQ(3U, s6.length());
   1099   EXPECT_STREQ("hel", s6.c_str());
   1100 
   1101   // Copy ctor where the source contains '\0'.
   1102   String s7 = s4;
   1103   EXPECT_EQ(4U, s7.length());
   1104   EXPECT_EQ('a', s7.c_str()[0]);
   1105   EXPECT_EQ('\0', s7.c_str()[1]);
   1106   EXPECT_EQ('b', s7.c_str()[2]);
   1107   EXPECT_EQ('c', s7.c_str()[3]);
   1108 }
   1109 
   1110 #if GTEST_HAS_STD_STRING
   1111 
   1112 TEST(StringTest, ConvertsFromStdString) {
   1113   // An empty std::string.
   1114   const std::string src1("");
   1115   const String dest1 = src1;
   1116   EXPECT_EQ(0U, dest1.length());
   1117   EXPECT_STREQ("", dest1.c_str());
   1118 
   1119   // A normal std::string.
   1120   const std::string src2("Hi");
   1121   const String dest2 = src2;
   1122   EXPECT_EQ(2U, dest2.length());
   1123   EXPECT_STREQ("Hi", dest2.c_str());
   1124 
   1125   // An std::string with an embedded NUL character.
   1126   const char src3[] = "a\0b";
   1127   const String dest3 = std::string(src3, sizeof(src3));
   1128   EXPECT_EQ(sizeof(src3), dest3.length());
   1129   EXPECT_EQ('a', dest3.c_str()[0]);
   1130   EXPECT_EQ('\0', dest3.c_str()[1]);
   1131   EXPECT_EQ('b', dest3.c_str()[2]);
   1132 }
   1133 
   1134 TEST(StringTest, ConvertsToStdString) {
   1135   // An empty String.
   1136   const String src1("");
   1137   const std::string dest1 = src1;
   1138   EXPECT_EQ("", dest1);
   1139 
   1140   // A normal String.
   1141   const String src2("Hi");
   1142   const std::string dest2 = src2;
   1143   EXPECT_EQ("Hi", dest2);
   1144 
   1145   // A String containing a '\0'.
   1146   const String src3("x\0y", 3);
   1147   const std::string dest3 = src3;
   1148   EXPECT_EQ(std::string("x\0y", 3), dest3);
   1149 }
   1150 
   1151 #endif  // GTEST_HAS_STD_STRING
   1152 
   1153 #if GTEST_HAS_GLOBAL_STRING
   1154 
   1155 TEST(StringTest, ConvertsFromGlobalString) {
   1156   // An empty ::string.
   1157   const ::string src1("");
   1158   const String dest1 = src1;
   1159   EXPECT_EQ(0U, dest1.length());
   1160   EXPECT_STREQ("", dest1.c_str());
   1161 
   1162   // A normal ::string.
   1163   const ::string src2("Hi");
   1164   const String dest2 = src2;
   1165   EXPECT_EQ(2U, dest2.length());
   1166   EXPECT_STREQ("Hi", dest2.c_str());
   1167 
   1168   // An ::string with an embedded NUL character.
   1169   const char src3[] = "x\0y";
   1170   const String dest3 = ::string(src3, sizeof(src3));
   1171   EXPECT_EQ(sizeof(src3), dest3.length());
   1172   EXPECT_EQ('x', dest3.c_str()[0]);
   1173   EXPECT_EQ('\0', dest3.c_str()[1]);
   1174   EXPECT_EQ('y', dest3.c_str()[2]);
   1175 }
   1176 
   1177 TEST(StringTest, ConvertsToGlobalString) {
   1178   // An empty String.
   1179   const String src1("");
   1180   const ::string dest1 = src1;
   1181   EXPECT_EQ("", dest1);
   1182 
   1183   // A normal String.
   1184   const String src2("Hi");
   1185   const ::string dest2 = src2;
   1186   EXPECT_EQ("Hi", dest2);
   1187 
   1188   const String src3("x\0y", 3);
   1189   const ::string dest3 = src3;
   1190   EXPECT_EQ(::string("x\0y", 3), dest3);
   1191 }
   1192 
   1193 #endif  // GTEST_HAS_GLOBAL_STRING
   1194 
   1195 // Tests String::ShowCStringQuoted().
   1196 TEST(StringTest, ShowCStringQuoted) {
   1197   EXPECT_STREQ("(null)",
   1198                String::ShowCStringQuoted(NULL).c_str());
   1199   EXPECT_STREQ("\"\"",
   1200                String::ShowCStringQuoted("").c_str());
   1201   EXPECT_STREQ("\"foo\"",
   1202                String::ShowCStringQuoted("foo").c_str());
   1203 }
   1204 
   1205 // Tests String::empty().
   1206 TEST(StringTest, Empty) {
   1207   EXPECT_TRUE(String("").empty());
   1208   EXPECT_FALSE(String().empty());
   1209   EXPECT_FALSE(String(NULL).empty());
   1210   EXPECT_FALSE(String("a").empty());
   1211   EXPECT_FALSE(String("\0", 1).empty());
   1212 }
   1213 
   1214 // Tests String::Compare().
   1215 TEST(StringTest, Compare) {
   1216   // NULL vs NULL.
   1217   EXPECT_EQ(0, String().Compare(String()));
   1218 
   1219   // NULL vs non-NULL.
   1220   EXPECT_EQ(-1, String().Compare(String("")));
   1221 
   1222   // Non-NULL vs NULL.
   1223   EXPECT_EQ(1, String("").Compare(String()));
   1224 
   1225   // The following covers non-NULL vs non-NULL.
   1226 
   1227   // "" vs "".
   1228   EXPECT_EQ(0, String("").Compare(String("")));
   1229 
   1230   // "" vs non-"".
   1231   EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
   1232   EXPECT_EQ(-1, String("").Compare(" "));
   1233 
   1234   // Non-"" vs "".
   1235   EXPECT_EQ(1, String("a").Compare(String("")));
   1236 
   1237   // The following covers non-"" vs non-"".
   1238 
   1239   // Same length and equal.
   1240   EXPECT_EQ(0, String("a").Compare(String("a")));
   1241 
   1242   // Same length and different.
   1243   EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
   1244   EXPECT_EQ(1, String("b").Compare(String("a")));
   1245 
   1246   // Different lengths.
   1247   EXPECT_EQ(-1, String("a").Compare(String("ab")));
   1248   EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
   1249   EXPECT_EQ(1, String("abc").Compare(String("aacd")));
   1250 }
   1251 
   1252 // Tests String::operator==().
   1253 TEST(StringTest, Equals) {
   1254   const String null(NULL);
   1255   EXPECT_TRUE(null == NULL);  // NOLINT
   1256   EXPECT_FALSE(null == "");  // NOLINT
   1257   EXPECT_FALSE(null == "bar");  // NOLINT
   1258 
   1259   const String empty("");
   1260   EXPECT_FALSE(empty == NULL);  // NOLINT
   1261   EXPECT_TRUE(empty == "");  // NOLINT
   1262   EXPECT_FALSE(empty == "bar");  // NOLINT
   1263 
   1264   const String foo("foo");
   1265   EXPECT_FALSE(foo == NULL);  // NOLINT
   1266   EXPECT_FALSE(foo == "");  // NOLINT
   1267   EXPECT_FALSE(foo == "bar");  // NOLINT
   1268   EXPECT_TRUE(foo == "foo");  // NOLINT
   1269 
   1270   const String bar("x\0y", 3);
   1271   EXPECT_FALSE(bar == "x");
   1272 }
   1273 
   1274 // Tests String::operator!=().
   1275 TEST(StringTest, NotEquals) {
   1276   const String null(NULL);
   1277   EXPECT_FALSE(null != NULL);  // NOLINT
   1278   EXPECT_TRUE(null != "");  // NOLINT
   1279   EXPECT_TRUE(null != "bar");  // NOLINT
   1280 
   1281   const String empty("");
   1282   EXPECT_TRUE(empty != NULL);  // NOLINT
   1283   EXPECT_FALSE(empty != "");  // NOLINT
   1284   EXPECT_TRUE(empty != "bar");  // NOLINT
   1285 
   1286   const String foo("foo");
   1287   EXPECT_TRUE(foo != NULL);  // NOLINT
   1288   EXPECT_TRUE(foo != "");  // NOLINT
   1289   EXPECT_TRUE(foo != "bar");  // NOLINT
   1290   EXPECT_FALSE(foo != "foo");  // NOLINT
   1291 
   1292   const String bar("x\0y", 3);
   1293   EXPECT_TRUE(bar != "x");
   1294 }
   1295 
   1296 // Tests String::length().
   1297 TEST(StringTest, Length) {
   1298   EXPECT_EQ(0U, String().length());
   1299   EXPECT_EQ(0U, String("").length());
   1300   EXPECT_EQ(2U, String("ab").length());
   1301   EXPECT_EQ(3U, String("a\0b", 3).length());
   1302 }
   1303 
   1304 // Tests String::EndsWith().
   1305 TEST(StringTest, EndsWith) {
   1306   EXPECT_TRUE(String("foobar").EndsWith("bar"));
   1307   EXPECT_TRUE(String("foobar").EndsWith(""));
   1308   EXPECT_TRUE(String("").EndsWith(""));
   1309 
   1310   EXPECT_FALSE(String("foobar").EndsWith("foo"));
   1311   EXPECT_FALSE(String("").EndsWith("foo"));
   1312 }
   1313 
   1314 // Tests String::EndsWithCaseInsensitive().
   1315 TEST(StringTest, EndsWithCaseInsensitive) {
   1316   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
   1317   EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
   1318   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
   1319   EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
   1320 
   1321   EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
   1322   EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
   1323   EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
   1324 }
   1325 
   1326 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1327 // appear in macro parameters after wide char literals.  Provide an alias
   1328 // for NULL as a workaround.
   1329 static const wchar_t* const kNull = NULL;
   1330 
   1331 // Tests String::CaseInsensitiveWideCStringEquals
   1332 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1333   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1334   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1335   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1336   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1337   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1338   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1339   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1340   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1341 }
   1342 
   1343 // Tests that NULL can be assigned to a String.
   1344 TEST(StringTest, CanBeAssignedNULL) {
   1345   const String src(NULL);
   1346   String dest;
   1347 
   1348   dest = src;
   1349   EXPECT_STREQ(NULL, dest.c_str());
   1350 }
   1351 
   1352 // Tests that the empty string "" can be assigned to a String.
   1353 TEST(StringTest, CanBeAssignedEmpty) {
   1354   const String src("");
   1355   String dest;
   1356 
   1357   dest = src;
   1358   EXPECT_STREQ("", dest.c_str());
   1359 }
   1360 
   1361 // Tests that a non-empty string can be assigned to a String.
   1362 TEST(StringTest, CanBeAssignedNonEmpty) {
   1363   const String src("hello");
   1364   String dest;
   1365   dest = src;
   1366   EXPECT_EQ(5U, dest.length());
   1367   EXPECT_STREQ("hello", dest.c_str());
   1368 
   1369   const String src2("x\0y", 3);
   1370   String dest2;
   1371   dest2 = src2;
   1372   EXPECT_EQ(3U, dest2.length());
   1373   EXPECT_EQ('x', dest2.c_str()[0]);
   1374   EXPECT_EQ('\0', dest2.c_str()[1]);
   1375   EXPECT_EQ('y', dest2.c_str()[2]);
   1376 }
   1377 
   1378 // Tests that a String can be assigned to itself.
   1379 TEST(StringTest, CanBeAssignedSelf) {
   1380   String dest("hello");
   1381 
   1382   dest = dest;
   1383   EXPECT_STREQ("hello", dest.c_str());
   1384 }
   1385 
   1386 // Tests streaming a String.
   1387 TEST(StringTest, Streams) {
   1388   EXPECT_EQ(StreamableToString(String()), "(null)");
   1389   EXPECT_EQ(StreamableToString(String("")), "");
   1390   EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
   1391 }
   1392 
   1393 // Tests that String::Format() works.
   1394 TEST(StringTest, FormatWorks) {
   1395   // Normal case: the format spec is valid, the arguments match the
   1396   // spec, and the result is < 4095 characters.
   1397   EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
   1398 
   1399   // Edge case: the result is 4095 characters.
   1400   char buffer[4096];
   1401   const size_t kSize = sizeof(buffer);
   1402   memset(buffer, 'a', kSize - 1);
   1403   buffer[kSize - 1] = '\0';
   1404   EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
   1405 
   1406   // The result needs to be 4096 characters, exceeding Format()'s limit.
   1407   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1408                String::Format("x%s", buffer).c_str());
   1409 
   1410 #if GTEST_OS_LINUX
   1411   // On Linux, invalid format spec should lead to an error message.
   1412   // In other environment (e.g. MSVC on Windows), String::Format() may
   1413   // simply ignore a bad format spec, so this assertion is run on
   1414   // Linux only.
   1415   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1416                String::Format("%").c_str());
   1417 #endif
   1418 }
   1419 
   1420 #if GTEST_OS_WINDOWS
   1421 
   1422 // Tests String::ShowWideCString().
   1423 TEST(StringTest, ShowWideCString) {
   1424   EXPECT_STREQ("(null)",
   1425                String::ShowWideCString(NULL).c_str());
   1426   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1427   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1428 }
   1429 
   1430 // Tests String::ShowWideCStringQuoted().
   1431 TEST(StringTest, ShowWideCStringQuoted) {
   1432   EXPECT_STREQ("(null)",
   1433                String::ShowWideCStringQuoted(NULL).c_str());
   1434   EXPECT_STREQ("L\"\"",
   1435                String::ShowWideCStringQuoted(L"").c_str());
   1436   EXPECT_STREQ("L\"foo\"",
   1437                String::ShowWideCStringQuoted(L"foo").c_str());
   1438 }
   1439 
   1440 #if GTEST_OS_WINDOWS_MOBILE
   1441 TEST(StringTest, AnsiAndUtf16Null) {
   1442   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1443   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1444 }
   1445 
   1446 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1447   const char* ansi = String::Utf16ToAnsi(L"str");
   1448   EXPECT_STREQ("str", ansi);
   1449   delete [] ansi;
   1450   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1451   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1452   delete [] utf16;
   1453 }
   1454 
   1455 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1456   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1457   EXPECT_STREQ(".:\\ \"*?", ansi);
   1458   delete [] ansi;
   1459   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1460   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1461   delete [] utf16;
   1462 }
   1463 #endif  // GTEST_OS_WINDOWS_MOBILE
   1464 
   1465 #endif  // GTEST_OS_WINDOWS
   1466 
   1467 // Tests TestProperty construction.
   1468 TEST(TestPropertyTest, StringValue) {
   1469   TestProperty property("key", "1");
   1470   EXPECT_STREQ("key", property.key());
   1471   EXPECT_STREQ("1", property.value());
   1472 }
   1473 
   1474 // Tests TestProperty replacing a value.
   1475 TEST(TestPropertyTest, ReplaceStringValue) {
   1476   TestProperty property("key", "1");
   1477   EXPECT_STREQ("1", property.value());
   1478   property.SetValue("2");
   1479   EXPECT_STREQ("2", property.value());
   1480 }
   1481 
   1482 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1483 // functions (i.e. their definitions cannot be inlined at the call
   1484 // sites), or C++Builder won't compile the code.
   1485 static void AddFatalFailure() {
   1486   FAIL() << "Expected fatal failure.";
   1487 }
   1488 
   1489 static void AddNonfatalFailure() {
   1490   ADD_FAILURE() << "Expected non-fatal failure.";
   1491 }
   1492 
   1493 class ScopedFakeTestPartResultReporterTest : public Test {
   1494  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1495   enum FailureMode {
   1496     FATAL_FAILURE,
   1497     NONFATAL_FAILURE
   1498   };
   1499   static void AddFailure(FailureMode failure) {
   1500     if (failure == FATAL_FAILURE) {
   1501       AddFatalFailure();
   1502     } else {
   1503       AddNonfatalFailure();
   1504     }
   1505   }
   1506 };
   1507 
   1508 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1509 // failures.
   1510 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1511   TestPartResultArray results;
   1512   {
   1513     ScopedFakeTestPartResultReporter reporter(
   1514         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1515         &results);
   1516     AddFailure(NONFATAL_FAILURE);
   1517     AddFailure(FATAL_FAILURE);
   1518   }
   1519 
   1520   EXPECT_EQ(2, results.size());
   1521   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1522   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1523 }
   1524 
   1525 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1526   TestPartResultArray results;
   1527   {
   1528     // Tests, that the deprecated constructor still works.
   1529     ScopedFakeTestPartResultReporter reporter(&results);
   1530     AddFailure(NONFATAL_FAILURE);
   1531   }
   1532   EXPECT_EQ(1, results.size());
   1533 }
   1534 
   1535 #if GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
   1536 
   1537 class ScopedFakeTestPartResultReporterWithThreadsTest
   1538   : public ScopedFakeTestPartResultReporterTest {
   1539  protected:
   1540   static void AddFailureInOtherThread(FailureMode failure) {
   1541     pthread_t tid;
   1542     pthread_create(&tid,
   1543                    NULL,
   1544                    ScopedFakeTestPartResultReporterWithThreadsTest::
   1545                        FailureThread,
   1546                    &failure);
   1547     pthread_join(tid, NULL);
   1548   }
   1549  private:
   1550   static void* FailureThread(void* attr) {
   1551     FailureMode* failure = static_cast<FailureMode*>(attr);
   1552     AddFailure(*failure);
   1553     return NULL;
   1554   }
   1555 };
   1556 
   1557 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1558        InterceptsTestFailuresInAllThreads) {
   1559   TestPartResultArray results;
   1560   {
   1561     ScopedFakeTestPartResultReporter reporter(
   1562         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1563     AddFailure(NONFATAL_FAILURE);
   1564     AddFailure(FATAL_FAILURE);
   1565     AddFailureInOtherThread(NONFATAL_FAILURE);
   1566     AddFailureInOtherThread(FATAL_FAILURE);
   1567   }
   1568 
   1569   EXPECT_EQ(4, results.size());
   1570   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1571   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1572   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1573   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1574 }
   1575 
   1576 #endif  // GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
   1577 
   1578 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1579 // work even if the failure is generated in a called function rather than
   1580 // the current context.
   1581 
   1582 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1583 
   1584 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1585   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1586 }
   1587 
   1588 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1589   // We have another test below to verify that the macro catches fatal
   1590   // failures generated on another thread.
   1591   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1592                                       "Expected fatal failure.");
   1593 }
   1594 
   1595 #ifdef __BORLANDC__
   1596 // Silences warnings: "Condition is always true"
   1597 #pragma option push -w-ccc
   1598 #endif
   1599 
   1600 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1601 // function even when the statement in it contains ASSERT_*.
   1602 
   1603 int NonVoidFunction() {
   1604   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1605   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1606   return 0;
   1607 }
   1608 
   1609 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1610   NonVoidFunction();
   1611 }
   1612 
   1613 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1614 // current function even though 'statement' generates a fatal failure.
   1615 
   1616 void DoesNotAbortHelper(bool* aborted) {
   1617   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1618   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1619 
   1620   *aborted = false;
   1621 }
   1622 
   1623 #ifdef __BORLANDC__
   1624 // Restores warnings after previous "#pragma option push" supressed them
   1625 #pragma option pop
   1626 #endif
   1627 
   1628 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1629   bool aborted = true;
   1630   DoesNotAbortHelper(&aborted);
   1631   EXPECT_FALSE(aborted);
   1632 }
   1633 
   1634 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1635 // statement that contains a macro which expands to code containing an
   1636 // unprotected comma.
   1637 
   1638 static int global_var = 0;
   1639 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1640 
   1641 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1642 #ifndef __BORLANDC__
   1643   // ICE's in C++Builder 2007.
   1644   EXPECT_FATAL_FAILURE({
   1645     GTEST_USE_UNPROTECTED_COMMA_;
   1646     AddFatalFailure();
   1647   }, "");
   1648 #endif
   1649 
   1650   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1651     GTEST_USE_UNPROTECTED_COMMA_;
   1652     AddFatalFailure();
   1653   }, "");
   1654 }
   1655 
   1656 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1657 
   1658 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1659 
   1660 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1661   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1662                           "Expected non-fatal failure.");
   1663 }
   1664 
   1665 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1666   // We have another test below to verify that the macro catches
   1667   // non-fatal failures generated on another thread.
   1668   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1669                                          "Expected non-fatal failure.");
   1670 }
   1671 
   1672 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1673 // statement that contains a macro which expands to code containing an
   1674 // unprotected comma.
   1675 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1676   EXPECT_NONFATAL_FAILURE({
   1677     GTEST_USE_UNPROTECTED_COMMA_;
   1678     AddNonfatalFailure();
   1679   }, "");
   1680 
   1681   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1682     GTEST_USE_UNPROTECTED_COMMA_;
   1683     AddNonfatalFailure();
   1684   }, "");
   1685 }
   1686 
   1687 #if GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
   1688 
   1689 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1690     ExpectFailureWithThreadsTest;
   1691 
   1692 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1693   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1694                                       "Expected fatal failure.");
   1695 }
   1696 
   1697 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1698   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1699       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1700 }
   1701 
   1702 #endif  // GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
   1703 
   1704 // Tests the TestProperty class.
   1705 
   1706 TEST(TestPropertyTest, ConstructorWorks) {
   1707   const TestProperty property("key", "value");
   1708   EXPECT_STREQ("key", property.key());
   1709   EXPECT_STREQ("value", property.value());
   1710 }
   1711 
   1712 TEST(TestPropertyTest, SetValue) {
   1713   TestProperty property("key", "value_1");
   1714   EXPECT_STREQ("key", property.key());
   1715   property.SetValue("value_2");
   1716   EXPECT_STREQ("key", property.key());
   1717   EXPECT_STREQ("value_2", property.value());
   1718 }
   1719 
   1720 // Tests the TestPartResult class.
   1721 
   1722 TEST(TestPartResultTest, ConstructorWorks) {
   1723   Message message;
   1724   message << "something is terribly wrong";
   1725   message << static_cast<const char*>(testing::internal::kStackTraceMarker);
   1726   message << "some unimportant stack trace";
   1727 
   1728   const TestPartResult result(TestPartResult::kNonFatalFailure,
   1729                               "some_file.cc",
   1730                               42,
   1731                               message.GetString().c_str());
   1732 
   1733   EXPECT_EQ(TestPartResult::kNonFatalFailure, result.type());
   1734   EXPECT_STREQ("some_file.cc", result.file_name());
   1735   EXPECT_EQ(42, result.line_number());
   1736   EXPECT_STREQ(message.GetString().c_str(), result.message());
   1737   EXPECT_STREQ("something is terribly wrong", result.summary());
   1738 }
   1739 
   1740 TEST(TestPartResultTest, ResultAccessorsWork) {
   1741   const TestPartResult success(TestPartResult::kSuccess,
   1742                                "file.cc",
   1743                                42,
   1744                                "message");
   1745   EXPECT_TRUE(success.passed());
   1746   EXPECT_FALSE(success.failed());
   1747   EXPECT_FALSE(success.nonfatally_failed());
   1748   EXPECT_FALSE(success.fatally_failed());
   1749 
   1750   const TestPartResult nonfatal_failure(TestPartResult::kNonFatalFailure,
   1751                                         "file.cc",
   1752                                         42,
   1753                                         "message");
   1754   EXPECT_FALSE(nonfatal_failure.passed());
   1755   EXPECT_TRUE(nonfatal_failure.failed());
   1756   EXPECT_TRUE(nonfatal_failure.nonfatally_failed());
   1757   EXPECT_FALSE(nonfatal_failure.fatally_failed());
   1758 
   1759   const TestPartResult fatal_failure(TestPartResult::kFatalFailure,
   1760                                      "file.cc",
   1761                                      42,
   1762                                      "message");
   1763   EXPECT_FALSE(fatal_failure.passed());
   1764   EXPECT_TRUE(fatal_failure.failed());
   1765   EXPECT_FALSE(fatal_failure.nonfatally_failed());
   1766   EXPECT_TRUE(fatal_failure.fatally_failed());
   1767 }
   1768 
   1769 // Tests the TestResult class
   1770 
   1771 // The test fixture for testing TestResult.
   1772 class TestResultTest : public Test {
   1773  protected:
   1774   typedef Vector<TestPartResult> TPRVector;
   1775 
   1776   // We make use of 2 TestPartResult objects,
   1777   TestPartResult * pr1, * pr2;
   1778 
   1779   // ... and 3 TestResult objects.
   1780   TestResult * r0, * r1, * r2;
   1781 
   1782   virtual void SetUp() {
   1783     // pr1 is for success.
   1784     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1785                              "foo/bar.cc",
   1786                              10,
   1787                              "Success!");
   1788 
   1789     // pr2 is for fatal failure.
   1790     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1791                              "foo/bar.cc",
   1792                              -1,  // This line number means "unknown"
   1793                              "Failure!");
   1794 
   1795     // Creates the TestResult objects.
   1796     r0 = new TestResult();
   1797     r1 = new TestResult();
   1798     r2 = new TestResult();
   1799 
   1800     // In order to test TestResult, we need to modify its internal
   1801     // state, in particular the TestPartResult Vector it holds.
   1802     // test_part_results() returns a const reference to this Vector.
   1803     // We cast it to a non-const object s.t. it can be modified (yes,
   1804     // this is a hack).
   1805     TPRVector* results1 = const_cast<Vector<TestPartResult> *>(
   1806         &TestResultAccessor::test_part_results(*r1));
   1807     TPRVector* results2 = const_cast<Vector<TestPartResult> *>(
   1808         &TestResultAccessor::test_part_results(*r2));
   1809 
   1810     // r0 is an empty TestResult.
   1811 
   1812     // r1 contains a single SUCCESS TestPartResult.
   1813     results1->PushBack(*pr1);
   1814 
   1815     // r2 contains a SUCCESS, and a FAILURE.
   1816     results2->PushBack(*pr1);
   1817     results2->PushBack(*pr2);
   1818   }
   1819 
   1820   virtual void TearDown() {
   1821     delete pr1;
   1822     delete pr2;
   1823 
   1824     delete r0;
   1825     delete r1;
   1826     delete r2;
   1827   }
   1828 
   1829   // Helper that compares two two TestPartResults.
   1830   static void CompareTestPartResult(const TestPartResult& expected,
   1831                                     const TestPartResult& actual) {
   1832     EXPECT_EQ(expected.type(), actual.type());
   1833     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1834     EXPECT_EQ(expected.line_number(), actual.line_number());
   1835     EXPECT_STREQ(expected.summary(), actual.summary());
   1836     EXPECT_STREQ(expected.message(), actual.message());
   1837     EXPECT_EQ(expected.passed(), actual.passed());
   1838     EXPECT_EQ(expected.failed(), actual.failed());
   1839     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1840     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1841   }
   1842 };
   1843 
   1844 // Tests TestResult::total_part_count().
   1845 TEST_F(TestResultTest, total_part_count) {
   1846   ASSERT_EQ(0, r0->total_part_count());
   1847   ASSERT_EQ(1, r1->total_part_count());
   1848   ASSERT_EQ(2, r2->total_part_count());
   1849 }
   1850 
   1851 // Tests TestResult::Passed().
   1852 TEST_F(TestResultTest, Passed) {
   1853   ASSERT_TRUE(r0->Passed());
   1854   ASSERT_TRUE(r1->Passed());
   1855   ASSERT_FALSE(r2->Passed());
   1856 }
   1857 
   1858 // Tests TestResult::Failed().
   1859 TEST_F(TestResultTest, Failed) {
   1860   ASSERT_FALSE(r0->Failed());
   1861   ASSERT_FALSE(r1->Failed());
   1862   ASSERT_TRUE(r2->Failed());
   1863 }
   1864 
   1865 // Tests TestResult::GetTestPartResult().
   1866 
   1867 typedef TestResultTest TestResultDeathTest;
   1868 
   1869 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1870   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1871   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1872   EXPECT_DEATH_IF_SUPPORTED(
   1873       r2->GetTestPartResult(2),
   1874       "Invalid Vector index 2: must be in range \\[0, 1\\]\\.");
   1875   EXPECT_DEATH_IF_SUPPORTED(
   1876       r2->GetTestPartResult(-1),
   1877       "Invalid Vector index -1: must be in range \\[0, 1\\]\\.");
   1878 }
   1879 
   1880 // Tests TestResult has no properties when none are added.
   1881 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1882   TestResult test_result;
   1883   ASSERT_EQ(0, test_result.test_property_count());
   1884 }
   1885 
   1886 // Tests TestResult has the expected property when added.
   1887 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1888   TestResult test_result;
   1889   TestProperty property("key_1", "1");
   1890   TestResultAccessor::RecordProperty(&test_result, property);
   1891   ASSERT_EQ(1, test_result.test_property_count());
   1892   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1893   EXPECT_STREQ("key_1", actual_property.key());
   1894   EXPECT_STREQ("1", actual_property.value());
   1895 }
   1896 
   1897 // Tests TestResult has multiple properties when added.
   1898 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1899   TestResult test_result;
   1900   TestProperty property_1("key_1", "1");
   1901   TestProperty property_2("key_2", "2");
   1902   TestResultAccessor::RecordProperty(&test_result, property_1);
   1903   TestResultAccessor::RecordProperty(&test_result, property_2);
   1904   ASSERT_EQ(2, test_result.test_property_count());
   1905   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1906   EXPECT_STREQ("key_1", actual_property_1.key());
   1907   EXPECT_STREQ("1", actual_property_1.value());
   1908 
   1909   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1910   EXPECT_STREQ("key_2", actual_property_2.key());
   1911   EXPECT_STREQ("2", actual_property_2.value());
   1912 }
   1913 
   1914 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1915 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1916   TestResult test_result;
   1917   TestProperty property_1_1("key_1", "1");
   1918   TestProperty property_2_1("key_2", "2");
   1919   TestProperty property_1_2("key_1", "12");
   1920   TestProperty property_2_2("key_2", "22");
   1921   TestResultAccessor::RecordProperty(&test_result, property_1_1);
   1922   TestResultAccessor::RecordProperty(&test_result, property_2_1);
   1923   TestResultAccessor::RecordProperty(&test_result, property_1_2);
   1924   TestResultAccessor::RecordProperty(&test_result, property_2_2);
   1925 
   1926   ASSERT_EQ(2, test_result.test_property_count());
   1927   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1928   EXPECT_STREQ("key_1", actual_property_1.key());
   1929   EXPECT_STREQ("12", actual_property_1.value());
   1930 
   1931   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1932   EXPECT_STREQ("key_2", actual_property_2.key());
   1933   EXPECT_STREQ("22", actual_property_2.value());
   1934 }
   1935 
   1936 // Tests TestResult::GetTestProperty().
   1937 TEST(TestResultPropertyDeathTest, GetTestProperty) {
   1938   TestResult test_result;
   1939   TestProperty property_1("key_1", "1");
   1940   TestProperty property_2("key_2", "2");
   1941   TestProperty property_3("key_3", "3");
   1942   TestResultAccessor::RecordProperty(&test_result, property_1);
   1943   TestResultAccessor::RecordProperty(&test_result, property_2);
   1944   TestResultAccessor::RecordProperty(&test_result, property_3);
   1945 
   1946   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1947   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1948   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1949 
   1950   EXPECT_STREQ("key_1", fetched_property_1.key());
   1951   EXPECT_STREQ("1", fetched_property_1.value());
   1952 
   1953   EXPECT_STREQ("key_2", fetched_property_2.key());
   1954   EXPECT_STREQ("2", fetched_property_2.value());
   1955 
   1956   EXPECT_STREQ("key_3", fetched_property_3.key());
   1957   EXPECT_STREQ("3", fetched_property_3.value());
   1958 
   1959   EXPECT_DEATH_IF_SUPPORTED(
   1960       test_result.GetTestProperty(3),
   1961       "Invalid Vector index 3: must be in range \\[0, 2\\]\\.");
   1962   EXPECT_DEATH_IF_SUPPORTED(
   1963       test_result.GetTestProperty(-1),
   1964       "Invalid Vector index -1: must be in range \\[0, 2\\]\\.");
   1965 }
   1966 
   1967 // When a property using a reserved key is supplied to this function, it tests
   1968 // that a non-fatal failure is added, a fatal failure is not added, and that the
   1969 // property is not recorded.
   1970 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
   1971   TestResult test_result;
   1972   TestProperty property(key, "1");
   1973   EXPECT_NONFATAL_FAILURE(
   1974       TestResultAccessor::RecordProperty(&test_result, property),
   1975       "Reserved key");
   1976   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
   1977 }
   1978 
   1979 // Attempting to recording a property with the Reserved literal "name"
   1980 // should add a non-fatal failure and the property should not be recorded.
   1981 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
   1982   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
   1983 }
   1984 
   1985 // Attempting to recording a property with the Reserved literal "status"
   1986 // should add a non-fatal failure and the property should not be recorded.
   1987 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
   1988   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
   1989 }
   1990 
   1991 // Attempting to recording a property with the Reserved literal "time"
   1992 // should add a non-fatal failure and the property should not be recorded.
   1993 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
   1994   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
   1995 }
   1996 
   1997 // Attempting to recording a property with the Reserved literal "classname"
   1998 // should add a non-fatal failure and the property should not be recorded.
   1999 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
   2000   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
   2001 }
   2002 
   2003 // Tests that GTestFlagSaver works on Windows and Mac.
   2004 
   2005 class GTestFlagSaverTest : public Test {
   2006  protected:
   2007   // Saves the Google Test flags such that we can restore them later, and
   2008   // then sets them to their default values.  This will be called
   2009   // before the first test in this test case is run.
   2010   static void SetUpTestCase() {
   2011     saver_ = new GTestFlagSaver;
   2012 
   2013     GTEST_FLAG(also_run_disabled_tests) = false;
   2014     GTEST_FLAG(break_on_failure) = false;
   2015     GTEST_FLAG(catch_exceptions) = false;
   2016     GTEST_FLAG(death_test_use_fork) = false;
   2017     GTEST_FLAG(color) = "auto";
   2018     GTEST_FLAG(filter) = "";
   2019     GTEST_FLAG(list_tests) = false;
   2020     GTEST_FLAG(output) = "";
   2021     GTEST_FLAG(print_time) = true;
   2022     GTEST_FLAG(random_seed) = 0;
   2023     GTEST_FLAG(repeat) = 1;
   2024     GTEST_FLAG(shuffle) = false;
   2025     GTEST_FLAG(throw_on_failure) = false;
   2026   }
   2027 
   2028   // Restores the Google Test flags that the tests have modified.  This will
   2029   // be called after the last test in this test case is run.
   2030   static void TearDownTestCase() {
   2031     delete saver_;
   2032     saver_ = NULL;
   2033   }
   2034 
   2035   // Verifies that the Google Test flags have their default values, and then
   2036   // modifies each of them.
   2037   void VerifyAndModifyFlags() {
   2038     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   2039     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   2040     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   2041     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   2042     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   2043     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   2044     EXPECT_FALSE(GTEST_FLAG(list_tests));
   2045     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   2046     EXPECT_TRUE(GTEST_FLAG(print_time));
   2047     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   2048     EXPECT_EQ(1, GTEST_FLAG(repeat));
   2049     EXPECT_FALSE(GTEST_FLAG(shuffle));
   2050     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   2051 
   2052     GTEST_FLAG(also_run_disabled_tests) = true;
   2053     GTEST_FLAG(break_on_failure) = true;
   2054     GTEST_FLAG(catch_exceptions) = true;
   2055     GTEST_FLAG(color) = "no";
   2056     GTEST_FLAG(death_test_use_fork) = true;
   2057     GTEST_FLAG(filter) = "abc";
   2058     GTEST_FLAG(list_tests) = true;
   2059     GTEST_FLAG(output) = "xml:foo.xml";
   2060     GTEST_FLAG(print_time) = false;
   2061     GTEST_FLAG(random_seed) = 1;
   2062     GTEST_FLAG(repeat) = 100;
   2063     GTEST_FLAG(shuffle) = true;
   2064     GTEST_FLAG(throw_on_failure) = true;
   2065   }
   2066  private:
   2067   // For saving Google Test flags during this test case.
   2068   static GTestFlagSaver* saver_;
   2069 };
   2070 
   2071 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   2072 
   2073 // Google Test doesn't guarantee the order of tests.  The following two
   2074 // tests are designed to work regardless of their order.
   2075 
   2076 // Modifies the Google Test flags in the test body.
   2077 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   2078   VerifyAndModifyFlags();
   2079 }
   2080 
   2081 // Verifies that the Google Test flags in the body of the previous test were
   2082 // restored to their original values.
   2083 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   2084   VerifyAndModifyFlags();
   2085 }
   2086 
   2087 // Sets an environment variable with the given name to the given
   2088 // value.  If the value argument is "", unsets the environment
   2089 // variable.  The caller must ensure that both arguments are not NULL.
   2090 static void SetEnv(const char* name, const char* value) {
   2091 #if GTEST_OS_WINDOWS_MOBILE
   2092   // Environment variables are not supported on Windows CE.
   2093   return;
   2094 #elif defined(__BORLANDC__)
   2095   // C++Builder's putenv only stores a pointer to its parameter; we have to
   2096   // ensure that the string remains valid as long as it might be needed.
   2097   // We use an std::map to do so.
   2098   static std::map<String, String*> added_env;
   2099 
   2100   // Because putenv stores a pointer to the string buffer, we can't delete the
   2101   // previous string (if present) until after it's replaced.
   2102   String *prev_env = NULL;
   2103   if (added_env.find(name) != added_env.end()) {
   2104     prev_env = added_env[name];
   2105   }
   2106   added_env[name] = new String((Message() << name << "=" << value).GetString());
   2107   putenv(added_env[name]->c_str());
   2108   delete prev_env;
   2109 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   2110   _putenv((Message() << name << "=" << value).GetString().c_str());
   2111 #else
   2112   if (*value == '\0') {
   2113     unsetenv(name);
   2114   } else {
   2115     setenv(name, value, 1);
   2116   }
   2117 #endif  // GTEST_OS_WINDOWS_MOBILE
   2118 }
   2119 
   2120 #if !GTEST_OS_WINDOWS_MOBILE
   2121 // Environment variables are not supported on Windows CE.
   2122 
   2123 using testing::internal::Int32FromGTestEnv;
   2124 
   2125 // Tests Int32FromGTestEnv().
   2126 
   2127 // Tests that Int32FromGTestEnv() returns the default value when the
   2128 // environment variable is not set.
   2129 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   2130   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   2131   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   2132 }
   2133 
   2134 // Tests that Int32FromGTestEnv() returns the default value when the
   2135 // environment variable overflows as an Int32.
   2136 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   2137   printf("(expecting 2 warnings)\n");
   2138 
   2139   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   2140   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   2141 
   2142   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   2143   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   2144 }
   2145 
   2146 // Tests that Int32FromGTestEnv() returns the default value when the
   2147 // environment variable does not represent a valid decimal integer.
   2148 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   2149   printf("(expecting 2 warnings)\n");
   2150 
   2151   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   2152   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   2153 
   2154   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   2155   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   2156 }
   2157 
   2158 // Tests that Int32FromGTestEnv() parses and returns the value of the
   2159 // environment variable when it represents a valid decimal integer in
   2160 // the range of an Int32.
   2161 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   2162   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   2163   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   2164 
   2165   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   2166   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   2167 }
   2168 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2169 
   2170 // Tests ParseInt32Flag().
   2171 
   2172 // Tests that ParseInt32Flag() returns false and doesn't change the
   2173 // output value when the flag has wrong format
   2174 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   2175   Int32 value = 123;
   2176   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   2177   EXPECT_EQ(123, value);
   2178 
   2179   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   2180   EXPECT_EQ(123, value);
   2181 }
   2182 
   2183 // Tests that ParseInt32Flag() returns false and doesn't change the
   2184 // output value when the flag overflows as an Int32.
   2185 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   2186   printf("(expecting 2 warnings)\n");
   2187 
   2188   Int32 value = 123;
   2189   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   2190   EXPECT_EQ(123, value);
   2191 
   2192   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   2193   EXPECT_EQ(123, value);
   2194 }
   2195 
   2196 // Tests that ParseInt32Flag() returns false and doesn't change the
   2197 // output value when the flag does not represent a valid decimal
   2198 // integer.
   2199 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   2200   printf("(expecting 2 warnings)\n");
   2201 
   2202   Int32 value = 123;
   2203   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   2204   EXPECT_EQ(123, value);
   2205 
   2206   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   2207   EXPECT_EQ(123, value);
   2208 }
   2209 
   2210 // Tests that ParseInt32Flag() parses the value of the flag and
   2211 // returns true when the flag represents a valid decimal integer in
   2212 // the range of an Int32.
   2213 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   2214   Int32 value = 123;
   2215   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   2216   EXPECT_EQ(456, value);
   2217 
   2218   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   2219                              "abc", &value));
   2220   EXPECT_EQ(-789, value);
   2221 }
   2222 
   2223 // Tests that Int32FromEnvOrDie() parses the value of the var or
   2224 // returns the correct default.
   2225 // Environment variables are not supported on Windows CE.
   2226 #if !GTEST_OS_WINDOWS_MOBILE
   2227 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   2228   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2229   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   2230   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2231   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   2232   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2233 }
   2234 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2235 
   2236 // Tests that Int32FromEnvOrDie() aborts with an error message
   2237 // if the variable is not an Int32.
   2238 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   2239   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   2240   EXPECT_DEATH_IF_SUPPORTED(
   2241       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   2242       ".*");
   2243 }
   2244 
   2245 // Tests that Int32FromEnvOrDie() aborts with an error message
   2246 // if the variable cannot be represnted by an Int32.
   2247 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   2248   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   2249   EXPECT_DEATH_IF_SUPPORTED(
   2250       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   2251       ".*");
   2252 }
   2253 
   2254 // Tests that ShouldRunTestOnShard() selects all tests
   2255 // where there is 1 shard.
   2256 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   2257   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   2258   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   2259   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   2260   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   2261   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   2262 }
   2263 
   2264 class ShouldShardTest : public testing::Test {
   2265  protected:
   2266   virtual void SetUp() {
   2267     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   2268     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   2269   }
   2270 
   2271   virtual void TearDown() {
   2272     SetEnv(index_var_, "");
   2273     SetEnv(total_var_, "");
   2274   }
   2275 
   2276   const char* index_var_;
   2277   const char* total_var_;
   2278 };
   2279 
   2280 // Tests that sharding is disabled if neither of the environment variables
   2281 // are set.
   2282 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   2283   SetEnv(index_var_, "");
   2284   SetEnv(total_var_, "");
   2285 
   2286   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2287   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2288 }
   2289 
   2290 // Tests that sharding is not enabled if total_shards  == 1.
   2291 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   2292   SetEnv(index_var_, "0");
   2293   SetEnv(total_var_, "1");
   2294   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2295   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2296 }
   2297 
   2298 // Tests that sharding is enabled if total_shards > 1 and
   2299 // we are not in a death test subprocess.
   2300 // Environment variables are not supported on Windows CE.
   2301 #if !GTEST_OS_WINDOWS_MOBILE
   2302 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   2303   SetEnv(index_var_, "4");
   2304   SetEnv(total_var_, "22");
   2305   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2306   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2307 
   2308   SetEnv(index_var_, "8");
   2309   SetEnv(total_var_, "9");
   2310   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2311   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2312 
   2313   SetEnv(index_var_, "0");
   2314   SetEnv(total_var_, "9");
   2315   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2316   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2317 }
   2318 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2319 
   2320 // Tests that we exit in error if the sharding values are not valid.
   2321 
   2322 typedef ShouldShardTest ShouldShardDeathTest;
   2323 
   2324 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   2325   SetEnv(index_var_, "4");
   2326   SetEnv(total_var_, "4");
   2327   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2328 
   2329   SetEnv(index_var_, "4");
   2330   SetEnv(total_var_, "-2");
   2331   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2332 
   2333   SetEnv(index_var_, "5");
   2334   SetEnv(total_var_, "");
   2335   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2336 
   2337   SetEnv(index_var_, "");
   2338   SetEnv(total_var_, "5");
   2339   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2340 }
   2341 
   2342 // Tests that ShouldRunTestOnShard is a partition when 5
   2343 // shards are used.
   2344 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   2345   // Choose an arbitrary number of tests and shards.
   2346   const int num_tests = 17;
   2347   const int num_shards = 5;
   2348 
   2349   // Check partitioning: each test should be on exactly 1 shard.
   2350   for (int test_id = 0; test_id < num_tests; test_id++) {
   2351     int prev_selected_shard_index = -1;
   2352     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2353       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   2354         if (prev_selected_shard_index < 0) {
   2355           prev_selected_shard_index = shard_index;
   2356         } else {
   2357           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   2358             << shard_index << " are both selected to run test " << test_id;
   2359         }
   2360       }
   2361     }
   2362   }
   2363 
   2364   // Check balance: This is not required by the sharding protocol, but is a
   2365   // desirable property for performance.
   2366   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2367     int num_tests_on_shard = 0;
   2368     for (int test_id = 0; test_id < num_tests; test_id++) {
   2369       num_tests_on_shard +=
   2370         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   2371     }
   2372     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   2373   }
   2374 }
   2375 
   2376 // For the same reason we are not explicitly testing everything in the
   2377 // Test class, there are no separate tests for the following classes
   2378 // (except for some trivial cases):
   2379 //
   2380 //   TestCase, UnitTest, UnitTestResultPrinter.
   2381 //
   2382 // Similarly, there are no separate tests for the following macros:
   2383 //
   2384 //   TEST, TEST_F, RUN_ALL_TESTS
   2385 
   2386 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   2387   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   2388   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   2389 }
   2390 
   2391 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2392 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2393 // view them as smoke tests that can be easily reviewed and verified.
   2394 // A more complete set of tests for predicate assertions can be found
   2395 // in gtest_pred_impl_unittest.cc.
   2396 
   2397 // First, some predicates and predicate-formatters needed by the tests.
   2398 
   2399 // Returns true iff the argument is an even number.
   2400 bool IsEven(int n) {
   2401   return (n % 2) == 0;
   2402 }
   2403 
   2404 // A functor that returns true iff the argument is an even number.
   2405 struct IsEvenFunctor {
   2406   bool operator()(int n) { return IsEven(n); }
   2407 };
   2408 
   2409 // A predicate-formatter function that asserts the argument is an even
   2410 // number.
   2411 AssertionResult AssertIsEven(const char* expr, int n) {
   2412   if (IsEven(n)) {
   2413     return AssertionSuccess();
   2414   }
   2415 
   2416   Message msg;
   2417   msg << expr << " evaluates to " << n << ", which is not even.";
   2418   return AssertionFailure(msg);
   2419 }
   2420 
   2421 // A predicate-formatter functor that asserts the argument is an even
   2422 // number.
   2423 struct AssertIsEvenFunctor {
   2424   AssertionResult operator()(const char* expr, int n) {
   2425     return AssertIsEven(expr, n);
   2426   }
   2427 };
   2428 
   2429 // Returns true iff the sum of the arguments is an even number.
   2430 bool SumIsEven2(int n1, int n2) {
   2431   return IsEven(n1 + n2);
   2432 }
   2433 
   2434 // A functor that returns true iff the sum of the arguments is an even
   2435 // number.
   2436 struct SumIsEven3Functor {
   2437   bool operator()(int n1, int n2, int n3) {
   2438     return IsEven(n1 + n2 + n3);
   2439   }
   2440 };
   2441 
   2442 // A predicate-formatter function that asserts the sum of the
   2443 // arguments is an even number.
   2444 AssertionResult AssertSumIsEven4(
   2445     const char* e1, const char* e2, const char* e3, const char* e4,
   2446     int n1, int n2, int n3, int n4) {
   2447   const int sum = n1 + n2 + n3 + n4;
   2448   if (IsEven(sum)) {
   2449     return AssertionSuccess();
   2450   }
   2451 
   2452   Message msg;
   2453   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2454       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2455       << ") evaluates to " << sum << ", which is not even.";
   2456   return AssertionFailure(msg);
   2457 }
   2458 
   2459 // A predicate-formatter functor that asserts the sum of the arguments
   2460 // is an even number.
   2461 struct AssertSumIsEven5Functor {
   2462   AssertionResult operator()(
   2463       const char* e1, const char* e2, const char* e3, const char* e4,
   2464       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2465     const int sum = n1 + n2 + n3 + n4 + n5;
   2466     if (IsEven(sum)) {
   2467       return AssertionSuccess();
   2468     }
   2469 
   2470     Message msg;
   2471     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2472         << " ("
   2473         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2474         << ") evaluates to " << sum << ", which is not even.";
   2475     return AssertionFailure(msg);
   2476   }
   2477 };
   2478 
   2479 
   2480 // Tests unary predicate assertions.
   2481 
   2482 // Tests unary predicate assertions that don't use a custom formatter.
   2483 TEST(Pred1Test, WithoutFormat) {
   2484   // Success cases.
   2485   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2486   ASSERT_PRED1(IsEven, 4);
   2487 
   2488   // Failure cases.
   2489   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2490     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2491   }, "This failure is expected.");
   2492   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2493                        "evaluates to false");
   2494 }
   2495 
   2496 // Tests unary predicate assertions that use a custom formatter.
   2497 TEST(Pred1Test, WithFormat) {
   2498   // Success cases.
   2499   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2500   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2501     << "This failure is UNEXPECTED!";
   2502 
   2503   // Failure cases.
   2504   const int n = 5;
   2505   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2506                           "n evaluates to 5, which is not even.");
   2507   EXPECT_FATAL_FAILURE({  // NOLINT
   2508     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2509   }, "This failure is expected.");
   2510 }
   2511 
   2512 // Tests that unary predicate assertions evaluates their arguments
   2513 // exactly once.
   2514 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2515   // A success case.
   2516   static int n = 0;
   2517   EXPECT_PRED1(IsEven, n++);
   2518   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2519 
   2520   // A failure case.
   2521   EXPECT_FATAL_FAILURE({  // NOLINT
   2522     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2523         << "This failure is expected.";
   2524   }, "This failure is expected.");
   2525   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2526 }
   2527 
   2528 
   2529 // Tests predicate assertions whose arity is >= 2.
   2530 
   2531 // Tests predicate assertions that don't use a custom formatter.
   2532 TEST(PredTest, WithoutFormat) {
   2533   // Success cases.
   2534   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2535   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2536 
   2537   // Failure cases.
   2538   const int n1 = 1;
   2539   const int n2 = 2;
   2540   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2541     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2542   }, "This failure is expected.");
   2543   EXPECT_FATAL_FAILURE({  // NOLINT
   2544     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2545   }, "evaluates to false");
   2546 }
   2547 
   2548 // Tests predicate assertions that use a custom formatter.
   2549 TEST(PredTest, WithFormat) {
   2550   // Success cases.
   2551   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2552     "This failure is UNEXPECTED!";
   2553   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2554 
   2555   // Failure cases.
   2556   const int n1 = 1;
   2557   const int n2 = 2;
   2558   const int n3 = 4;
   2559   const int n4 = 6;
   2560   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2561     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2562   }, "evaluates to 13, which is not even.");
   2563   EXPECT_FATAL_FAILURE({  // NOLINT
   2564     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2565         << "This failure is expected.";
   2566   }, "This failure is expected.");
   2567 }
   2568 
   2569 // Tests that predicate assertions evaluates their arguments
   2570 // exactly once.
   2571 TEST(PredTest, SingleEvaluationOnFailure) {
   2572   // A success case.
   2573   int n1 = 0;
   2574   int n2 = 0;
   2575   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2576   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2577   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2578 
   2579   // Another success case.
   2580   n1 = n2 = 0;
   2581   int n3 = 0;
   2582   int n4 = 0;
   2583   int n5 = 0;
   2584   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2585                       n1++, n2++, n3++, n4++, n5++)
   2586                         << "This failure is UNEXPECTED!";
   2587   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2588   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2589   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2590   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2591   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2592 
   2593   // A failure case.
   2594   n1 = n2 = n3 = 0;
   2595   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2596     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2597         << "This failure is expected.";
   2598   }, "This failure is expected.");
   2599   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2600   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2601   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2602 
   2603   // Another failure case.
   2604   n1 = n2 = n3 = n4 = 0;
   2605   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2606     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2607   }, "evaluates to 1, which is not even.");
   2608   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2609   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2610   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2611   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2612 }
   2613 
   2614 
   2615 // Some helper functions for testing using overloaded/template
   2616 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2617 
   2618 bool IsPositive(int n) {
   2619   return n > 0;
   2620 }
   2621 
   2622 bool IsPositive(double x) {
   2623   return x > 0;
   2624 }
   2625 
   2626 template <typename T>
   2627 bool IsNegative(T x) {
   2628   return x < 0;
   2629 }
   2630 
   2631 template <typename T1, typename T2>
   2632 bool GreaterThan(T1 x1, T2 x2) {
   2633   return x1 > x2;
   2634 }
   2635 
   2636 // Tests that overloaded functions can be used in *_PRED* as long as
   2637 // their types are explicitly specified.
   2638 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2639   // C++Builder requires C-style casts rather than static_cast.
   2640   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2641   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2642 }
   2643 
   2644 // Tests that template functions can be used in *_PRED* as long as
   2645 // their types are explicitly specified.
   2646 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2647   EXPECT_PRED1(IsNegative<int>, -5);
   2648   // Makes sure that we can handle templates with more than one
   2649   // parameter.
   2650   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2651 }
   2652 
   2653 
   2654 // Some helper functions for testing using overloaded/template
   2655 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2656 
   2657 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2658   return n > 0 ? AssertionSuccess() :
   2659       AssertionFailure(Message() << "Failure");
   2660 }
   2661 
   2662 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2663   return x > 0 ? AssertionSuccess() :
   2664       AssertionFailure(Message() << "Failure");
   2665 }
   2666 
   2667 template <typename T>
   2668 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2669   return x < 0 ? AssertionSuccess() :
   2670       AssertionFailure(Message() << "Failure");
   2671 }
   2672 
   2673 template <typename T1, typename T2>
   2674 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2675                              const T1& x1, const T2& x2) {
   2676   return x1 == x2 ? AssertionSuccess() :
   2677       AssertionFailure(Message() << "Failure");
   2678 }
   2679 
   2680 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2681 // without explicitly specifying their types.
   2682 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2683   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2684   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2685 }
   2686 
   2687 // Tests that template functions can be used in *_PRED_FORMAT* without
   2688 // explicitly specifying their types.
   2689 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2690   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2691   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2692 }
   2693 
   2694 
   2695 // Tests string assertions.
   2696 
   2697 // Tests ASSERT_STREQ with non-NULL arguments.
   2698 TEST(StringAssertionTest, ASSERT_STREQ) {
   2699   const char * const p1 = "good";
   2700   ASSERT_STREQ(p1, p1);
   2701 
   2702   // Let p2 have the same content as p1, but be at a different address.
   2703   const char p2[] = "good";
   2704   ASSERT_STREQ(p1, p2);
   2705 
   2706   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2707                        "Expected: \"bad\"");
   2708 }
   2709 
   2710 // Tests ASSERT_STREQ with NULL arguments.
   2711 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2712   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2713   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2714                        "non-null");
   2715 }
   2716 
   2717 // Tests ASSERT_STREQ with NULL arguments.
   2718 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2719   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2720                        "non-null");
   2721 }
   2722 
   2723 // Tests ASSERT_STRNE.
   2724 TEST(StringAssertionTest, ASSERT_STRNE) {
   2725   ASSERT_STRNE("hi", "Hi");
   2726   ASSERT_STRNE("Hi", NULL);
   2727   ASSERT_STRNE(NULL, "Hi");
   2728   ASSERT_STRNE("", NULL);
   2729   ASSERT_STRNE(NULL, "");
   2730   ASSERT_STRNE("", "Hi");
   2731   ASSERT_STRNE("Hi", "");
   2732   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2733                        "\"Hi\" vs \"Hi\"");
   2734 }
   2735 
   2736 // Tests ASSERT_STRCASEEQ.
   2737 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2738   ASSERT_STRCASEEQ("hi", "Hi");
   2739   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2740 
   2741   ASSERT_STRCASEEQ("", "");
   2742   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2743                        "(ignoring case)");
   2744 }
   2745 
   2746 // Tests ASSERT_STRCASENE.
   2747 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2748   ASSERT_STRCASENE("hi1", "Hi2");
   2749   ASSERT_STRCASENE("Hi", NULL);
   2750   ASSERT_STRCASENE(NULL, "Hi");
   2751   ASSERT_STRCASENE("", NULL);
   2752   ASSERT_STRCASENE(NULL, "");
   2753   ASSERT_STRCASENE("", "Hi");
   2754   ASSERT_STRCASENE("Hi", "");
   2755   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2756                        "(ignoring case)");
   2757 }
   2758 
   2759 // Tests *_STREQ on wide strings.
   2760 TEST(StringAssertionTest, STREQ_Wide) {
   2761   // NULL strings.
   2762   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2763 
   2764   // Empty strings.
   2765   ASSERT_STREQ(L"", L"");
   2766 
   2767   // Non-null vs NULL.
   2768   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2769                           "non-null");
   2770 
   2771   // Equal strings.
   2772   EXPECT_STREQ(L"Hi", L"Hi");
   2773 
   2774   // Unequal strings.
   2775   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2776                           "Abc");
   2777 
   2778   // Strings containing wide characters.
   2779   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2780                           "abc");
   2781 }
   2782 
   2783 // Tests *_STRNE on wide strings.
   2784 TEST(StringAssertionTest, STRNE_Wide) {
   2785   // NULL strings.
   2786   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2787     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2788   }, "");
   2789 
   2790   // Empty strings.
   2791   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2792                           "L\"\"");
   2793 
   2794   // Non-null vs NULL.
   2795   ASSERT_STRNE(L"non-null", NULL);
   2796 
   2797   // Equal strings.
   2798   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2799                           "L\"Hi\"");
   2800 
   2801   // Unequal strings.
   2802   EXPECT_STRNE(L"abc", L"Abc");
   2803 
   2804   // Strings containing wide characters.
   2805   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2806                           "abc");
   2807 }
   2808 
   2809 // Tests for ::testing::IsSubstring().
   2810 
   2811 // Tests that IsSubstring() returns the correct result when the input
   2812 // argument type is const char*.
   2813 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2814   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2815   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2816   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2817 
   2818   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2819   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2820 }
   2821 
   2822 // Tests that IsSubstring() returns the correct result when the input
   2823 // argument type is const wchar_t*.
   2824 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2825   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2826   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2827   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2828 
   2829   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2830   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2831 }
   2832 
   2833 // Tests that IsSubstring() generates the correct message when the input
   2834 // argument type is const char*.
   2835 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2836   EXPECT_STREQ("Value of: needle_expr\n"
   2837                "  Actual: \"needle\"\n"
   2838                "Expected: a substring of haystack_expr\n"
   2839                "Which is: \"haystack\"",
   2840                IsSubstring("needle_expr", "haystack_expr",
   2841                            "needle", "haystack").failure_message());
   2842 }
   2843 
   2844 #if GTEST_HAS_STD_STRING
   2845 
   2846 // Tests that IsSubstring returns the correct result when the input
   2847 // argument type is ::std::string.
   2848 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2849   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2850   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2851 }
   2852 
   2853 #endif  // GTEST_HAS_STD_STRING
   2854 
   2855 #if GTEST_HAS_STD_WSTRING
   2856 // Tests that IsSubstring returns the correct result when the input
   2857 // argument type is ::std::wstring.
   2858 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2859   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2860   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2861 }
   2862 
   2863 // Tests that IsSubstring() generates the correct message when the input
   2864 // argument type is ::std::wstring.
   2865 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2866   EXPECT_STREQ("Value of: needle_expr\n"
   2867                "  Actual: L\"needle\"\n"
   2868                "Expected: a substring of haystack_expr\n"
   2869                "Which is: L\"haystack\"",
   2870                IsSubstring(
   2871                    "needle_expr", "haystack_expr",
   2872                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2873 }
   2874 
   2875 #endif  // GTEST_HAS_STD_WSTRING
   2876 
   2877 // Tests for ::testing::IsNotSubstring().
   2878 
   2879 // Tests that IsNotSubstring() returns the correct result when the input
   2880 // argument type is const char*.
   2881 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2882   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2883   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2884 }
   2885 
   2886 // Tests that IsNotSubstring() returns the correct result when the input
   2887 // argument type is const wchar_t*.
   2888 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2889   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2890   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2891 }
   2892 
   2893 // Tests that IsNotSubstring() generates the correct message when the input
   2894 // argument type is const wchar_t*.
   2895 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2896   EXPECT_STREQ("Value of: needle_expr\n"
   2897                "  Actual: L\"needle\"\n"
   2898                "Expected: not a substring of haystack_expr\n"
   2899                "Which is: L\"two needles\"",
   2900                IsNotSubstring(
   2901                    "needle_expr", "haystack_expr",
   2902                    L"needle", L"two needles").failure_message());
   2903 }
   2904 
   2905 #if GTEST_HAS_STD_STRING
   2906 
   2907 // Tests that IsNotSubstring returns the correct result when the input
   2908 // argument type is ::std::string.
   2909 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2910   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2911   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2912 }
   2913 
   2914 // Tests that IsNotSubstring() generates the correct message when the input
   2915 // argument type is ::std::string.
   2916 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2917   EXPECT_STREQ("Value of: needle_expr\n"
   2918                "  Actual: \"needle\"\n"
   2919                "Expected: not a substring of haystack_expr\n"
   2920                "Which is: \"two needles\"",
   2921                IsNotSubstring(
   2922                    "needle_expr", "haystack_expr",
   2923                    ::std::string("needle"), "two needles").failure_message());
   2924 }
   2925 
   2926 #endif  // GTEST_HAS_STD_STRING
   2927 
   2928 #if GTEST_HAS_STD_WSTRING
   2929 
   2930 // Tests that IsNotSubstring returns the correct result when the input
   2931 // argument type is ::std::wstring.
   2932 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2933   EXPECT_FALSE(
   2934       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2935   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2936 }
   2937 
   2938 #endif  // GTEST_HAS_STD_WSTRING
   2939 
   2940 // Tests floating-point assertions.
   2941 
   2942 template <typename RawType>
   2943 class FloatingPointTest : public Test {
   2944  protected:
   2945 
   2946   // Pre-calculated numbers to be used by the tests.
   2947   struct TestValues {
   2948     RawType close_to_positive_zero;
   2949     RawType close_to_negative_zero;
   2950     RawType further_from_negative_zero;
   2951 
   2952     RawType close_to_one;
   2953     RawType further_from_one;
   2954 
   2955     RawType infinity;
   2956     RawType close_to_infinity;
   2957     RawType further_from_infinity;
   2958 
   2959     RawType nan1;
   2960     RawType nan2;
   2961   };
   2962 
   2963   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2964   typedef typename Floating::Bits Bits;
   2965 
   2966   virtual void SetUp() {
   2967     const size_t max_ulps = Floating::kMaxUlps;
   2968 
   2969     // The bits that represent 0.0.
   2970     const Bits zero_bits = Floating(0).bits();
   2971 
   2972     // Makes some numbers close to 0.0.
   2973     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2974         zero_bits + max_ulps/2);
   2975     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2976         zero_bits + max_ulps - max_ulps/2);
   2977     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2978         zero_bits + max_ulps + 1 - max_ulps/2);
   2979 
   2980     // The bits that represent 1.0.
   2981     const Bits one_bits = Floating(1).bits();
   2982 
   2983     // Makes some numbers close to 1.0.
   2984     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2985     values_.further_from_one = Floating::ReinterpretBits(
   2986         one_bits + max_ulps + 1);
   2987 
   2988     // +infinity.
   2989     values_.infinity = Floating::Infinity();
   2990 
   2991     // The bits that represent +infinity.
   2992     const Bits infinity_bits = Floating(values_.infinity).bits();
   2993 
   2994     // Makes some numbers close to infinity.
   2995     values_.close_to_infinity = Floating::ReinterpretBits(
   2996         infinity_bits - max_ulps);
   2997     values_.further_from_infinity = Floating::ReinterpretBits(
   2998         infinity_bits - max_ulps - 1);
   2999 
   3000     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   3001     // our NaN's are quiet; trying to process a signaling NaN would raise an
   3002     // exception if our environment enables floating point exceptions.
   3003     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   3004         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   3005     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   3006         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   3007   }
   3008 
   3009   void TestSize() {
   3010     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   3011   }
   3012 
   3013   static TestValues values_;
   3014 };
   3015 
   3016 template <typename RawType>
   3017 typename FloatingPointTest<RawType>::TestValues
   3018     FloatingPointTest<RawType>::values_;
   3019 
   3020 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   3021 typedef FloatingPointTest<float> FloatTest;
   3022 
   3023 // Tests that the size of Float::Bits matches the size of float.
   3024 TEST_F(FloatTest, Size) {
   3025   TestSize();
   3026 }
   3027 
   3028 // Tests comparing with +0 and -0.
   3029 TEST_F(FloatTest, Zeros) {
   3030   EXPECT_FLOAT_EQ(0.0, -0.0);
   3031   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   3032                           "1.0");
   3033   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   3034                        "1.5");
   3035 }
   3036 
   3037 // Tests comparing numbers close to 0.
   3038 //
   3039 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   3040 // overflow occurs when comparing numbers whose absolute value is very
   3041 // small.
   3042 TEST_F(FloatTest, AlmostZeros) {
   3043   // In C++Builder, names within local classes (such as used by
   3044   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3045   // scoping class.  Use a static local alias as a workaround.
   3046   static const FloatTest::TestValues& v(this->values_);
   3047 
   3048   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   3049   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   3050   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   3051 
   3052   EXPECT_FATAL_FAILURE({  // NOLINT
   3053     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   3054                     v.further_from_negative_zero);
   3055   }, "v.further_from_negative_zero");
   3056 }
   3057 
   3058 // Tests comparing numbers close to each other.
   3059 TEST_F(FloatTest, SmallDiff) {
   3060   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   3061   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   3062                           "values_.further_from_one");
   3063 }
   3064 
   3065 // Tests comparing numbers far apart.
   3066 TEST_F(FloatTest, LargeDiff) {
   3067   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   3068                           "3.0");
   3069 }
   3070 
   3071 // Tests comparing with infinity.
   3072 //
   3073 // This ensures that no overflow occurs when comparing numbers whose
   3074 // absolute value is very large.
   3075 TEST_F(FloatTest, Infinity) {
   3076   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   3077   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   3078 #if !GTEST_OS_SYMBIAN
   3079   // Nokia's STLport crashes if we try to output infinity or NaN.
   3080   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   3081                           "-values_.infinity");
   3082 
   3083   // This is interesting as the representations of infinity and nan1
   3084   // are only 1 DLP apart.
   3085   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   3086                           "values_.nan1");
   3087 #endif  // !GTEST_OS_SYMBIAN
   3088 }
   3089 
   3090 // Tests that comparing with NAN always returns false.
   3091 TEST_F(FloatTest, NaN) {
   3092 #if !GTEST_OS_SYMBIAN
   3093 // Nokia's STLport crashes if we try to output infinity or NaN.
   3094 
   3095   // In C++Builder, names within local classes (such as used by
   3096   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3097   // scoping class.  Use a static local alias as a workaround.
   3098   static const FloatTest::TestValues& v(this->values_);
   3099 
   3100   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   3101                           "v.nan1");
   3102   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   3103                           "v.nan2");
   3104   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   3105                           "v.nan1");
   3106 
   3107   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   3108                        "v.infinity");
   3109 #endif  // !GTEST_OS_SYMBIAN
   3110 }
   3111 
   3112 // Tests that *_FLOAT_EQ are reflexive.
   3113 TEST_F(FloatTest, Reflexive) {
   3114   EXPECT_FLOAT_EQ(0.0, 0.0);
   3115   EXPECT_FLOAT_EQ(1.0, 1.0);
   3116   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   3117 }
   3118 
   3119 // Tests that *_FLOAT_EQ are commutative.
   3120 TEST_F(FloatTest, Commutative) {
   3121   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   3122   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   3123 
   3124   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   3125   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   3126                           "1.0");
   3127 }
   3128 
   3129 // Tests EXPECT_NEAR.
   3130 TEST_F(FloatTest, EXPECT_NEAR) {
   3131   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   3132   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   3133   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.2f, 0.1f),  // NOLINT
   3134                           "The difference between 1.0f and 1.2f is 0.2, "
   3135                           "which exceeds 0.1f");
   3136   // To work around a bug in gcc 2.95.0, there is intentionally no
   3137   // space after the first comma in the previous line.
   3138 }
   3139 
   3140 // Tests ASSERT_NEAR.
   3141 TEST_F(FloatTest, ASSERT_NEAR) {
   3142   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   3143   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   3144   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.2f, 0.1f),  // NOLINT
   3145                        "The difference between 1.0f and 1.2f is 0.2, "
   3146                        "which exceeds 0.1f");
   3147   // To work around a bug in gcc 2.95.0, there is intentionally no
   3148   // space after the first comma in the previous line.
   3149 }
   3150 
   3151 // Tests the cases where FloatLE() should succeed.
   3152 TEST_F(FloatTest, FloatLESucceeds) {
   3153   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   3154   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   3155 
   3156   // or when val1 is greater than, but almost equals to, val2.
   3157   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   3158 }
   3159 
   3160 // Tests the cases where FloatLE() should fail.
   3161 TEST_F(FloatTest, FloatLEFails) {
   3162   // When val1 is greater than val2 by a large margin,
   3163   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   3164                           "(2.0f) <= (1.0f)");
   3165 
   3166   // or by a small yet non-negligible margin,
   3167   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3168     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   3169   }, "(values_.further_from_one) <= (1.0f)");
   3170 
   3171 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3172   // Nokia's STLport crashes if we try to output infinity or NaN.
   3173   // C++Builder gives bad results for ordered comparisons involving NaNs
   3174   // due to compiler bugs.
   3175   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3176     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   3177   }, "(values_.nan1) <= (values_.infinity)");
   3178   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3179     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   3180   }, "(-values_.infinity) <= (values_.nan1)");
   3181   EXPECT_FATAL_FAILURE({  // NOLINT
   3182     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   3183   }, "(values_.nan1) <= (values_.nan1)");
   3184 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3185 }
   3186 
   3187 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   3188 typedef FloatingPointTest<double> DoubleTest;
   3189 
   3190 // Tests that the size of Double::Bits matches the size of double.
   3191 TEST_F(DoubleTest, Size) {
   3192   TestSize();
   3193 }
   3194 
   3195 // Tests comparing with +0 and -0.
   3196 TEST_F(DoubleTest, Zeros) {
   3197   EXPECT_DOUBLE_EQ(0.0, -0.0);
   3198   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   3199                           "1.0");
   3200   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   3201                        "1.0");
   3202 }
   3203 
   3204 // Tests comparing numbers close to 0.
   3205 //
   3206 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   3207 // overflow occurs when comparing numbers whose absolute value is very
   3208 // small.
   3209 TEST_F(DoubleTest, AlmostZeros) {
   3210   // In C++Builder, names within local classes (such as used by
   3211   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3212   // scoping class.  Use a static local alias as a workaround.
   3213   static const DoubleTest::TestValues& v(this->values_);
   3214 
   3215   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   3216   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   3217   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   3218 
   3219   EXPECT_FATAL_FAILURE({  // NOLINT
   3220     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   3221                      v.further_from_negative_zero);
   3222   }, "v.further_from_negative_zero");
   3223 }
   3224 
   3225 // Tests comparing numbers close to each other.
   3226 TEST_F(DoubleTest, SmallDiff) {
   3227   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   3228   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   3229                           "values_.further_from_one");
   3230 }
   3231 
   3232 // Tests comparing numbers far apart.
   3233 TEST_F(DoubleTest, LargeDiff) {
   3234   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   3235                           "3.0");
   3236 }
   3237 
   3238 // Tests comparing with infinity.
   3239 //
   3240 // This ensures that no overflow occurs when comparing numbers whose
   3241 // absolute value is very large.
   3242 TEST_F(DoubleTest, Infinity) {
   3243   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   3244   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   3245 #if !GTEST_OS_SYMBIAN
   3246   // Nokia's STLport crashes if we try to output infinity or NaN.
   3247   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   3248                           "-values_.infinity");
   3249 
   3250   // This is interesting as the representations of infinity_ and nan1_
   3251   // are only 1 DLP apart.
   3252   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   3253                           "values_.nan1");
   3254 #endif  // !GTEST_OS_SYMBIAN
   3255 }
   3256 
   3257 // Tests that comparing with NAN always returns false.
   3258 TEST_F(DoubleTest, NaN) {
   3259 #if !GTEST_OS_SYMBIAN
   3260   // In C++Builder, names within local classes (such as used by
   3261   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3262   // scoping class.  Use a static local alias as a workaround.
   3263   static const DoubleTest::TestValues& v(this->values_);
   3264 
   3265   // Nokia's STLport crashes if we try to output infinity or NaN.
   3266   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   3267                           "v.nan1");
   3268   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   3269   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3270   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3271                        "v.infinity");
   3272 #endif  // !GTEST_OS_SYMBIAN
   3273 }
   3274 
   3275 // Tests that *_DOUBLE_EQ are reflexive.
   3276 TEST_F(DoubleTest, Reflexive) {
   3277   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3278   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3279 #if !GTEST_OS_SYMBIAN
   3280   // Nokia's STLport crashes if we try to output infinity or NaN.
   3281   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3282 #endif  // !GTEST_OS_SYMBIAN
   3283 }
   3284 
   3285 // Tests that *_DOUBLE_EQ are commutative.
   3286 TEST_F(DoubleTest, Commutative) {
   3287   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3288   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3289 
   3290   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3291   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3292                           "1.0");
   3293 }
   3294 
   3295 // Tests EXPECT_NEAR.
   3296 TEST_F(DoubleTest, EXPECT_NEAR) {
   3297   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3298   EXPECT_NEAR(2.0, 3.0, 1.0);
   3299   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1),  // NOLINT
   3300                           "The difference between 1.0 and 1.2 is 0.2, "
   3301                           "which exceeds 0.1");
   3302   // To work around a bug in gcc 2.95.0, there is intentionally no
   3303   // space after the first comma in the previous statement.
   3304 }
   3305 
   3306 // Tests ASSERT_NEAR.
   3307 TEST_F(DoubleTest, ASSERT_NEAR) {
   3308   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3309   ASSERT_NEAR(2.0, 3.0, 1.0);
   3310   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1),  // NOLINT
   3311                        "The difference between 1.0 and 1.2 is 0.2, "
   3312                        "which exceeds 0.1");
   3313   // To work around a bug in gcc 2.95.0, there is intentionally no
   3314   // space after the first comma in the previous statement.
   3315 }
   3316 
   3317 // Tests the cases where DoubleLE() should succeed.
   3318 TEST_F(DoubleTest, DoubleLESucceeds) {
   3319   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3320   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3321 
   3322   // or when val1 is greater than, but almost equals to, val2.
   3323   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3324 }
   3325 
   3326 // Tests the cases where DoubleLE() should fail.
   3327 TEST_F(DoubleTest, DoubleLEFails) {
   3328   // When val1 is greater than val2 by a large margin,
   3329   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3330                           "(2.0) <= (1.0)");
   3331 
   3332   // or by a small yet non-negligible margin,
   3333   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3334     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3335   }, "(values_.further_from_one) <= (1.0)");
   3336 
   3337 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3338   // Nokia's STLport crashes if we try to output infinity or NaN.
   3339   // C++Builder gives bad results for ordered comparisons involving NaNs
   3340   // due to compiler bugs.
   3341   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3342     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3343   }, "(values_.nan1) <= (values_.infinity)");
   3344   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3345     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3346   }, " (-values_.infinity) <= (values_.nan1)");
   3347   EXPECT_FATAL_FAILURE({  // NOLINT
   3348     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3349   }, "(values_.nan1) <= (values_.nan1)");
   3350 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3351 }
   3352 
   3353 
   3354 // Verifies that a test or test case whose name starts with DISABLED_ is
   3355 // not run.
   3356 
   3357 // A test whose name starts with DISABLED_.
   3358 // Should not run.
   3359 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3360   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3361 }
   3362 
   3363 // A test whose name does not start with DISABLED_.
   3364 // Should run.
   3365 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3366   EXPECT_EQ(1, 1);
   3367 }
   3368 
   3369 // A test case whose name starts with DISABLED_.
   3370 // Should not run.
   3371 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3372   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3373 }
   3374 
   3375 // A test case and test whose names start with DISABLED_.
   3376 // Should not run.
   3377 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3378   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3379 }
   3380 
   3381 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3382 // TearDownTestCase() are not called.
   3383 class DisabledTestsTest : public Test {
   3384  protected:
   3385   static void SetUpTestCase() {
   3386     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3387               "SetupTestCase() should not be called.";
   3388   }
   3389 
   3390   static void TearDownTestCase() {
   3391     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3392               "TearDownTestCase() should not be called.";
   3393   }
   3394 };
   3395 
   3396 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3397   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3398 }
   3399 
   3400 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3401   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3402 }
   3403 
   3404 // Tests that disabled typed tests aren't run.
   3405 
   3406 #if GTEST_HAS_TYPED_TEST
   3407 
   3408 template <typename T>
   3409 class TypedTest : public Test {
   3410 };
   3411 
   3412 typedef testing::Types<int, double> NumericTypes;
   3413 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3414 
   3415 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3416   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3417 }
   3418 
   3419 template <typename T>
   3420 class DISABLED_TypedTest : public Test {
   3421 };
   3422 
   3423 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3424 
   3425 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3426   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3427 }
   3428 
   3429 #endif  // GTEST_HAS_TYPED_TEST
   3430 
   3431 // Tests that disabled type-parameterized tests aren't run.
   3432 
   3433 #if GTEST_HAS_TYPED_TEST_P
   3434 
   3435 template <typename T>
   3436 class TypedTestP : public Test {
   3437 };
   3438 
   3439 TYPED_TEST_CASE_P(TypedTestP);
   3440 
   3441 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3442   FAIL() << "Unexpected failure: "
   3443          << "Disabled type-parameterized test should not run.";
   3444 }
   3445 
   3446 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3447 
   3448 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3449 
   3450 template <typename T>
   3451 class DISABLED_TypedTestP : public Test {
   3452 };
   3453 
   3454 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3455 
   3456 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3457   FAIL() << "Unexpected failure: "
   3458          << "Disabled type-parameterized test should not run.";
   3459 }
   3460 
   3461 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3462 
   3463 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3464 
   3465 #endif  // GTEST_HAS_TYPED_TEST_P
   3466 
   3467 // Tests that assertion macros evaluate their arguments exactly once.
   3468 
   3469 class SingleEvaluationTest : public Test {
   3470  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3471   // This helper function is needed by the FailedASSERT_STREQ test
   3472   // below.  It's public to work around C++Builder's bug with scoping local
   3473   // classes.
   3474   static void CompareAndIncrementCharPtrs() {
   3475     ASSERT_STREQ(p1_++, p2_++);
   3476   }
   3477 
   3478   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3479   // public to work around C++Builder's bug with scoping local classes.
   3480   static void CompareAndIncrementInts() {
   3481     ASSERT_NE(a_++, b_++);
   3482   }
   3483 
   3484  protected:
   3485   SingleEvaluationTest() {
   3486     p1_ = s1_;
   3487     p2_ = s2_;
   3488     a_ = 0;
   3489     b_ = 0;
   3490   }
   3491 
   3492   static const char* const s1_;
   3493   static const char* const s2_;
   3494   static const char* p1_;
   3495   static const char* p2_;
   3496 
   3497   static int a_;
   3498   static int b_;
   3499 };
   3500 
   3501 const char* const SingleEvaluationTest::s1_ = "01234";
   3502 const char* const SingleEvaluationTest::s2_ = "abcde";
   3503 const char* SingleEvaluationTest::p1_;
   3504 const char* SingleEvaluationTest::p2_;
   3505 int SingleEvaluationTest::a_;
   3506 int SingleEvaluationTest::b_;
   3507 
   3508 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3509 // exactly once.
   3510 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3511   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3512                        "p2_++");
   3513   EXPECT_EQ(s1_ + 1, p1_);
   3514   EXPECT_EQ(s2_ + 1, p2_);
   3515 }
   3516 
   3517 // Tests that string assertion arguments are evaluated exactly once.
   3518 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3519   // successful EXPECT_STRNE
   3520   EXPECT_STRNE(p1_++, p2_++);
   3521   EXPECT_EQ(s1_ + 1, p1_);
   3522   EXPECT_EQ(s2_ + 1, p2_);
   3523 
   3524   // failed EXPECT_STRCASEEQ
   3525   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3526                           "ignoring case");
   3527   EXPECT_EQ(s1_ + 2, p1_);
   3528   EXPECT_EQ(s2_ + 2, p2_);
   3529 }
   3530 
   3531 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3532 // once.
   3533 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3534   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3535                        "(a_++) != (b_++)");
   3536   EXPECT_EQ(1, a_);
   3537   EXPECT_EQ(1, b_);
   3538 }
   3539 
   3540 // Tests that assertion arguments are evaluated exactly once.
   3541 TEST_F(SingleEvaluationTest, OtherCases) {
   3542   // successful EXPECT_TRUE
   3543   EXPECT_TRUE(0 == a_++);  // NOLINT
   3544   EXPECT_EQ(1, a_);
   3545 
   3546   // failed EXPECT_TRUE
   3547   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3548   EXPECT_EQ(2, a_);
   3549 
   3550   // successful EXPECT_GT
   3551   EXPECT_GT(a_++, b_++);
   3552   EXPECT_EQ(3, a_);
   3553   EXPECT_EQ(1, b_);
   3554 
   3555   // failed EXPECT_LT
   3556   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3557   EXPECT_EQ(4, a_);
   3558   EXPECT_EQ(2, b_);
   3559 
   3560   // successful ASSERT_TRUE
   3561   ASSERT_TRUE(0 < a_++);  // NOLINT
   3562   EXPECT_EQ(5, a_);
   3563 
   3564   // successful ASSERT_GT
   3565   ASSERT_GT(a_++, b_++);
   3566   EXPECT_EQ(6, a_);
   3567   EXPECT_EQ(3, b_);
   3568 }
   3569 
   3570 #if GTEST_HAS_EXCEPTIONS
   3571 
   3572 void ThrowAnInteger() {
   3573   throw 1;
   3574 }
   3575 
   3576 // Tests that assertion arguments are evaluated exactly once.
   3577 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3578   // successful EXPECT_THROW
   3579   EXPECT_THROW({  // NOLINT
   3580     a_++;
   3581     ThrowAnInteger();
   3582   }, int);
   3583   EXPECT_EQ(1, a_);
   3584 
   3585   // failed EXPECT_THROW, throws different
   3586   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3587     a_++;
   3588     ThrowAnInteger();
   3589   }, bool), "throws a different type");
   3590   EXPECT_EQ(2, a_);
   3591 
   3592   // failed EXPECT_THROW, throws nothing
   3593   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3594   EXPECT_EQ(3, a_);
   3595 
   3596   // successful EXPECT_NO_THROW
   3597   EXPECT_NO_THROW(a_++);
   3598   EXPECT_EQ(4, a_);
   3599 
   3600   // failed EXPECT_NO_THROW
   3601   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3602     a_++;
   3603     ThrowAnInteger();
   3604   }), "it throws");
   3605   EXPECT_EQ(5, a_);
   3606 
   3607   // successful EXPECT_ANY_THROW
   3608   EXPECT_ANY_THROW({  // NOLINT
   3609     a_++;
   3610     ThrowAnInteger();
   3611   });
   3612   EXPECT_EQ(6, a_);
   3613 
   3614   // failed EXPECT_ANY_THROW
   3615   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3616   EXPECT_EQ(7, a_);
   3617 }
   3618 
   3619 #endif  // GTEST_HAS_EXCEPTIONS
   3620 
   3621 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3622 class NoFatalFailureTest : public Test {
   3623  protected:
   3624   void Succeeds() {}
   3625   void FailsNonFatal() {
   3626     ADD_FAILURE() << "some non-fatal failure";
   3627   }
   3628   void Fails() {
   3629     FAIL() << "some fatal failure";
   3630   }
   3631 
   3632   void DoAssertNoFatalFailureOnFails() {
   3633     ASSERT_NO_FATAL_FAILURE(Fails());
   3634     ADD_FAILURE() << "shold not reach here.";
   3635   }
   3636 
   3637   void DoExpectNoFatalFailureOnFails() {
   3638     EXPECT_NO_FATAL_FAILURE(Fails());
   3639     ADD_FAILURE() << "other failure";
   3640   }
   3641 };
   3642 
   3643 TEST_F(NoFatalFailureTest, NoFailure) {
   3644   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3645   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3646 }
   3647 
   3648 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3649   EXPECT_NONFATAL_FAILURE(
   3650       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3651       "some non-fatal failure");
   3652   EXPECT_NONFATAL_FAILURE(
   3653       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3654       "some non-fatal failure");
   3655 }
   3656 
   3657 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3658   TestPartResultArray gtest_failures;
   3659   {
   3660     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3661     DoAssertNoFatalFailureOnFails();
   3662   }
   3663   ASSERT_EQ(2, gtest_failures.size());
   3664   EXPECT_EQ(TestPartResult::kFatalFailure,
   3665             gtest_failures.GetTestPartResult(0).type());
   3666   EXPECT_EQ(TestPartResult::kFatalFailure,
   3667             gtest_failures.GetTestPartResult(1).type());
   3668   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3669                       gtest_failures.GetTestPartResult(0).message());
   3670   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3671                       gtest_failures.GetTestPartResult(1).message());
   3672 }
   3673 
   3674 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3675   TestPartResultArray gtest_failures;
   3676   {
   3677     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3678     DoExpectNoFatalFailureOnFails();
   3679   }
   3680   ASSERT_EQ(3, gtest_failures.size());
   3681   EXPECT_EQ(TestPartResult::kFatalFailure,
   3682             gtest_failures.GetTestPartResult(0).type());
   3683   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3684             gtest_failures.GetTestPartResult(1).type());
   3685   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3686             gtest_failures.GetTestPartResult(2).type());
   3687   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3688                       gtest_failures.GetTestPartResult(0).message());
   3689   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3690                       gtest_failures.GetTestPartResult(1).message());
   3691   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3692                       gtest_failures.GetTestPartResult(2).message());
   3693 }
   3694 
   3695 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3696   TestPartResultArray gtest_failures;
   3697   {
   3698     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3699     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3700   }
   3701   ASSERT_EQ(2, gtest_failures.size());
   3702   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3703             gtest_failures.GetTestPartResult(0).type());
   3704   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3705             gtest_failures.GetTestPartResult(1).type());
   3706   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3707                       gtest_failures.GetTestPartResult(0).message());
   3708   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3709                       gtest_failures.GetTestPartResult(1).message());
   3710 }
   3711 
   3712 // Tests non-string assertions.
   3713 
   3714 // Tests EqFailure(), used for implementing *EQ* assertions.
   3715 TEST(AssertionTest, EqFailure) {
   3716   const String foo_val("5"), bar_val("6");
   3717   const String msg1(
   3718       EqFailure("foo", "bar", foo_val, bar_val, false)
   3719       .failure_message());
   3720   EXPECT_STREQ(
   3721       "Value of: bar\n"
   3722       "  Actual: 6\n"
   3723       "Expected: foo\n"
   3724       "Which is: 5",
   3725       msg1.c_str());
   3726 
   3727   const String msg2(
   3728       EqFailure("foo", "6", foo_val, bar_val, false)
   3729       .failure_message());
   3730   EXPECT_STREQ(
   3731       "Value of: 6\n"
   3732       "Expected: foo\n"
   3733       "Which is: 5",
   3734       msg2.c_str());
   3735 
   3736   const String msg3(
   3737       EqFailure("5", "bar", foo_val, bar_val, false)
   3738       .failure_message());
   3739   EXPECT_STREQ(
   3740       "Value of: bar\n"
   3741       "  Actual: 6\n"
   3742       "Expected: 5",
   3743       msg3.c_str());
   3744 
   3745   const String msg4(
   3746       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3747   EXPECT_STREQ(
   3748       "Value of: 6\n"
   3749       "Expected: 5",
   3750       msg4.c_str());
   3751 
   3752   const String msg5(
   3753       EqFailure("foo", "bar",
   3754                 String("\"x\""), String("\"y\""),
   3755                 true).failure_message());
   3756   EXPECT_STREQ(
   3757       "Value of: bar\n"
   3758       "  Actual: \"y\"\n"
   3759       "Expected: foo (ignoring case)\n"
   3760       "Which is: \"x\"",
   3761       msg5.c_str());
   3762 }
   3763 
   3764 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3765 TEST(AssertionTest, AppendUserMessage) {
   3766   const String foo("foo");
   3767 
   3768   Message msg;
   3769   EXPECT_STREQ("foo",
   3770                AppendUserMessage(foo, msg).c_str());
   3771 
   3772   msg << "bar";
   3773   EXPECT_STREQ("foo\nbar",
   3774                AppendUserMessage(foo, msg).c_str());
   3775 }
   3776 
   3777 #ifdef __BORLANDC__
   3778 // Silences warnings: "Condition is always true", "Unreachable code"
   3779 #pragma option push -w-ccc -w-rch
   3780 #endif
   3781 
   3782 // Tests ASSERT_TRUE.
   3783 TEST(AssertionTest, ASSERT_TRUE) {
   3784   ASSERT_TRUE(2 > 1);  // NOLINT
   3785   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3786                        "2 < 1");
   3787 }
   3788 
   3789 // Tests ASSERT_FALSE.
   3790 TEST(AssertionTest, ASSERT_FALSE) {
   3791   ASSERT_FALSE(2 < 1);  // NOLINT
   3792   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3793                        "Value of: 2 > 1\n"
   3794                        "  Actual: true\n"
   3795                        "Expected: false");
   3796 }
   3797 
   3798 #ifdef __BORLANDC__
   3799 // Restores warnings after previous "#pragma option push" supressed them
   3800 #pragma option pop
   3801 #endif
   3802 
   3803 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3804 // sure that the specialization we did for integer and anonymous enums
   3805 // isn't used for double arguments.
   3806 TEST(ExpectTest, ASSERT_EQ_Double) {
   3807   // A success.
   3808   ASSERT_EQ(5.6, 5.6);
   3809 
   3810   // A failure.
   3811   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3812                        "5.1");
   3813 }
   3814 
   3815 // Tests ASSERT_EQ.
   3816 TEST(AssertionTest, ASSERT_EQ) {
   3817   ASSERT_EQ(5, 2 + 3);
   3818   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3819                        "Value of: 2*3\n"
   3820                        "  Actual: 6\n"
   3821                        "Expected: 5");
   3822 }
   3823 
   3824 // Tests ASSERT_EQ(NULL, pointer).
   3825 #if !GTEST_OS_SYMBIAN
   3826 // The NULL-detection template magic fails to compile with
   3827 // the Nokia compiler and crashes the ARM compiler, hence
   3828 // not testing on Symbian.
   3829 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3830   // A success.
   3831   const char* p = NULL;
   3832   // Some older GCC versions may issue a spurious waring in this or the next
   3833   // assertion statement. This warning should not be suppressed with
   3834   // static_cast since the test verifies the ability to use bare NULL as the
   3835   // expected parameter to the macro.
   3836   ASSERT_EQ(NULL, p);
   3837 
   3838   // A failure.
   3839   static int n = 0;
   3840   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3841                        "Value of: &n\n");
   3842 }
   3843 #endif  // !GTEST_OS_SYMBIAN
   3844 
   3845 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3846 // treated as a null pointer by the compiler, we need to make sure
   3847 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3848 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3849 TEST(ExpectTest, ASSERT_EQ_0) {
   3850   int n = 0;
   3851 
   3852   // A success.
   3853   ASSERT_EQ(0, n);
   3854 
   3855   // A failure.
   3856   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3857                        "Expected: 0");
   3858 }
   3859 
   3860 // Tests ASSERT_NE.
   3861 TEST(AssertionTest, ASSERT_NE) {
   3862   ASSERT_NE(6, 7);
   3863   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3864                        "Expected: ('a') != ('a'), "
   3865                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3866 }
   3867 
   3868 // Tests ASSERT_LE.
   3869 TEST(AssertionTest, ASSERT_LE) {
   3870   ASSERT_LE(2, 3);
   3871   ASSERT_LE(2, 2);
   3872   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3873                        "Expected: (2) <= (0), actual: 2 vs 0");
   3874 }
   3875 
   3876 // Tests ASSERT_LT.
   3877 TEST(AssertionTest, ASSERT_LT) {
   3878   ASSERT_LT(2, 3);
   3879   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3880                        "Expected: (2) < (2), actual: 2 vs 2");
   3881 }
   3882 
   3883 // Tests ASSERT_GE.
   3884 TEST(AssertionTest, ASSERT_GE) {
   3885   ASSERT_GE(2, 1);
   3886   ASSERT_GE(2, 2);
   3887   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3888                        "Expected: (2) >= (3), actual: 2 vs 3");
   3889 }
   3890 
   3891 // Tests ASSERT_GT.
   3892 TEST(AssertionTest, ASSERT_GT) {
   3893   ASSERT_GT(2, 1);
   3894   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3895                        "Expected: (2) > (2), actual: 2 vs 2");
   3896 }
   3897 
   3898 #if GTEST_HAS_EXCEPTIONS
   3899 
   3900 void ThrowNothing() {}
   3901 
   3902 // Tests ASSERT_THROW.
   3903 TEST(AssertionTest, ASSERT_THROW) {
   3904   ASSERT_THROW(ThrowAnInteger(), int);
   3905 #if !defined(__BORLANDC__) || __BORLANDC__ >= 0x600 || defined(_DEBUG)
   3906   // ICE's in C++Builder 2007 (Release build).
   3907   EXPECT_FATAL_FAILURE(
   3908       ASSERT_THROW(ThrowAnInteger(), bool),
   3909       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3910       "  Actual: it throws a different type.");
   3911 #endif
   3912   EXPECT_FATAL_FAILURE(
   3913       ASSERT_THROW(ThrowNothing(), bool),
   3914       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3915       "  Actual: it throws nothing.");
   3916 }
   3917 
   3918 // Tests ASSERT_NO_THROW.
   3919 TEST(AssertionTest, ASSERT_NO_THROW) {
   3920   ASSERT_NO_THROW(ThrowNothing());
   3921   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3922                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3923                        "\n  Actual: it throws.");
   3924 }
   3925 
   3926 // Tests ASSERT_ANY_THROW.
   3927 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3928   ASSERT_ANY_THROW(ThrowAnInteger());
   3929   EXPECT_FATAL_FAILURE(
   3930       ASSERT_ANY_THROW(ThrowNothing()),
   3931       "Expected: ThrowNothing() throws an exception.\n"
   3932       "  Actual: it doesn't.");
   3933 }
   3934 
   3935 #endif  // GTEST_HAS_EXCEPTIONS
   3936 
   3937 // Makes sure we deal with the precedence of <<.  This test should
   3938 // compile.
   3939 TEST(AssertionTest, AssertPrecedence) {
   3940   ASSERT_EQ(1 < 2, true);
   3941   ASSERT_EQ(true && false, false);
   3942 }
   3943 
   3944 // A subroutine used by the following test.
   3945 void TestEq1(int x) {
   3946   ASSERT_EQ(1, x);
   3947 }
   3948 
   3949 // Tests calling a test subroutine that's not part of a fixture.
   3950 TEST(AssertionTest, NonFixtureSubroutine) {
   3951   EXPECT_FATAL_FAILURE(TestEq1(2),
   3952                        "Value of: x");
   3953 }
   3954 
   3955 // An uncopyable class.
   3956 class Uncopyable {
   3957  public:
   3958   explicit Uncopyable(int value) : value_(value) {}
   3959 
   3960   int value() const { return value_; }
   3961   bool operator==(const Uncopyable& rhs) const {
   3962     return value() == rhs.value();
   3963   }
   3964  private:
   3965   // This constructor deliberately has no implementation, as we don't
   3966   // want this class to be copyable.
   3967   Uncopyable(const Uncopyable&);  // NOLINT
   3968 
   3969   int value_;
   3970 };
   3971 
   3972 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3973   return os << value.value();
   3974 }
   3975 
   3976 
   3977 bool IsPositiveUncopyable(const Uncopyable& x) {
   3978   return x.value() > 0;
   3979 }
   3980 
   3981 // A subroutine used by the following test.
   3982 void TestAssertNonPositive() {
   3983   Uncopyable y(-1);
   3984   ASSERT_PRED1(IsPositiveUncopyable, y);
   3985 }
   3986 // A subroutine used by the following test.
   3987 void TestAssertEqualsUncopyable() {
   3988   Uncopyable x(5);
   3989   Uncopyable y(-1);
   3990   ASSERT_EQ(x, y);
   3991 }
   3992 
   3993 // Tests that uncopyable objects can be used in assertions.
   3994 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3995   Uncopyable x(5);
   3996   ASSERT_PRED1(IsPositiveUncopyable, x);
   3997   ASSERT_EQ(x, x);
   3998   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3999     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   4000   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   4001     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   4002 }
   4003 
   4004 // Tests that uncopyable objects can be used in expects.
   4005 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   4006   Uncopyable x(5);
   4007   EXPECT_PRED1(IsPositiveUncopyable, x);
   4008   Uncopyable y(-1);
   4009   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   4010     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   4011   EXPECT_EQ(x, x);
   4012   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   4013     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   4014 }
   4015 
   4016 
   4017 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   4018 // anonymous enums in assertions.  Therefore the following test is not
   4019 // done on Mac.
   4020 #if !GTEST_OS_MAC
   4021 
   4022 // Tests using assertions with anonymous enums.
   4023 enum {
   4024   CASE_A = -1,
   4025 #if GTEST_OS_LINUX
   4026   // We want to test the case where the size of the anonymous enum is
   4027   // larger than sizeof(int), to make sure our implementation of the
   4028   // assertions doesn't truncate the enums.  However, MSVC
   4029   // (incorrectly) doesn't allow an enum value to exceed the range of
   4030   // an int, so this has to be conditionally compiled.
   4031   //
   4032   // On Linux, CASE_B and CASE_A have the same value when truncated to
   4033   // int size.  We want to test whether this will confuse the
   4034   // assertions.
   4035   CASE_B = testing::internal::kMaxBiggestInt,
   4036 #else
   4037   CASE_B = INT_MAX,
   4038 #endif  // GTEST_OS_LINUX
   4039 };
   4040 
   4041 TEST(AssertionTest, AnonymousEnum) {
   4042 #if GTEST_OS_LINUX
   4043   EXPECT_EQ(static_cast<int>(CASE_A), static_cast<int>(CASE_B));
   4044 #endif  // GTEST_OS_LINUX
   4045 
   4046   EXPECT_EQ(CASE_A, CASE_A);
   4047   EXPECT_NE(CASE_A, CASE_B);
   4048   EXPECT_LT(CASE_A, CASE_B);
   4049   EXPECT_LE(CASE_A, CASE_B);
   4050   EXPECT_GT(CASE_B, CASE_A);
   4051   EXPECT_GE(CASE_A, CASE_A);
   4052   EXPECT_NONFATAL_FAILURE(EXPECT_GE(CASE_A, CASE_B),
   4053                           "(CASE_A) >= (CASE_B)");
   4054 
   4055   ASSERT_EQ(CASE_A, CASE_A);
   4056   ASSERT_NE(CASE_A, CASE_B);
   4057   ASSERT_LT(CASE_A, CASE_B);
   4058   ASSERT_LE(CASE_A, CASE_B);
   4059   ASSERT_GT(CASE_B, CASE_A);
   4060   ASSERT_GE(CASE_A, CASE_A);
   4061   EXPECT_FATAL_FAILURE(ASSERT_EQ(CASE_A, CASE_B),
   4062                        "Value of: CASE_B");
   4063 }
   4064 
   4065 #endif  // !GTEST_OS_MAC
   4066 
   4067 #if GTEST_OS_WINDOWS
   4068 
   4069 static HRESULT UnexpectedHRESULTFailure() {
   4070   return E_UNEXPECTED;
   4071 }
   4072 
   4073 static HRESULT OkHRESULTSuccess() {
   4074   return S_OK;
   4075 }
   4076 
   4077 static HRESULT FalseHRESULTSuccess() {
   4078   return S_FALSE;
   4079 }
   4080 
   4081 // HRESULT assertion tests test both zero and non-zero
   4082 // success codes as well as failure message for each.
   4083 //
   4084 // Windows CE doesn't support message texts.
   4085 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   4086   EXPECT_HRESULT_SUCCEEDED(S_OK);
   4087   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   4088 
   4089   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   4090     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   4091     "  Actual: 0x8000FFFF");
   4092 }
   4093 
   4094 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   4095   ASSERT_HRESULT_SUCCEEDED(S_OK);
   4096   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   4097 
   4098   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   4099     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   4100     "  Actual: 0x8000FFFF");
   4101 }
   4102 
   4103 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   4104   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   4105 
   4106   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   4107     "Expected: (OkHRESULTSuccess()) fails.\n"
   4108     "  Actual: 0x00000000");
   4109   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4110     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4111     "  Actual: 0x00000001");
   4112 }
   4113 
   4114 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   4115   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   4116 
   4117 #ifndef __BORLANDC__
   4118   // ICE's in C++Builder 2007 and 2009.
   4119   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   4120     "Expected: (OkHRESULTSuccess()) fails.\n"
   4121     "  Actual: 0x00000000");
   4122 #endif
   4123   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4124     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4125     "  Actual: 0x00000001");
   4126 }
   4127 
   4128 // Tests that streaming to the HRESULT macros works.
   4129 TEST(HRESULTAssertionTest, Streaming) {
   4130   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4131   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4132   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4133   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4134 
   4135   EXPECT_NONFATAL_FAILURE(
   4136       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4137       "expected failure");
   4138 
   4139 #ifndef __BORLANDC__
   4140   // ICE's in C++Builder 2007 and 2009.
   4141   EXPECT_FATAL_FAILURE(
   4142       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4143       "expected failure");
   4144 #endif
   4145 
   4146   EXPECT_NONFATAL_FAILURE(
   4147       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   4148       "expected failure");
   4149 
   4150   EXPECT_FATAL_FAILURE(
   4151       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   4152       "expected failure");
   4153 }
   4154 
   4155 #endif  // GTEST_OS_WINDOWS
   4156 
   4157 #ifdef __BORLANDC__
   4158 // Silences warnings: "Condition is always true", "Unreachable code"
   4159 #pragma option push -w-ccc -w-rch
   4160 #endif
   4161 
   4162 // Tests that the assertion macros behave like single statements.
   4163 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   4164   if (AlwaysFalse())
   4165     ASSERT_TRUE(false) << "This should never be executed; "
   4166                           "It's a compilation test only.";
   4167 
   4168   if (AlwaysTrue())
   4169     EXPECT_FALSE(false);
   4170   else
   4171     ;  // NOLINT
   4172 
   4173   if (AlwaysFalse())
   4174     ASSERT_LT(1, 3);
   4175 
   4176   if (AlwaysFalse())
   4177     ;  // NOLINT
   4178   else
   4179     EXPECT_GT(3, 2) << "";
   4180 }
   4181 
   4182 #if GTEST_HAS_EXCEPTIONS
   4183 // Tests that the compiler will not complain about unreachable code in the
   4184 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   4185 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   4186   int n = 0;
   4187 
   4188   EXPECT_THROW(throw 1, int);
   4189   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4190   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4191   EXPECT_NO_THROW(n++);
   4192   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4193   EXPECT_ANY_THROW(throw 1);
   4194   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4195 }
   4196 
   4197 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4198   if (AlwaysFalse())
   4199     EXPECT_THROW(ThrowNothing(), bool);
   4200 
   4201   if (AlwaysTrue())
   4202     EXPECT_THROW(ThrowAnInteger(), int);
   4203   else
   4204     ;  // NOLINT
   4205 
   4206   if (AlwaysFalse())
   4207     EXPECT_NO_THROW(ThrowAnInteger());
   4208 
   4209   if (AlwaysTrue())
   4210     EXPECT_NO_THROW(ThrowNothing());
   4211   else
   4212     ;  // NOLINT
   4213 
   4214   if (AlwaysFalse())
   4215     EXPECT_ANY_THROW(ThrowNothing());
   4216 
   4217   if (AlwaysTrue())
   4218     EXPECT_ANY_THROW(ThrowAnInteger());
   4219   else
   4220     ;  // NOLINT
   4221 }
   4222 #endif  // GTEST_HAS_EXCEPTIONS
   4223 
   4224 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4225   if (AlwaysFalse())
   4226     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4227                                     << "It's a compilation test only.";
   4228   else
   4229     ;  // NOLINT
   4230 
   4231   if (AlwaysFalse())
   4232     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4233   else
   4234     ;  // NOLINT
   4235 
   4236   if (AlwaysTrue())
   4237     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4238   else
   4239     ;  // NOLINT
   4240 
   4241   if (AlwaysFalse())
   4242     ;  // NOLINT
   4243   else
   4244     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4245 }
   4246 
   4247 // Tests that the assertion macros work well with switch statements.
   4248 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4249   switch (0) {
   4250     case 1:
   4251       break;
   4252     default:
   4253       ASSERT_TRUE(true);
   4254   }
   4255 
   4256   switch (0)
   4257     case 0:
   4258       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4259 
   4260   // Binary assertions are implemented using a different code path
   4261   // than the Boolean assertions.  Hence we test them separately.
   4262   switch (0) {
   4263     case 1:
   4264     default:
   4265       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4266   }
   4267 
   4268   switch (0)
   4269     case 0:
   4270       EXPECT_NE(1, 2);
   4271 }
   4272 
   4273 #if GTEST_HAS_EXCEPTIONS
   4274 
   4275 void ThrowAString() {
   4276     throw "String";
   4277 }
   4278 
   4279 // Test that the exception assertion macros compile and work with const
   4280 // type qualifier.
   4281 TEST(AssertionSyntaxTest, WorksWithConst) {
   4282     ASSERT_THROW(ThrowAString(), const char*);
   4283 
   4284     EXPECT_THROW(ThrowAString(), const char*);
   4285 }
   4286 
   4287 #endif  // GTEST_HAS_EXCEPTIONS
   4288 
   4289 }  // namespace
   4290 
   4291 namespace testing {
   4292 
   4293 // Tests that Google Test tracks SUCCEED*.
   4294 TEST(SuccessfulAssertionTest, SUCCEED) {
   4295   SUCCEED();
   4296   SUCCEED() << "OK";
   4297   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4298 }
   4299 
   4300 // Tests that Google Test doesn't track successful EXPECT_*.
   4301 TEST(SuccessfulAssertionTest, EXPECT) {
   4302   EXPECT_TRUE(true);
   4303   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4304 }
   4305 
   4306 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4307 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4308   EXPECT_STREQ("", "");
   4309   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4310 }
   4311 
   4312 // Tests that Google Test doesn't track successful ASSERT_*.
   4313 TEST(SuccessfulAssertionTest, ASSERT) {
   4314   ASSERT_TRUE(true);
   4315   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4316 }
   4317 
   4318 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4319 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4320   ASSERT_STREQ("", "");
   4321   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4322 }
   4323 
   4324 }  // namespace testing
   4325 
   4326 namespace {
   4327 
   4328 // Tests EXPECT_TRUE.
   4329 TEST(ExpectTest, EXPECT_TRUE) {
   4330   EXPECT_TRUE(2 > 1);  // NOLINT
   4331   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4332                           "Value of: 2 < 1\n"
   4333                           "  Actual: false\n"
   4334                           "Expected: true");
   4335   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4336                           "2 > 3");
   4337 }
   4338 
   4339 // Tests EXPECT_FALSE.
   4340 TEST(ExpectTest, EXPECT_FALSE) {
   4341   EXPECT_FALSE(2 < 1);  // NOLINT
   4342   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4343                           "Value of: 2 > 1\n"
   4344                           "  Actual: true\n"
   4345                           "Expected: false");
   4346   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4347                           "2 < 3");
   4348 }
   4349 
   4350 #ifdef __BORLANDC__
   4351 // Restores warnings after previous "#pragma option push" supressed them
   4352 #pragma option pop
   4353 #endif
   4354 
   4355 // Tests EXPECT_EQ.
   4356 TEST(ExpectTest, EXPECT_EQ) {
   4357   EXPECT_EQ(5, 2 + 3);
   4358   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4359                           "Value of: 2*3\n"
   4360                           "  Actual: 6\n"
   4361                           "Expected: 5");
   4362   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4363                           "2 - 3");
   4364 }
   4365 
   4366 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4367 // sure that the specialization we did for integer and anonymous enums
   4368 // isn't used for double arguments.
   4369 TEST(ExpectTest, EXPECT_EQ_Double) {
   4370   // A success.
   4371   EXPECT_EQ(5.6, 5.6);
   4372 
   4373   // A failure.
   4374   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4375                           "5.1");
   4376 }
   4377 
   4378 #if !GTEST_OS_SYMBIAN
   4379 // Tests EXPECT_EQ(NULL, pointer).
   4380 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4381   // A success.
   4382   const char* p = NULL;
   4383   // Some older GCC versions may issue a spurious waring in this or the next
   4384   // assertion statement. This warning should not be suppressed with
   4385   // static_cast since the test verifies the ability to use bare NULL as the
   4386   // expected parameter to the macro.
   4387   EXPECT_EQ(NULL, p);
   4388 
   4389   // A failure.
   4390   int n = 0;
   4391   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4392                           "Value of: &n\n");
   4393 }
   4394 #endif  // !GTEST_OS_SYMBIAN
   4395 
   4396 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4397 // treated as a null pointer by the compiler, we need to make sure
   4398 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4399 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4400 TEST(ExpectTest, EXPECT_EQ_0) {
   4401   int n = 0;
   4402 
   4403   // A success.
   4404   EXPECT_EQ(0, n);
   4405 
   4406   // A failure.
   4407   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4408                           "Expected: 0");
   4409 }
   4410 
   4411 // Tests EXPECT_NE.
   4412 TEST(ExpectTest, EXPECT_NE) {
   4413   EXPECT_NE(6, 7);
   4414 
   4415   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4416                           "Expected: ('a') != ('a'), "
   4417                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4418   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4419                           "2");
   4420   char* const p0 = NULL;
   4421   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4422                           "p0");
   4423   // Only way to get the Nokia compiler to compile the cast
   4424   // is to have a separate void* variable first. Putting
   4425   // the two casts on the same line doesn't work, neither does
   4426   // a direct C-style to char*.
   4427   void* pv1 = (void*)0x1234;  // NOLINT
   4428   char* const p1 = reinterpret_cast<char*>(pv1);
   4429   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4430                           "p1");
   4431 }
   4432 
   4433 // Tests EXPECT_LE.
   4434 TEST(ExpectTest, EXPECT_LE) {
   4435   EXPECT_LE(2, 3);
   4436   EXPECT_LE(2, 2);
   4437   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4438                           "Expected: (2) <= (0), actual: 2 vs 0");
   4439   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4440                           "(1.1) <= (0.9)");
   4441 }
   4442 
   4443 // Tests EXPECT_LT.
   4444 TEST(ExpectTest, EXPECT_LT) {
   4445   EXPECT_LT(2, 3);
   4446   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4447                           "Expected: (2) < (2), actual: 2 vs 2");
   4448   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4449                           "(2) < (1)");
   4450 }
   4451 
   4452 // Tests EXPECT_GE.
   4453 TEST(ExpectTest, EXPECT_GE) {
   4454   EXPECT_GE(2, 1);
   4455   EXPECT_GE(2, 2);
   4456   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4457                           "Expected: (2) >= (3), actual: 2 vs 3");
   4458   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4459                           "(0.9) >= (1.1)");
   4460 }
   4461 
   4462 // Tests EXPECT_GT.
   4463 TEST(ExpectTest, EXPECT_GT) {
   4464   EXPECT_GT(2, 1);
   4465   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4466                           "Expected: (2) > (2), actual: 2 vs 2");
   4467   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4468                           "(2) > (3)");
   4469 }
   4470 
   4471 #if GTEST_HAS_EXCEPTIONS
   4472 
   4473 // Tests EXPECT_THROW.
   4474 TEST(ExpectTest, EXPECT_THROW) {
   4475   EXPECT_THROW(ThrowAnInteger(), int);
   4476   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4477                           "Expected: ThrowAnInteger() throws an exception of "
   4478                           "type bool.\n  Actual: it throws a different type.");
   4479   EXPECT_NONFATAL_FAILURE(
   4480       EXPECT_THROW(ThrowNothing(), bool),
   4481       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4482       "  Actual: it throws nothing.");
   4483 }
   4484 
   4485 // Tests EXPECT_NO_THROW.
   4486 TEST(ExpectTest, EXPECT_NO_THROW) {
   4487   EXPECT_NO_THROW(ThrowNothing());
   4488   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4489                           "Expected: ThrowAnInteger() doesn't throw an "
   4490                           "exception.\n  Actual: it throws.");
   4491 }
   4492 
   4493 // Tests EXPECT_ANY_THROW.
   4494 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4495   EXPECT_ANY_THROW(ThrowAnInteger());
   4496   EXPECT_NONFATAL_FAILURE(
   4497       EXPECT_ANY_THROW(ThrowNothing()),
   4498       "Expected: ThrowNothing() throws an exception.\n"
   4499       "  Actual: it doesn't.");
   4500 }
   4501 
   4502 #endif  // GTEST_HAS_EXCEPTIONS
   4503 
   4504 // Make sure we deal with the precedence of <<.
   4505 TEST(ExpectTest, ExpectPrecedence) {
   4506   EXPECT_EQ(1 < 2, true);
   4507   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4508                           "Value of: true && false");
   4509 }
   4510 
   4511 
   4512 // Tests the StreamableToString() function.
   4513 
   4514 // Tests using StreamableToString() on a scalar.
   4515 TEST(StreamableToStringTest, Scalar) {
   4516   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4517 }
   4518 
   4519 // Tests using StreamableToString() on a non-char pointer.
   4520 TEST(StreamableToStringTest, Pointer) {
   4521   int n = 0;
   4522   int* p = &n;
   4523   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4524 }
   4525 
   4526 // Tests using StreamableToString() on a NULL non-char pointer.
   4527 TEST(StreamableToStringTest, NullPointer) {
   4528   int* p = NULL;
   4529   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4530 }
   4531 
   4532 // Tests using StreamableToString() on a C string.
   4533 TEST(StreamableToStringTest, CString) {
   4534   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4535 }
   4536 
   4537 // Tests using StreamableToString() on a NULL C string.
   4538 TEST(StreamableToStringTest, NullCString) {
   4539   char* p = NULL;
   4540   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4541 }
   4542 
   4543 // Tests using streamable values as assertion messages.
   4544 
   4545 #if GTEST_HAS_STD_STRING
   4546 // Tests using std::string as an assertion message.
   4547 TEST(StreamableTest, string) {
   4548   static const std::string str(
   4549       "This failure message is a std::string, and is expected.");
   4550   EXPECT_FATAL_FAILURE(FAIL() << str,
   4551                        str.c_str());
   4552 }
   4553 
   4554 // Tests that we can output strings containing embedded NULs.
   4555 // Limited to Linux because we can only do this with std::string's.
   4556 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4557   static const char char_array_with_nul[] =
   4558       "Here's a NUL\0 and some more string";
   4559   static const std::string string_with_nul(char_array_with_nul,
   4560                                            sizeof(char_array_with_nul)
   4561                                            - 1);  // drops the trailing NUL
   4562   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4563                        "Here's a NUL\\0 and some more string");
   4564 }
   4565 
   4566 #endif  // GTEST_HAS_STD_STRING
   4567 
   4568 // Tests that we can output a NUL char.
   4569 TEST(StreamableTest, NULChar) {
   4570   EXPECT_FATAL_FAILURE({  // NOLINT
   4571     FAIL() << "A NUL" << '\0' << " and some more string";
   4572   }, "A NUL\\0 and some more string");
   4573 }
   4574 
   4575 // Tests using int as an assertion message.
   4576 TEST(StreamableTest, int) {
   4577   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4578                        "900913");
   4579 }
   4580 
   4581 // Tests using NULL char pointer as an assertion message.
   4582 //
   4583 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4584 // implemented a workaround (substituting "(null)" for NULL).  This
   4585 // tests whether the workaround works.
   4586 TEST(StreamableTest, NullCharPtr) {
   4587   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4588                        "(null)");
   4589 }
   4590 
   4591 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4592 // streamed to testing::Message.
   4593 TEST(StreamableTest, BasicIoManip) {
   4594   EXPECT_FATAL_FAILURE({  // NOLINT
   4595     FAIL() << "Line 1." << std::endl
   4596            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4597   }, "Line 1.\nA NUL char \\0 in line 2.");
   4598 }
   4599 
   4600 // Tests the macros that haven't been covered so far.
   4601 
   4602 void AddFailureHelper(bool* aborted) {
   4603   *aborted = true;
   4604   ADD_FAILURE() << "Failure";
   4605   *aborted = false;
   4606 }
   4607 
   4608 // Tests ADD_FAILURE.
   4609 TEST(MacroTest, ADD_FAILURE) {
   4610   bool aborted = true;
   4611   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4612                           "Failure");
   4613   EXPECT_FALSE(aborted);
   4614 }
   4615 
   4616 // Tests FAIL.
   4617 TEST(MacroTest, FAIL) {
   4618   EXPECT_FATAL_FAILURE(FAIL(),
   4619                        "Failed");
   4620   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4621                        "Intentional failure.");
   4622 }
   4623 
   4624 // Tests SUCCEED
   4625 TEST(MacroTest, SUCCEED) {
   4626   SUCCEED();
   4627   SUCCEED() << "Explicit success.";
   4628 }
   4629 
   4630 
   4631 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4632 //
   4633 // These tests fail *intentionally*, s.t. the failure messages can be
   4634 // generated and tested.
   4635 //
   4636 // We have different tests for different argument types.
   4637 
   4638 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4639 TEST(EqAssertionTest, Bool) {
   4640   EXPECT_EQ(true,  true);
   4641   EXPECT_FATAL_FAILURE(ASSERT_EQ(false, true),
   4642                        "Value of: true");
   4643 }
   4644 
   4645 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4646 TEST(EqAssertionTest, Int) {
   4647   ASSERT_EQ(32, 32);
   4648   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4649                           "33");
   4650 }
   4651 
   4652 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4653 TEST(EqAssertionTest, Time_T) {
   4654   EXPECT_EQ(static_cast<time_t>(0),
   4655             static_cast<time_t>(0));
   4656   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4657                                  static_cast<time_t>(1234)),
   4658                        "1234");
   4659 }
   4660 
   4661 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4662 TEST(EqAssertionTest, Char) {
   4663   ASSERT_EQ('z', 'z');
   4664   const char ch = 'b';
   4665   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4666                           "ch");
   4667   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4668                           "ch");
   4669 }
   4670 
   4671 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4672 TEST(EqAssertionTest, WideChar) {
   4673   EXPECT_EQ(L'b', L'b');
   4674 
   4675   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4676                           "Value of: L'x'\n"
   4677                           "  Actual: L'x' (120, 0x78)\n"
   4678                           "Expected: L'\0'\n"
   4679                           "Which is: L'\0' (0, 0x0)");
   4680 
   4681   static wchar_t wchar;
   4682   wchar = L'b';
   4683   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4684                           "wchar");
   4685   wchar = L'\x8119';
   4686   EXPECT_FATAL_FAILURE(ASSERT_EQ(L'\x8120', wchar),
   4687                        "Value of: wchar");
   4688 }
   4689 
   4690 #if GTEST_HAS_STD_STRING
   4691 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4692 TEST(EqAssertionTest, StdString) {
   4693   // Compares a const char* to an std::string that has identical
   4694   // content.
   4695   ASSERT_EQ("Test", ::std::string("Test"));
   4696 
   4697   // Compares two identical std::strings.
   4698   static const ::std::string str1("A * in the middle");
   4699   static const ::std::string str2(str1);
   4700   EXPECT_EQ(str1, str2);
   4701 
   4702   // Compares a const char* to an std::string that has different
   4703   // content
   4704   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4705                           "::std::string(\"test\")");
   4706 
   4707   // Compares an std::string to a char* that has different content.
   4708   char* const p1 = const_cast<char*>("foo");
   4709   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4710                           "p1");
   4711 
   4712   // Compares two std::strings that have different contents, one of
   4713   // which having a NUL character in the middle.  This should fail.
   4714   static ::std::string str3(str1);
   4715   str3.at(2) = '\0';
   4716   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4717                        "Value of: str3\n"
   4718                        "  Actual: \"A \\0 in the middle\"");
   4719 }
   4720 
   4721 #endif  // GTEST_HAS_STD_STRING
   4722 
   4723 #if GTEST_HAS_STD_WSTRING
   4724 
   4725 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4726 TEST(EqAssertionTest, StdWideString) {
   4727   // Compares an std::wstring to a const wchar_t* that has identical
   4728   // content.
   4729   EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8119");
   4730 
   4731   // Compares two identical std::wstrings.
   4732   const ::std::wstring wstr1(L"A * in the middle");
   4733   const ::std::wstring wstr2(wstr1);
   4734   ASSERT_EQ(wstr1, wstr2);
   4735 
   4736   // Compares an std::wstring to a const wchar_t* that has different
   4737   // content.
   4738   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4739     EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8120");
   4740   }, "L\"Test\\x8120\"");
   4741 
   4742   // Compares two std::wstrings that have different contents, one of
   4743   // which having a NUL character in the middle.
   4744   ::std::wstring wstr3(wstr1);
   4745   wstr3.at(2) = L'\0';
   4746   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4747                           "wstr3");
   4748 
   4749   // Compares a wchar_t* to an std::wstring that has different
   4750   // content.
   4751   EXPECT_FATAL_FAILURE({  // NOLINT
   4752     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4753   }, "");
   4754 }
   4755 
   4756 #endif  // GTEST_HAS_STD_WSTRING
   4757 
   4758 #if GTEST_HAS_GLOBAL_STRING
   4759 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4760 TEST(EqAssertionTest, GlobalString) {
   4761   // Compares a const char* to a ::string that has identical content.
   4762   EXPECT_EQ("Test", ::string("Test"));
   4763 
   4764   // Compares two identical ::strings.
   4765   const ::string str1("A * in the middle");
   4766   const ::string str2(str1);
   4767   ASSERT_EQ(str1, str2);
   4768 
   4769   // Compares a ::string to a const char* that has different content.
   4770   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4771                           "test");
   4772 
   4773   // Compares two ::strings that have different contents, one of which
   4774   // having a NUL character in the middle.
   4775   ::string str3(str1);
   4776   str3.at(2) = '\0';
   4777   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4778                           "str3");
   4779 
   4780   // Compares a ::string to a char* that has different content.
   4781   EXPECT_FATAL_FAILURE({  // NOLINT
   4782     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4783   }, "");
   4784 }
   4785 
   4786 #endif  // GTEST_HAS_GLOBAL_STRING
   4787 
   4788 #if GTEST_HAS_GLOBAL_WSTRING
   4789 
   4790 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4791 TEST(EqAssertionTest, GlobalWideString) {
   4792   // Compares a const wchar_t* to a ::wstring that has identical content.
   4793   ASSERT_EQ(L"Test\x8119", ::wstring(L"Test\x8119"));
   4794 
   4795   // Compares two identical ::wstrings.
   4796   static const ::wstring wstr1(L"A * in the middle");
   4797   static const ::wstring wstr2(wstr1);
   4798   EXPECT_EQ(wstr1, wstr2);
   4799 
   4800   // Compares a const wchar_t* to a ::wstring that has different
   4801   // content.
   4802   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4803     EXPECT_EQ(L"Test\x8120", ::wstring(L"Test\x8119"));
   4804   }, "Test\\x8119");
   4805 
   4806   // Compares a wchar_t* to a ::wstring that has different content.
   4807   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4808   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4809                           "bar");
   4810 
   4811   // Compares two ::wstrings that have different contents, one of which
   4812   // having a NUL character in the middle.
   4813   static ::wstring wstr3;
   4814   wstr3 = wstr1;
   4815   wstr3.at(2) = L'\0';
   4816   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4817                        "wstr3");
   4818 }
   4819 
   4820 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4821 
   4822 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4823 TEST(EqAssertionTest, CharPointer) {
   4824   char* const p0 = NULL;
   4825   // Only way to get the Nokia compiler to compile the cast
   4826   // is to have a separate void* variable first. Putting
   4827   // the two casts on the same line doesn't work, neither does
   4828   // a direct C-style to char*.
   4829   void* pv1 = (void*)0x1234;  // NOLINT
   4830   void* pv2 = (void*)0xABC0;  // NOLINT
   4831   char* const p1 = reinterpret_cast<char*>(pv1);
   4832   char* const p2 = reinterpret_cast<char*>(pv2);
   4833   ASSERT_EQ(p1, p1);
   4834 
   4835   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4836                           "Value of: p2");
   4837   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4838                           "p2");
   4839   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4840                                  reinterpret_cast<char*>(0xABC0)),
   4841                        "ABC0");
   4842 }
   4843 
   4844 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4845 TEST(EqAssertionTest, WideCharPointer) {
   4846   wchar_t* const p0 = NULL;
   4847   // Only way to get the Nokia compiler to compile the cast
   4848   // is to have a separate void* variable first. Putting
   4849   // the two casts on the same line doesn't work, neither does
   4850   // a direct C-style to char*.
   4851   void* pv1 = (void*)0x1234;  // NOLINT
   4852   void* pv2 = (void*)0xABC0;  // NOLINT
   4853   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4854   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4855   EXPECT_EQ(p0, p0);
   4856 
   4857   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4858                           "Value of: p2");
   4859   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4860                           "p2");
   4861   void* pv3 = (void*)0x1234;  // NOLINT
   4862   void* pv4 = (void*)0xABC0;  // NOLINT
   4863   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4864   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4865   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4866                           "p4");
   4867 }
   4868 
   4869 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4870 TEST(EqAssertionTest, OtherPointer) {
   4871   ASSERT_EQ(static_cast<const int*>(NULL),
   4872             static_cast<const int*>(NULL));
   4873   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4874                                  reinterpret_cast<const int*>(0x1234)),
   4875                        "0x1234");
   4876 }
   4877 
   4878 // Tests the FRIEND_TEST macro.
   4879 
   4880 // This class has a private member we want to test.  We will test it
   4881 // both in a TEST and in a TEST_F.
   4882 class Foo {
   4883  public:
   4884   Foo() {}
   4885 
   4886  private:
   4887   int Bar() const { return 1; }
   4888 
   4889   // Declares the friend tests that can access the private member
   4890   // Bar().
   4891   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4892   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4893 };
   4894 
   4895 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4896 // class's private members.  This should compile.
   4897 TEST(FRIEND_TEST_Test, TEST) {
   4898   ASSERT_EQ(1, Foo().Bar());
   4899 }
   4900 
   4901 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4902 class FRIEND_TEST_Test2 : public Test {
   4903  protected:
   4904   Foo foo;
   4905 };
   4906 
   4907 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   4908 // class's private members.  This should compile.
   4909 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   4910   ASSERT_EQ(1, foo.Bar());
   4911 }
   4912 
   4913 // Tests the life cycle of Test objects.
   4914 
   4915 // The test fixture for testing the life cycle of Test objects.
   4916 //
   4917 // This class counts the number of live test objects that uses this
   4918 // fixture.
   4919 class TestLifeCycleTest : public Test {
   4920  protected:
   4921   // Constructor.  Increments the number of test objects that uses
   4922   // this fixture.
   4923   TestLifeCycleTest() { count_++; }
   4924 
   4925   // Destructor.  Decrements the number of test objects that uses this
   4926   // fixture.
   4927   ~TestLifeCycleTest() { count_--; }
   4928 
   4929   // Returns the number of live test objects that uses this fixture.
   4930   int count() const { return count_; }
   4931 
   4932  private:
   4933   static int count_;
   4934 };
   4935 
   4936 int TestLifeCycleTest::count_ = 0;
   4937 
   4938 // Tests the life cycle of test objects.
   4939 TEST_F(TestLifeCycleTest, Test1) {
   4940   // There should be only one test object in this test case that's
   4941   // currently alive.
   4942   ASSERT_EQ(1, count());
   4943 }
   4944 
   4945 // Tests the life cycle of test objects.
   4946 TEST_F(TestLifeCycleTest, Test2) {
   4947   // After Test1 is done and Test2 is started, there should still be
   4948   // only one live test object, as the object for Test1 should've been
   4949   // deleted.
   4950   ASSERT_EQ(1, count());
   4951 }
   4952 
   4953 }  // namespace
   4954 
   4955 // Tests streaming a user type whose definition and operator << are
   4956 // both in the global namespace.
   4957 class Base {
   4958  public:
   4959   explicit Base(int x) : x_(x) {}
   4960   int x() const { return x_; }
   4961  private:
   4962   int x_;
   4963 };
   4964 std::ostream& operator<<(std::ostream& os,
   4965                          const Base& val) {
   4966   return os << val.x();
   4967 }
   4968 std::ostream& operator<<(std::ostream& os,
   4969                          const Base* pointer) {
   4970   return os << "(" << pointer->x() << ")";
   4971 }
   4972 
   4973 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   4974   Message msg;
   4975   Base a(1);
   4976 
   4977   msg << a << &a;  // Uses ::operator<<.
   4978   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4979 }
   4980 
   4981 // Tests streaming a user type whose definition and operator<< are
   4982 // both in an unnamed namespace.
   4983 namespace {
   4984 class MyTypeInUnnamedNameSpace : public Base {
   4985  public:
   4986   explicit MyTypeInUnnamedNameSpace(int x): Base(x) {}
   4987 };
   4988 std::ostream& operator<<(std::ostream& os,
   4989                          const MyTypeInUnnamedNameSpace& val) {
   4990   return os << val.x();
   4991 }
   4992 std::ostream& operator<<(std::ostream& os,
   4993                          const MyTypeInUnnamedNameSpace* pointer) {
   4994   return os << "(" << pointer->x() << ")";
   4995 }
   4996 }  // namespace
   4997 
   4998 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   4999   Message msg;
   5000   MyTypeInUnnamedNameSpace a(1);
   5001 
   5002   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5003   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5004 }
   5005 
   5006 // Tests streaming a user type whose definition and operator<< are
   5007 // both in a user namespace.
   5008 namespace namespace1 {
   5009 class MyTypeInNameSpace1 : public Base {
   5010  public:
   5011   explicit MyTypeInNameSpace1(int x): Base(x) {}
   5012 };
   5013 std::ostream& operator<<(std::ostream& os,
   5014                          const MyTypeInNameSpace1& val) {
   5015   return os << val.x();
   5016 }
   5017 std::ostream& operator<<(std::ostream& os,
   5018                          const MyTypeInNameSpace1* pointer) {
   5019   return os << "(" << pointer->x() << ")";
   5020 }
   5021 }  // namespace namespace1
   5022 
   5023 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5024   Message msg;
   5025   namespace1::MyTypeInNameSpace1 a(1);
   5026 
   5027   msg << a << &a;  // Uses namespace1::operator<<.
   5028   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5029 }
   5030 
   5031 // Tests streaming a user type whose definition is in a user namespace
   5032 // but whose operator<< is in the global namespace.
   5033 namespace namespace2 {
   5034 class MyTypeInNameSpace2 : public ::Base {
   5035  public:
   5036   explicit MyTypeInNameSpace2(int x): Base(x) {}
   5037 };
   5038 }  // namespace namespace2
   5039 std::ostream& operator<<(std::ostream& os,
   5040                          const namespace2::MyTypeInNameSpace2& val) {
   5041   return os << val.x();
   5042 }
   5043 std::ostream& operator<<(std::ostream& os,
   5044                          const namespace2::MyTypeInNameSpace2* pointer) {
   5045   return os << "(" << pointer->x() << ")";
   5046 }
   5047 
   5048 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5049   Message msg;
   5050   namespace2::MyTypeInNameSpace2 a(1);
   5051 
   5052   msg << a << &a;  // Uses ::operator<<.
   5053   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5054 }
   5055 
   5056 // Tests streaming NULL pointers to testing::Message.
   5057 TEST(MessageTest, NullPointers) {
   5058   Message msg;
   5059   char* const p1 = NULL;
   5060   unsigned char* const p2 = NULL;
   5061   int* p3 = NULL;
   5062   double* p4 = NULL;
   5063   bool* p5 = NULL;
   5064   Message* p6 = NULL;
   5065 
   5066   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5067   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5068                msg.GetString().c_str());
   5069 }
   5070 
   5071 // Tests streaming wide strings to testing::Message.
   5072 TEST(MessageTest, WideStrings) {
   5073   // Streams a NULL of type const wchar_t*.
   5074   const wchar_t* const_wstr = NULL;
   5075   EXPECT_STREQ("(null)",
   5076                (Message() << const_wstr).GetString().c_str());
   5077 
   5078   // Streams a NULL of type wchar_t*.
   5079   wchar_t* wstr = NULL;
   5080   EXPECT_STREQ("(null)",
   5081                (Message() << wstr).GetString().c_str());
   5082 
   5083   // Streams a non-NULL of type const wchar_t*.
   5084   const_wstr = L"abc\x8119";
   5085   EXPECT_STREQ("abc\xe8\x84\x99",
   5086                (Message() << const_wstr).GetString().c_str());
   5087 
   5088   // Streams a non-NULL of type wchar_t*.
   5089   wstr = const_cast<wchar_t*>(const_wstr);
   5090   EXPECT_STREQ("abc\xe8\x84\x99",
   5091                (Message() << wstr).GetString().c_str());
   5092 }
   5093 
   5094 
   5095 // This line tests that we can define tests in the testing namespace.
   5096 namespace testing {
   5097 
   5098 // Tests the TestInfo class.
   5099 
   5100 class TestInfoTest : public Test {
   5101  protected:
   5102   static const TestInfo* GetTestInfo(const char* test_name) {
   5103     const TestCase* const test_case = GetUnitTestImpl()->
   5104         GetTestCase("TestInfoTest", "", NULL, NULL);
   5105 
   5106     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5107       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5108       if (strcmp(test_name, test_info->name()) == 0)
   5109         return test_info;
   5110     }
   5111     return NULL;
   5112   }
   5113 
   5114   static const TestResult* GetTestResult(
   5115       const TestInfo* test_info) {
   5116     return test_info->result();
   5117   }
   5118 };
   5119 
   5120 // Tests TestInfo::test_case_name() and TestInfo::name().
   5121 TEST_F(TestInfoTest, Names) {
   5122   const TestInfo* const test_info = GetTestInfo("Names");
   5123 
   5124   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5125   ASSERT_STREQ("Names", test_info->name());
   5126 }
   5127 
   5128 // Tests TestInfo::result().
   5129 TEST_F(TestInfoTest, result) {
   5130   const TestInfo* const test_info = GetTestInfo("result");
   5131 
   5132   // Initially, there is no TestPartResult for this test.
   5133   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5134 
   5135   // After the previous assertion, there is still none.
   5136   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5137 }
   5138 
   5139 // Tests setting up and tearing down a test case.
   5140 
   5141 class SetUpTestCaseTest : public Test {
   5142  protected:
   5143   // This will be called once before the first test in this test case
   5144   // is run.
   5145   static void SetUpTestCase() {
   5146     printf("Setting up the test case . . .\n");
   5147 
   5148     // Initializes some shared resource.  In this simple example, we
   5149     // just create a C string.  More complex stuff can be done if
   5150     // desired.
   5151     shared_resource_ = "123";
   5152 
   5153     // Increments the number of test cases that have been set up.
   5154     counter_++;
   5155 
   5156     // SetUpTestCase() should be called only once.
   5157     EXPECT_EQ(1, counter_);
   5158   }
   5159 
   5160   // This will be called once after the last test in this test case is
   5161   // run.
   5162   static void TearDownTestCase() {
   5163     printf("Tearing down the test case . . .\n");
   5164 
   5165     // Decrements the number of test cases that have been set up.
   5166     counter_--;
   5167 
   5168     // TearDownTestCase() should be called only once.
   5169     EXPECT_EQ(0, counter_);
   5170 
   5171     // Cleans up the shared resource.
   5172     shared_resource_ = NULL;
   5173   }
   5174 
   5175   // This will be called before each test in this test case.
   5176   virtual void SetUp() {
   5177     // SetUpTestCase() should be called only once, so counter_ should
   5178     // always be 1.
   5179     EXPECT_EQ(1, counter_);
   5180   }
   5181 
   5182   // Number of test cases that have been set up.
   5183   static int counter_;
   5184 
   5185   // Some resource to be shared by all tests in this test case.
   5186   static const char* shared_resource_;
   5187 };
   5188 
   5189 int SetUpTestCaseTest::counter_ = 0;
   5190 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5191 
   5192 // A test that uses the shared resource.
   5193 TEST_F(SetUpTestCaseTest, Test1) {
   5194   EXPECT_STRNE(NULL, shared_resource_);
   5195 }
   5196 
   5197 // Another test that uses the shared resource.
   5198 TEST_F(SetUpTestCaseTest, Test2) {
   5199   EXPECT_STREQ("123", shared_resource_);
   5200 }
   5201 
   5202 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5203 
   5204 // The Flags struct stores a copy of all Google Test flags.
   5205 struct Flags {
   5206   // Constructs a Flags struct where each flag has its default value.
   5207   Flags() : also_run_disabled_tests(false),
   5208             break_on_failure(false),
   5209             catch_exceptions(false),
   5210             death_test_use_fork(false),
   5211             filter(""),
   5212             list_tests(false),
   5213             output(""),
   5214             print_time(true),
   5215             random_seed(0),
   5216             repeat(1),
   5217             shuffle(false),
   5218             throw_on_failure(false) {}
   5219 
   5220   // Factory methods.
   5221 
   5222   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5223   // the given value.
   5224   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5225     Flags flags;
   5226     flags.also_run_disabled_tests = also_run_disabled_tests;
   5227     return flags;
   5228   }
   5229 
   5230   // Creates a Flags struct where the gtest_break_on_failure flag has
   5231   // the given value.
   5232   static Flags BreakOnFailure(bool break_on_failure) {
   5233     Flags flags;
   5234     flags.break_on_failure = break_on_failure;
   5235     return flags;
   5236   }
   5237 
   5238   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5239   // the given value.
   5240   static Flags CatchExceptions(bool catch_exceptions) {
   5241     Flags flags;
   5242     flags.catch_exceptions = catch_exceptions;
   5243     return flags;
   5244   }
   5245 
   5246   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5247   // the given value.
   5248   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5249     Flags flags;
   5250     flags.death_test_use_fork = death_test_use_fork;
   5251     return flags;
   5252   }
   5253 
   5254   // Creates a Flags struct where the gtest_filter flag has the given
   5255   // value.
   5256   static Flags Filter(const char* filter) {
   5257     Flags flags;
   5258     flags.filter = filter;
   5259     return flags;
   5260   }
   5261 
   5262   // Creates a Flags struct where the gtest_list_tests flag has the
   5263   // given value.
   5264   static Flags ListTests(bool list_tests) {
   5265     Flags flags;
   5266     flags.list_tests = list_tests;
   5267     return flags;
   5268   }
   5269 
   5270   // Creates a Flags struct where the gtest_output flag has the given
   5271   // value.
   5272   static Flags Output(const char* output) {
   5273     Flags flags;
   5274     flags.output = output;
   5275     return flags;
   5276   }
   5277 
   5278   // Creates a Flags struct where the gtest_print_time flag has the given
   5279   // value.
   5280   static Flags PrintTime(bool print_time) {
   5281     Flags flags;
   5282     flags.print_time = print_time;
   5283     return flags;
   5284   }
   5285 
   5286   // Creates a Flags struct where the gtest_random_seed flag has
   5287   // the given value.
   5288   static Flags RandomSeed(Int32 random_seed) {
   5289     Flags flags;
   5290     flags.random_seed = random_seed;
   5291     return flags;
   5292   }
   5293 
   5294   // Creates a Flags struct where the gtest_repeat flag has the given
   5295   // value.
   5296   static Flags Repeat(Int32 repeat) {
   5297     Flags flags;
   5298     flags.repeat = repeat;
   5299     return flags;
   5300   }
   5301 
   5302   // Creates a Flags struct where the gtest_shuffle flag has
   5303   // the given value.
   5304   static Flags Shuffle(bool shuffle) {
   5305     Flags flags;
   5306     flags.shuffle = shuffle;
   5307     return flags;
   5308   }
   5309 
   5310   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5311   // the given value.
   5312   static Flags ThrowOnFailure(bool throw_on_failure) {
   5313     Flags flags;
   5314     flags.throw_on_failure = throw_on_failure;
   5315     return flags;
   5316   }
   5317 
   5318   // These fields store the flag values.
   5319   bool also_run_disabled_tests;
   5320   bool break_on_failure;
   5321   bool catch_exceptions;
   5322   bool death_test_use_fork;
   5323   const char* filter;
   5324   bool list_tests;
   5325   const char* output;
   5326   bool print_time;
   5327   Int32 random_seed;
   5328   Int32 repeat;
   5329   bool shuffle;
   5330   bool throw_on_failure;
   5331 };
   5332 
   5333 // Fixture for testing InitGoogleTest().
   5334 class InitGoogleTestTest : public Test {
   5335  protected:
   5336   // Clears the flags before each test.
   5337   virtual void SetUp() {
   5338     GTEST_FLAG(also_run_disabled_tests) = false;
   5339     GTEST_FLAG(break_on_failure) = false;
   5340     GTEST_FLAG(catch_exceptions) = false;
   5341     GTEST_FLAG(death_test_use_fork) = false;
   5342     GTEST_FLAG(filter) = "";
   5343     GTEST_FLAG(list_tests) = false;
   5344     GTEST_FLAG(output) = "";
   5345     GTEST_FLAG(print_time) = true;
   5346     GTEST_FLAG(random_seed) = 0;
   5347     GTEST_FLAG(repeat) = 1;
   5348     GTEST_FLAG(shuffle) = false;
   5349     GTEST_FLAG(throw_on_failure) = false;
   5350   }
   5351 
   5352   // Asserts that two narrow or wide string arrays are equal.
   5353   template <typename CharType>
   5354   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5355                                   size_t size2, CharType** array2) {
   5356     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5357 
   5358     for (size_t i = 0; i != size1; i++) {
   5359       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5360     }
   5361   }
   5362 
   5363   // Verifies that the flag values match the expected values.
   5364   static void CheckFlags(const Flags& expected) {
   5365     EXPECT_EQ(expected.also_run_disabled_tests,
   5366               GTEST_FLAG(also_run_disabled_tests));
   5367     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5368     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5369     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5370     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5371     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5372     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5373     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5374     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5375     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5376     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5377     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5378   }
   5379 
   5380   // Parses a command line (specified by argc1 and argv1), then
   5381   // verifies that the flag values are expected and that the
   5382   // recognized flags are removed from the command line.
   5383   template <typename CharType>
   5384   static void TestParsingFlags(int argc1, const CharType** argv1,
   5385                                int argc2, const CharType** argv2,
   5386                                const Flags& expected) {
   5387     // Parses the command line.
   5388     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5389 
   5390     // Verifies the flag values.
   5391     CheckFlags(expected);
   5392 
   5393     // Verifies that the recognized flags are removed from the command
   5394     // line.
   5395     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5396   }
   5397 
   5398   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5399   // to specify the array sizes.
   5400 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected) \
   5401   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5402                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, expected)
   5403 };
   5404 
   5405 // Tests parsing an empty command line.
   5406 TEST_F(InitGoogleTestTest, Empty) {
   5407   const char* argv[] = {
   5408     NULL
   5409   };
   5410 
   5411   const char* argv2[] = {
   5412     NULL
   5413   };
   5414 
   5415   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags());
   5416 }
   5417 
   5418 // Tests parsing a command line that has no flag.
   5419 TEST_F(InitGoogleTestTest, NoFlag) {
   5420   const char* argv[] = {
   5421     "foo.exe",
   5422     NULL
   5423   };
   5424 
   5425   const char* argv2[] = {
   5426     "foo.exe",
   5427     NULL
   5428   };
   5429 
   5430   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags());
   5431 }
   5432 
   5433 // Tests parsing a bad --gtest_filter flag.
   5434 TEST_F(InitGoogleTestTest, FilterBad) {
   5435   const char* argv[] = {
   5436     "foo.exe",
   5437     "--gtest_filter",
   5438     NULL
   5439   };
   5440 
   5441   const char* argv2[] = {
   5442     "foo.exe",
   5443     "--gtest_filter",
   5444     NULL
   5445   };
   5446 
   5447   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""));
   5448 }
   5449 
   5450 // Tests parsing an empty --gtest_filter flag.
   5451 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5452   const char* argv[] = {
   5453     "foo.exe",
   5454     "--gtest_filter=",
   5455     NULL
   5456   };
   5457 
   5458   const char* argv2[] = {
   5459     "foo.exe",
   5460     NULL
   5461   };
   5462 
   5463   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""));
   5464 }
   5465 
   5466 // Tests parsing a non-empty --gtest_filter flag.
   5467 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5468   const char* argv[] = {
   5469     "foo.exe",
   5470     "--gtest_filter=abc",
   5471     NULL
   5472   };
   5473 
   5474   const char* argv2[] = {
   5475     "foo.exe",
   5476     NULL
   5477   };
   5478 
   5479   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"));
   5480 }
   5481 
   5482 // Tests parsing --gtest_break_on_failure.
   5483 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5484   const char* argv[] = {
   5485     "foo.exe",
   5486     "--gtest_break_on_failure",
   5487     NULL
   5488 };
   5489 
   5490   const char* argv2[] = {
   5491     "foo.exe",
   5492     NULL
   5493   };
   5494 
   5495   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true));
   5496 }
   5497 
   5498 // Tests parsing --gtest_break_on_failure=0.
   5499 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5500   const char* argv[] = {
   5501     "foo.exe",
   5502     "--gtest_break_on_failure=0",
   5503     NULL
   5504   };
   5505 
   5506   const char* argv2[] = {
   5507     "foo.exe",
   5508     NULL
   5509   };
   5510 
   5511   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false));
   5512 }
   5513 
   5514 // Tests parsing --gtest_break_on_failure=f.
   5515 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5516   const char* argv[] = {
   5517     "foo.exe",
   5518     "--gtest_break_on_failure=f",
   5519     NULL
   5520   };
   5521 
   5522   const char* argv2[] = {
   5523     "foo.exe",
   5524     NULL
   5525   };
   5526 
   5527   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false));
   5528 }
   5529 
   5530 // Tests parsing --gtest_break_on_failure=F.
   5531 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5532   const char* argv[] = {
   5533     "foo.exe",
   5534     "--gtest_break_on_failure=F",
   5535     NULL
   5536   };
   5537 
   5538   const char* argv2[] = {
   5539     "foo.exe",
   5540     NULL
   5541   };
   5542 
   5543   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false));
   5544 }
   5545 
   5546 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5547 // definition.
   5548 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5549   const char* argv[] = {
   5550     "foo.exe",
   5551     "--gtest_break_on_failure=1",
   5552     NULL
   5553   };
   5554 
   5555   const char* argv2[] = {
   5556     "foo.exe",
   5557     NULL
   5558   };
   5559 
   5560   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true));
   5561 }
   5562 
   5563 // Tests parsing --gtest_catch_exceptions.
   5564 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5565   const char* argv[] = {
   5566     "foo.exe",
   5567     "--gtest_catch_exceptions",
   5568     NULL
   5569   };
   5570 
   5571   const char* argv2[] = {
   5572     "foo.exe",
   5573     NULL
   5574   };
   5575 
   5576   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true));
   5577 }
   5578 
   5579 // Tests parsing --gtest_death_test_use_fork.
   5580 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5581   const char* argv[] = {
   5582     "foo.exe",
   5583     "--gtest_death_test_use_fork",
   5584     NULL
   5585   };
   5586 
   5587   const char* argv2[] = {
   5588     "foo.exe",
   5589     NULL
   5590   };
   5591 
   5592   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true));
   5593 }
   5594 
   5595 // Tests having the same flag twice with different values.  The
   5596 // expected behavior is that the one coming last takes precedence.
   5597 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5598   const char* argv[] = {
   5599     "foo.exe",
   5600     "--gtest_filter=a",
   5601     "--gtest_filter=b",
   5602     NULL
   5603   };
   5604 
   5605   const char* argv2[] = {
   5606     "foo.exe",
   5607     NULL
   5608   };
   5609 
   5610   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"));
   5611 }
   5612 
   5613 // Tests having an unrecognized flag on the command line.
   5614 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5615   const char* argv[] = {
   5616     "foo.exe",
   5617     "--gtest_break_on_failure",
   5618     "bar",  // Unrecognized by Google Test.
   5619     "--gtest_filter=b",
   5620     NULL
   5621   };
   5622 
   5623   const char* argv2[] = {
   5624     "foo.exe",
   5625     "bar",
   5626     NULL
   5627   };
   5628 
   5629   Flags flags;
   5630   flags.break_on_failure = true;
   5631   flags.filter = "b";
   5632   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags);
   5633 }
   5634 
   5635 // Tests having a --gtest_list_tests flag
   5636 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5637     const char* argv[] = {
   5638       "foo.exe",
   5639       "--gtest_list_tests",
   5640       NULL
   5641     };
   5642 
   5643     const char* argv2[] = {
   5644       "foo.exe",
   5645       NULL
   5646     };
   5647 
   5648     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true));
   5649 }
   5650 
   5651 // Tests having a --gtest_list_tests flag with a "true" value
   5652 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5653     const char* argv[] = {
   5654       "foo.exe",
   5655       "--gtest_list_tests=1",
   5656       NULL
   5657     };
   5658 
   5659     const char* argv2[] = {
   5660       "foo.exe",
   5661       NULL
   5662     };
   5663 
   5664     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true));
   5665 }
   5666 
   5667 // Tests having a --gtest_list_tests flag with a "false" value
   5668 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5669     const char* argv[] = {
   5670       "foo.exe",
   5671       "--gtest_list_tests=0",
   5672       NULL
   5673     };
   5674 
   5675     const char* argv2[] = {
   5676       "foo.exe",
   5677       NULL
   5678     };
   5679 
   5680     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false));
   5681 }
   5682 
   5683 // Tests parsing --gtest_list_tests=f.
   5684 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5685   const char* argv[] = {
   5686     "foo.exe",
   5687     "--gtest_list_tests=f",
   5688     NULL
   5689   };
   5690 
   5691   const char* argv2[] = {
   5692     "foo.exe",
   5693     NULL
   5694   };
   5695 
   5696   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false));
   5697 }
   5698 
   5699 // Tests parsing --gtest_list_tests=F.
   5700 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5701   const char* argv[] = {
   5702     "foo.exe",
   5703     "--gtest_list_tests=F",
   5704     NULL
   5705   };
   5706 
   5707   const char* argv2[] = {
   5708     "foo.exe",
   5709     NULL
   5710   };
   5711 
   5712   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false));
   5713 }
   5714 
   5715 // Tests parsing --gtest_output (invalid).
   5716 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5717   const char* argv[] = {
   5718     "foo.exe",
   5719     "--gtest_output",
   5720     NULL
   5721   };
   5722 
   5723   const char* argv2[] = {
   5724     "foo.exe",
   5725     "--gtest_output",
   5726     NULL
   5727   };
   5728 
   5729   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags());
   5730 }
   5731 
   5732 // Tests parsing --gtest_output=xml
   5733 TEST_F(InitGoogleTestTest, OutputXml) {
   5734   const char* argv[] = {
   5735     "foo.exe",
   5736     "--gtest_output=xml",
   5737     NULL
   5738   };
   5739 
   5740   const char* argv2[] = {
   5741     "foo.exe",
   5742     NULL
   5743   };
   5744 
   5745   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"));
   5746 }
   5747 
   5748 // Tests parsing --gtest_output=xml:file
   5749 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5750   const char* argv[] = {
   5751     "foo.exe",
   5752     "--gtest_output=xml:file",
   5753     NULL
   5754   };
   5755 
   5756   const char* argv2[] = {
   5757     "foo.exe",
   5758     NULL
   5759   };
   5760 
   5761   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"));
   5762 }
   5763 
   5764 // Tests parsing --gtest_output=xml:directory/path/
   5765 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   5766   const char* argv[] = {
   5767     "foo.exe",
   5768     "--gtest_output=xml:directory/path/",
   5769     NULL
   5770   };
   5771 
   5772   const char* argv2[] = {
   5773     "foo.exe",
   5774     NULL
   5775   };
   5776 
   5777   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"));
   5778 }
   5779 
   5780 // Tests having a --gtest_print_time flag
   5781 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   5782     const char* argv[] = {
   5783       "foo.exe",
   5784       "--gtest_print_time",
   5785       NULL
   5786     };
   5787 
   5788     const char* argv2[] = {
   5789       "foo.exe",
   5790       NULL
   5791     };
   5792 
   5793     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true));
   5794 }
   5795 
   5796 // Tests having a --gtest_print_time flag with a "true" value
   5797 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   5798     const char* argv[] = {
   5799       "foo.exe",
   5800       "--gtest_print_time=1",
   5801       NULL
   5802     };
   5803 
   5804     const char* argv2[] = {
   5805       "foo.exe",
   5806       NULL
   5807     };
   5808 
   5809     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true));
   5810 }
   5811 
   5812 // Tests having a --gtest_print_time flag with a "false" value
   5813 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   5814     const char* argv[] = {
   5815       "foo.exe",
   5816       "--gtest_print_time=0",
   5817       NULL
   5818     };
   5819 
   5820     const char* argv2[] = {
   5821       "foo.exe",
   5822       NULL
   5823     };
   5824 
   5825     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false));
   5826 }
   5827 
   5828 // Tests parsing --gtest_print_time=f.
   5829 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   5830   const char* argv[] = {
   5831     "foo.exe",
   5832     "--gtest_print_time=f",
   5833     NULL
   5834   };
   5835 
   5836   const char* argv2[] = {
   5837     "foo.exe",
   5838     NULL
   5839   };
   5840 
   5841   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false));
   5842 }
   5843 
   5844 // Tests parsing --gtest_print_time=F.
   5845 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   5846   const char* argv[] = {
   5847     "foo.exe",
   5848     "--gtest_print_time=F",
   5849     NULL
   5850   };
   5851 
   5852   const char* argv2[] = {
   5853     "foo.exe",
   5854     NULL
   5855   };
   5856 
   5857   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false));
   5858 }
   5859 
   5860 // Tests parsing --gtest_random_seed=number
   5861 TEST_F(InitGoogleTestTest, RandomSeed) {
   5862   const char* argv[] = {
   5863     "foo.exe",
   5864     "--gtest_random_seed=1000",
   5865     NULL
   5866   };
   5867 
   5868   const char* argv2[] = {
   5869     "foo.exe",
   5870     NULL
   5871   };
   5872 
   5873   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000));
   5874 }
   5875 
   5876 // Tests parsing --gtest_repeat=number
   5877 TEST_F(InitGoogleTestTest, Repeat) {
   5878   const char* argv[] = {
   5879     "foo.exe",
   5880     "--gtest_repeat=1000",
   5881     NULL
   5882   };
   5883 
   5884   const char* argv2[] = {
   5885     "foo.exe",
   5886     NULL
   5887   };
   5888 
   5889   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000));
   5890 }
   5891 
   5892 // Tests having a --gtest_also_run_disabled_tests flag
   5893 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   5894     const char* argv[] = {
   5895       "foo.exe",
   5896       "--gtest_also_run_disabled_tests",
   5897       NULL
   5898     };
   5899 
   5900     const char* argv2[] = {
   5901       "foo.exe",
   5902       NULL
   5903     };
   5904 
   5905     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true));
   5906 }
   5907 
   5908 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   5909 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   5910     const char* argv[] = {
   5911       "foo.exe",
   5912       "--gtest_also_run_disabled_tests=1",
   5913       NULL
   5914     };
   5915 
   5916     const char* argv2[] = {
   5917       "foo.exe",
   5918       NULL
   5919     };
   5920 
   5921     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true));
   5922 }
   5923 
   5924 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   5925 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   5926     const char* argv[] = {
   5927       "foo.exe",
   5928       "--gtest_also_run_disabled_tests=0",
   5929       NULL
   5930     };
   5931 
   5932     const char* argv2[] = {
   5933       "foo.exe",
   5934       NULL
   5935     };
   5936 
   5937     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false));
   5938 }
   5939 
   5940 // Tests parsing --gtest_shuffle.
   5941 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   5942   const char* argv[] = {
   5943     "foo.exe",
   5944     "--gtest_shuffle",
   5945     NULL
   5946 };
   5947 
   5948   const char* argv2[] = {
   5949     "foo.exe",
   5950     NULL
   5951   };
   5952 
   5953   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true));
   5954 }
   5955 
   5956 // Tests parsing --gtest_shuffle=0.
   5957 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   5958   const char* argv[] = {
   5959     "foo.exe",
   5960     "--gtest_shuffle=0",
   5961     NULL
   5962   };
   5963 
   5964   const char* argv2[] = {
   5965     "foo.exe",
   5966     NULL
   5967   };
   5968 
   5969   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false));
   5970 }
   5971 
   5972 // Tests parsing a --gtest_shuffle flag that has a "true"
   5973 // definition.
   5974 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   5975   const char* argv[] = {
   5976     "foo.exe",
   5977     "--gtest_shuffle=1",
   5978     NULL
   5979   };
   5980 
   5981   const char* argv2[] = {
   5982     "foo.exe",
   5983     NULL
   5984   };
   5985 
   5986   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true));
   5987 }
   5988 
   5989 // Tests parsing --gtest_throw_on_failure.
   5990 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   5991   const char* argv[] = {
   5992     "foo.exe",
   5993     "--gtest_throw_on_failure",
   5994     NULL
   5995 };
   5996 
   5997   const char* argv2[] = {
   5998     "foo.exe",
   5999     NULL
   6000   };
   6001 
   6002   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true));
   6003 }
   6004 
   6005 // Tests parsing --gtest_throw_on_failure=0.
   6006 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6007   const char* argv[] = {
   6008     "foo.exe",
   6009     "--gtest_throw_on_failure=0",
   6010     NULL
   6011   };
   6012 
   6013   const char* argv2[] = {
   6014     "foo.exe",
   6015     NULL
   6016   };
   6017 
   6018   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false));
   6019 }
   6020 
   6021 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6022 // definition.
   6023 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6024   const char* argv[] = {
   6025     "foo.exe",
   6026     "--gtest_throw_on_failure=1",
   6027     NULL
   6028   };
   6029 
   6030   const char* argv2[] = {
   6031     "foo.exe",
   6032     NULL
   6033   };
   6034 
   6035   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true));
   6036 }
   6037 
   6038 #if GTEST_OS_WINDOWS
   6039 // Tests parsing wide strings.
   6040 TEST_F(InitGoogleTestTest, WideStrings) {
   6041   const wchar_t* argv[] = {
   6042     L"foo.exe",
   6043     L"--gtest_filter=Foo*",
   6044     L"--gtest_list_tests=1",
   6045     L"--gtest_break_on_failure",
   6046     L"--non_gtest_flag",
   6047     NULL
   6048   };
   6049 
   6050   const wchar_t* argv2[] = {
   6051     L"foo.exe",
   6052     L"--non_gtest_flag",
   6053     NULL
   6054   };
   6055 
   6056   Flags expected_flags;
   6057   expected_flags.break_on_failure = true;
   6058   expected_flags.filter = "Foo*";
   6059   expected_flags.list_tests = true;
   6060 
   6061   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags);
   6062 }
   6063 #endif  // GTEST_OS_WINDOWS
   6064 
   6065 // Tests current_test_info() in UnitTest.
   6066 class CurrentTestInfoTest : public Test {
   6067  protected:
   6068   // Tests that current_test_info() returns NULL before the first test in
   6069   // the test case is run.
   6070   static void SetUpTestCase() {
   6071     // There should be no tests running at this point.
   6072     const TestInfo* test_info =
   6073       UnitTest::GetInstance()->current_test_info();
   6074     EXPECT_TRUE(test_info == NULL)
   6075         << "There should be no tests running at this point.";
   6076   }
   6077 
   6078   // Tests that current_test_info() returns NULL after the last test in
   6079   // the test case has run.
   6080   static void TearDownTestCase() {
   6081     const TestInfo* test_info =
   6082       UnitTest::GetInstance()->current_test_info();
   6083     EXPECT_TRUE(test_info == NULL)
   6084         << "There should be no tests running at this point.";
   6085   }
   6086 };
   6087 
   6088 // Tests that current_test_info() returns TestInfo for currently running
   6089 // test by checking the expected test name against the actual one.
   6090 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6091   const TestInfo* test_info =
   6092     UnitTest::GetInstance()->current_test_info();
   6093   ASSERT_TRUE(NULL != test_info)
   6094       << "There is a test running so we should have a valid TestInfo.";
   6095   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6096       << "Expected the name of the currently running test case.";
   6097   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6098       << "Expected the name of the currently running test.";
   6099 }
   6100 
   6101 // Tests that current_test_info() returns TestInfo for currently running
   6102 // test by checking the expected test name against the actual one.  We
   6103 // use this test to see that the TestInfo object actually changed from
   6104 // the previous invocation.
   6105 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6106   const TestInfo* test_info =
   6107     UnitTest::GetInstance()->current_test_info();
   6108   ASSERT_TRUE(NULL != test_info)
   6109       << "There is a test running so we should have a valid TestInfo.";
   6110   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6111       << "Expected the name of the currently running test case.";
   6112   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6113       << "Expected the name of the currently running test.";
   6114 }
   6115 
   6116 }  // namespace testing
   6117 
   6118 // These two lines test that we can define tests in a namespace that
   6119 // has the name "testing" and is nested in another namespace.
   6120 namespace my_namespace {
   6121 namespace testing {
   6122 
   6123 // Makes sure that TEST knows to use ::testing::Test instead of
   6124 // ::my_namespace::testing::Test.
   6125 class Test {};
   6126 
   6127 // Makes sure that an assertion knows to use ::testing::Message instead of
   6128 // ::my_namespace::testing::Message.
   6129 class Message {};
   6130 
   6131 // Makes sure that an assertion knows to use
   6132 // ::testing::AssertionResult instead of
   6133 // ::my_namespace::testing::AssertionResult.
   6134 class AssertionResult {};
   6135 
   6136 // Tests that an assertion that should succeed works as expected.
   6137 TEST(NestedTestingNamespaceTest, Success) {
   6138   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6139 }
   6140 
   6141 // Tests that an assertion that should fail works as expected.
   6142 TEST(NestedTestingNamespaceTest, Failure) {
   6143   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6144                        "This failure is expected.");
   6145 }
   6146 
   6147 }  // namespace testing
   6148 }  // namespace my_namespace
   6149 
   6150 // Tests that one can call superclass SetUp and TearDown methods--
   6151 // that is, that they are not private.
   6152 // No tests are based on this fixture; the test "passes" if it compiles
   6153 // successfully.
   6154 class ProtectedFixtureMethodsTest : public Test {
   6155  protected:
   6156   virtual void SetUp() {
   6157     Test::SetUp();
   6158   }
   6159   virtual void TearDown() {
   6160     Test::TearDown();
   6161   }
   6162 };
   6163 
   6164 // StreamingAssertionsTest tests the streaming versions of a representative
   6165 // sample of assertions.
   6166 TEST(StreamingAssertionsTest, Unconditional) {
   6167   SUCCEED() << "expected success";
   6168   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6169                           "expected failure");
   6170   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6171                        "expected failure");
   6172 }
   6173 
   6174 #ifdef __BORLANDC__
   6175 // Silences warnings: "Condition is always true", "Unreachable code"
   6176 #pragma option push -w-ccc -w-rch
   6177 #endif
   6178 
   6179 TEST(StreamingAssertionsTest, Truth) {
   6180   EXPECT_TRUE(true) << "unexpected failure";
   6181   ASSERT_TRUE(true) << "unexpected failure";
   6182   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6183                           "expected failure");
   6184   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6185                        "expected failure");
   6186 }
   6187 
   6188 TEST(StreamingAssertionsTest, Truth2) {
   6189   EXPECT_FALSE(false) << "unexpected failure";
   6190   ASSERT_FALSE(false) << "unexpected failure";
   6191   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6192                           "expected failure");
   6193   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6194                        "expected failure");
   6195 }
   6196 
   6197 #ifdef __BORLANDC__
   6198 // Restores warnings after previous "#pragma option push" supressed them
   6199 #pragma option pop
   6200 #endif
   6201 
   6202 TEST(StreamingAssertionsTest, IntegerEquals) {
   6203   EXPECT_EQ(1, 1) << "unexpected failure";
   6204   ASSERT_EQ(1, 1) << "unexpected failure";
   6205   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6206                           "expected failure");
   6207   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6208                        "expected failure");
   6209 }
   6210 
   6211 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6212   EXPECT_LT(1, 2) << "unexpected failure";
   6213   ASSERT_LT(1, 2) << "unexpected failure";
   6214   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6215                           "expected failure");
   6216   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6217                        "expected failure");
   6218 }
   6219 
   6220 TEST(StreamingAssertionsTest, StringsEqual) {
   6221   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6222   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6223   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6224                           "expected failure");
   6225   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6226                        "expected failure");
   6227 }
   6228 
   6229 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6230   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6231   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6232   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6233                           "expected failure");
   6234   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6235                        "expected failure");
   6236 }
   6237 
   6238 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6239   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6240   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6241   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6242                           "expected failure");
   6243   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6244                        "expected failure");
   6245 }
   6246 
   6247 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6248   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6249   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6250   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6251                           "expected failure");
   6252   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6253                        "expected failure");
   6254 }
   6255 
   6256 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6257   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6258   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6259   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6260                           "expected failure");
   6261   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6262                        "expected failure");
   6263 }
   6264 
   6265 #if GTEST_HAS_EXCEPTIONS
   6266 
   6267 TEST(StreamingAssertionsTest, Throw) {
   6268   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6269   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6270   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6271                           "expected failure", "expected failure");
   6272   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6273                        "expected failure", "expected failure");
   6274 }
   6275 
   6276 TEST(StreamingAssertionsTest, NoThrow) {
   6277   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6278   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6279   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6280                           "expected failure", "expected failure");
   6281   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6282                        "expected failure", "expected failure");
   6283 }
   6284 
   6285 TEST(StreamingAssertionsTest, AnyThrow) {
   6286   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6287   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6288   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6289                           "expected failure", "expected failure");
   6290   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6291                        "expected failure", "expected failure");
   6292 }
   6293 
   6294 #endif  // GTEST_HAS_EXCEPTIONS
   6295 
   6296 // Tests that Google Test correctly decides whether to use colors in the output.
   6297 
   6298 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6299   GTEST_FLAG(color) = "yes";
   6300 
   6301   SetEnv("TERM", "xterm");  // TERM supports colors.
   6302   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6303   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6304 
   6305   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6306   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6307   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6308 }
   6309 
   6310 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6311   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6312 
   6313   GTEST_FLAG(color) = "True";
   6314   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6315 
   6316   GTEST_FLAG(color) = "t";
   6317   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6318 
   6319   GTEST_FLAG(color) = "1";
   6320   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6321 }
   6322 
   6323 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6324   GTEST_FLAG(color) = "no";
   6325 
   6326   SetEnv("TERM", "xterm");  // TERM supports colors.
   6327   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6328   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6329 
   6330   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6331   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6332   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6333 }
   6334 
   6335 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6336   SetEnv("TERM", "xterm");  // TERM supports colors.
   6337 
   6338   GTEST_FLAG(color) = "F";
   6339   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6340 
   6341   GTEST_FLAG(color) = "0";
   6342   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6343 
   6344   GTEST_FLAG(color) = "unknown";
   6345   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6346 }
   6347 
   6348 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6349   GTEST_FLAG(color) = "auto";
   6350 
   6351   SetEnv("TERM", "xterm");  // TERM supports colors.
   6352   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6353   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6354 }
   6355 
   6356 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6357   GTEST_FLAG(color) = "auto";
   6358 
   6359 #if GTEST_OS_WINDOWS
   6360   // On Windows, we ignore the TERM variable as it's usually not set.
   6361 
   6362   SetEnv("TERM", "dumb");
   6363   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6364 
   6365   SetEnv("TERM", "");
   6366   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6367 
   6368   SetEnv("TERM", "xterm");
   6369   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6370 #else
   6371   // On non-Windows platforms, we rely on TERM to determine if the
   6372   // terminal supports colors.
   6373 
   6374   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6375   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6376 
   6377   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6378   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6379 
   6380   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6381   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6382 
   6383   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6384   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6385 
   6386   SetEnv("TERM", "xterm");  // TERM supports colors.
   6387   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6388 
   6389   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6390   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6391 
   6392   SetEnv("TERM", "linux");  // TERM supports colors.
   6393   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6394 #endif  // GTEST_OS_WINDOWS
   6395 }
   6396 
   6397 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6398 
   6399 static bool dummy1 = StaticAssertTypeEq<bool, bool>();
   6400 static bool dummy2 = StaticAssertTypeEq<const int, const int>();
   6401 
   6402 // Verifies that StaticAssertTypeEq works in a class.
   6403 
   6404 template <typename T>
   6405 class StaticAssertTypeEqTestHelper {
   6406  public:
   6407   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6408 };
   6409 
   6410 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6411   StaticAssertTypeEqTestHelper<bool>();
   6412 }
   6413 
   6414 // Verifies that StaticAssertTypeEq works inside a function.
   6415 
   6416 typedef int IntAlias;
   6417 
   6418 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6419   StaticAssertTypeEq<int, IntAlias>();
   6420   StaticAssertTypeEq<int*, IntAlias*>();
   6421 }
   6422 
   6423 TEST(ThreadLocalTest, DefaultConstructor) {
   6424   ThreadLocal<int> t1;
   6425   EXPECT_EQ(0, t1.get());
   6426 
   6427   ThreadLocal<void*> t2;
   6428   EXPECT_TRUE(t2.get() == NULL);
   6429 }
   6430 
   6431 TEST(ThreadLocalTest, Init) {
   6432   ThreadLocal<int> t1(123);
   6433   EXPECT_EQ(123, t1.get());
   6434 
   6435   int i = 0;
   6436   ThreadLocal<int*> t2(&i);
   6437   EXPECT_EQ(&i, t2.get());
   6438 }
   6439 
   6440 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6441   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6442 
   6443   // We don't have a stack walker in Google Test yet.
   6444   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6445   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6446 }
   6447 
   6448 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6449   EXPECT_FALSE(HasNonfatalFailure());
   6450 }
   6451 
   6452 static void FailFatally() { FAIL(); }
   6453 
   6454 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6455   FailFatally();
   6456   const bool has_nonfatal_failure = HasNonfatalFailure();
   6457   ClearCurrentTestPartResults();
   6458   EXPECT_FALSE(has_nonfatal_failure);
   6459 }
   6460 
   6461 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6462   ADD_FAILURE();
   6463   const bool has_nonfatal_failure = HasNonfatalFailure();
   6464   ClearCurrentTestPartResults();
   6465   EXPECT_TRUE(has_nonfatal_failure);
   6466 }
   6467 
   6468 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6469   FailFatally();
   6470   ADD_FAILURE();
   6471   const bool has_nonfatal_failure = HasNonfatalFailure();
   6472   ClearCurrentTestPartResults();
   6473   EXPECT_TRUE(has_nonfatal_failure);
   6474 }
   6475 
   6476 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6477 static bool HasNonfatalFailureHelper() {
   6478   return testing::Test::HasNonfatalFailure();
   6479 }
   6480 
   6481 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6482   EXPECT_FALSE(HasNonfatalFailureHelper());
   6483 }
   6484 
   6485 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6486   ADD_FAILURE();
   6487   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6488   ClearCurrentTestPartResults();
   6489   EXPECT_TRUE(has_nonfatal_failure);
   6490 }
   6491 
   6492 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6493   EXPECT_FALSE(HasFailure());
   6494 }
   6495 
   6496 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6497   FailFatally();
   6498   const bool has_failure = HasFailure();
   6499   ClearCurrentTestPartResults();
   6500   EXPECT_TRUE(has_failure);
   6501 }
   6502 
   6503 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6504   ADD_FAILURE();
   6505   const bool has_failure = HasFailure();
   6506   ClearCurrentTestPartResults();
   6507   EXPECT_TRUE(has_failure);
   6508 }
   6509 
   6510 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6511   FailFatally();
   6512   ADD_FAILURE();
   6513   const bool has_failure = HasFailure();
   6514   ClearCurrentTestPartResults();
   6515   EXPECT_TRUE(has_failure);
   6516 }
   6517 
   6518 // A wrapper for calling HasFailure outside of a test body.
   6519 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6520 
   6521 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6522   EXPECT_FALSE(HasFailureHelper());
   6523 }
   6524 
   6525 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6526   ADD_FAILURE();
   6527   const bool has_failure = HasFailureHelper();
   6528   ClearCurrentTestPartResults();
   6529   EXPECT_TRUE(has_failure);
   6530 }
   6531 
   6532 class TestListener : public EmptyTestEventListener {
   6533  public:
   6534   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6535   TestListener(int* on_start_counter, bool* is_destroyed)
   6536       : on_start_counter_(on_start_counter),
   6537         is_destroyed_(is_destroyed) {}
   6538 
   6539   virtual ~TestListener() {
   6540     if (is_destroyed_)
   6541       *is_destroyed_ = true;
   6542   }
   6543 
   6544  protected:
   6545   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6546     if (on_start_counter_ != NULL)
   6547       (*on_start_counter_)++;
   6548   }
   6549 
   6550  private:
   6551   int* on_start_counter_;
   6552   bool* is_destroyed_;
   6553 };
   6554 
   6555 // Tests the constructor.
   6556 TEST(TestEventListenersTest, ConstructionWorks) {
   6557   TestEventListeners listeners;
   6558 
   6559   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6560   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6561   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6562 }
   6563 
   6564 // Tests that the TestEventListeners destructor deletes all the listeners it
   6565 // owns.
   6566 TEST(TestEventListenersTest, DestructionWorks) {
   6567   bool default_result_printer_is_destroyed = false;
   6568   bool default_xml_printer_is_destroyed = false;
   6569   bool extra_listener_is_destroyed = false;
   6570   TestListener* default_result_printer = new TestListener(
   6571       NULL, &default_result_printer_is_destroyed);
   6572   TestListener* default_xml_printer = new TestListener(
   6573       NULL, &default_xml_printer_is_destroyed);
   6574   TestListener* extra_listener = new TestListener(
   6575       NULL, &extra_listener_is_destroyed);
   6576 
   6577   {
   6578     TestEventListeners listeners;
   6579     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6580                                                         default_result_printer);
   6581     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6582                                                        default_xml_printer);
   6583     listeners.Append(extra_listener);
   6584   }
   6585   EXPECT_TRUE(default_result_printer_is_destroyed);
   6586   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6587   EXPECT_TRUE(extra_listener_is_destroyed);
   6588 }
   6589 
   6590 // Tests that a listener Append'ed to a TestEventListeners list starts
   6591 // receiving events.
   6592 TEST(TestEventListenersTest, Append) {
   6593   int on_start_counter = 0;
   6594   bool is_destroyed = false;
   6595   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6596   {
   6597     TestEventListeners listeners;
   6598     listeners.Append(listener);
   6599     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6600         *UnitTest::GetInstance());
   6601     EXPECT_EQ(1, on_start_counter);
   6602   }
   6603   EXPECT_TRUE(is_destroyed);
   6604 }
   6605 
   6606 // Tests that listeners receive events in the order they were appended to
   6607 // the list, except for *End requests, which must be received in the reverse
   6608 // order.
   6609 class SequenceTestingListener : public EmptyTestEventListener {
   6610  public:
   6611   SequenceTestingListener(Vector<String>* vector, const char* id)
   6612       : vector_(vector), id_(id) {}
   6613 
   6614  protected:
   6615   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6616     vector_->PushBack(GetEventDescription("OnTestProgramStart"));
   6617   }
   6618 
   6619   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6620     vector_->PushBack(GetEventDescription("OnTestProgramEnd"));
   6621   }
   6622 
   6623   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6624                                     int /*iteration*/) {
   6625     vector_->PushBack(GetEventDescription("OnTestIterationStart"));
   6626   }
   6627 
   6628   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6629                                   int /*iteration*/) {
   6630     vector_->PushBack(GetEventDescription("OnTestIterationEnd"));
   6631   }
   6632 
   6633  private:
   6634   String GetEventDescription(const char* method) {
   6635     Message message;
   6636     message << id_ << "." << method;
   6637     return message.GetString();
   6638   }
   6639 
   6640   Vector<String>* vector_;
   6641   const char* const id_;
   6642 
   6643   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6644 };
   6645 
   6646 TEST(EventListenerTest, AppendKeepsOrder) {
   6647   Vector<String> vec;
   6648   TestEventListeners listeners;
   6649   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6650   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6651   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6652 
   6653   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6654       *UnitTest::GetInstance());
   6655   ASSERT_EQ(3, vec.size());
   6656   EXPECT_STREQ("1st.OnTestProgramStart", vec.GetElement(0).c_str());
   6657   EXPECT_STREQ("2nd.OnTestProgramStart", vec.GetElement(1).c_str());
   6658   EXPECT_STREQ("3rd.OnTestProgramStart", vec.GetElement(2).c_str());
   6659 
   6660   vec.Clear();
   6661   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6662       *UnitTest::GetInstance());
   6663   ASSERT_EQ(3, vec.size());
   6664   EXPECT_STREQ("3rd.OnTestProgramEnd", vec.GetElement(0).c_str());
   6665   EXPECT_STREQ("2nd.OnTestProgramEnd", vec.GetElement(1).c_str());
   6666   EXPECT_STREQ("1st.OnTestProgramEnd", vec.GetElement(2).c_str());
   6667 
   6668   vec.Clear();
   6669   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6670       *UnitTest::GetInstance(), 0);
   6671   ASSERT_EQ(3, vec.size());
   6672   EXPECT_STREQ("1st.OnTestIterationStart", vec.GetElement(0).c_str());
   6673   EXPECT_STREQ("2nd.OnTestIterationStart", vec.GetElement(1).c_str());
   6674   EXPECT_STREQ("3rd.OnTestIterationStart", vec.GetElement(2).c_str());
   6675 
   6676   vec.Clear();
   6677   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6678       *UnitTest::GetInstance(), 0);
   6679   ASSERT_EQ(3, vec.size());
   6680   EXPECT_STREQ("3rd.OnTestIterationEnd", vec.GetElement(0).c_str());
   6681   EXPECT_STREQ("2nd.OnTestIterationEnd", vec.GetElement(1).c_str());
   6682   EXPECT_STREQ("1st.OnTestIterationEnd", vec.GetElement(2).c_str());
   6683 }
   6684 
   6685 // Tests that a listener removed from a TestEventListeners list stops receiving
   6686 // events and is not deleted when the list is destroyed.
   6687 TEST(TestEventListenersTest, Release) {
   6688   int on_start_counter = 0;
   6689   bool is_destroyed = false;
   6690   // Although Append passes the ownership of this object to the list,
   6691   // the following calls release it, and we need to delete it before the
   6692   // test ends.
   6693   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6694   {
   6695     TestEventListeners listeners;
   6696     listeners.Append(listener);
   6697     EXPECT_EQ(listener, listeners.Release(listener));
   6698     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6699         *UnitTest::GetInstance());
   6700     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6701   }
   6702   EXPECT_EQ(0, on_start_counter);
   6703   EXPECT_FALSE(is_destroyed);
   6704   delete listener;
   6705 }
   6706 
   6707 // Tests that no events are forwarded when event forwarding is disabled.
   6708 TEST(EventListenerTest, SuppressEventForwarding) {
   6709   int on_start_counter = 0;
   6710   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6711 
   6712   TestEventListeners listeners;
   6713   listeners.Append(listener);
   6714   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6715   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6716   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6717   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6718       *UnitTest::GetInstance());
   6719   EXPECT_EQ(0, on_start_counter);
   6720 }
   6721 
   6722 // Tests that events generated by Google Test are not forwarded in
   6723 // death test subprocesses.
   6724 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6725   EXPECT_DEATH_IF_SUPPORTED({
   6726       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6727           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6728       "expected failure");
   6729 }
   6730 
   6731 // Tests that a listener installed via SetDefaultResultPrinter() starts
   6732 // receiving events and is returned via default_result_printer() and that
   6733 // the previous default_result_printer is removed from the list and deleted.
   6734 TEST(EventListenerTest, default_result_printer) {
   6735   int on_start_counter = 0;
   6736   bool is_destroyed = false;
   6737   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6738 
   6739   TestEventListeners listeners;
   6740   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6741 
   6742   EXPECT_EQ(listener, listeners.default_result_printer());
   6743 
   6744   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6745       *UnitTest::GetInstance());
   6746 
   6747   EXPECT_EQ(1, on_start_counter);
   6748 
   6749   // Replacing default_result_printer with something else should remove it
   6750   // from the list and destroy it.
   6751   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   6752 
   6753   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6754   EXPECT_TRUE(is_destroyed);
   6755 
   6756   // After broadcasting an event the counter is still the same, indicating
   6757   // the listener is not in the list anymore.
   6758   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6759       *UnitTest::GetInstance());
   6760   EXPECT_EQ(1, on_start_counter);
   6761 }
   6762 
   6763 // Tests that the default_result_printer listener stops receiving events
   6764 // when removed via Release and that is not owned by the list anymore.
   6765 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   6766   int on_start_counter = 0;
   6767   bool is_destroyed = false;
   6768   // Although Append passes the ownership of this object to the list,
   6769   // the following calls release it, and we need to delete it before the
   6770   // test ends.
   6771   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6772   {
   6773     TestEventListeners listeners;
   6774     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6775 
   6776     EXPECT_EQ(listener, listeners.Release(listener));
   6777     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6778     EXPECT_FALSE(is_destroyed);
   6779 
   6780     // Broadcasting events now should not affect default_result_printer.
   6781     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6782         *UnitTest::GetInstance());
   6783     EXPECT_EQ(0, on_start_counter);
   6784   }
   6785   // Destroying the list should not affect the listener now, too.
   6786   EXPECT_FALSE(is_destroyed);
   6787   delete listener;
   6788 }
   6789 
   6790 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   6791 // receiving events and is returned via default_xml_generator() and that
   6792 // the previous default_xml_generator is removed from the list and deleted.
   6793 TEST(EventListenerTest, default_xml_generator) {
   6794   int on_start_counter = 0;
   6795   bool is_destroyed = false;
   6796   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6797 
   6798   TestEventListeners listeners;
   6799   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6800 
   6801   EXPECT_EQ(listener, listeners.default_xml_generator());
   6802 
   6803   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6804       *UnitTest::GetInstance());
   6805 
   6806   EXPECT_EQ(1, on_start_counter);
   6807 
   6808   // Replacing default_xml_generator with something else should remove it
   6809   // from the list and destroy it.
   6810   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   6811 
   6812   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6813   EXPECT_TRUE(is_destroyed);
   6814 
   6815   // After broadcasting an event the counter is still the same, indicating
   6816   // the listener is not in the list anymore.
   6817   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6818       *UnitTest::GetInstance());
   6819   EXPECT_EQ(1, on_start_counter);
   6820 }
   6821 
   6822 // Tests that the default_xml_generator listener stops receiving events
   6823 // when removed via Release and that is not owned by the list anymore.
   6824 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   6825   int on_start_counter = 0;
   6826   bool is_destroyed = false;
   6827   // Although Append passes the ownership of this object to the list,
   6828   // the following calls release it, and we need to delete it before the
   6829   // test ends.
   6830   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6831   {
   6832     TestEventListeners listeners;
   6833     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6834 
   6835     EXPECT_EQ(listener, listeners.Release(listener));
   6836     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6837     EXPECT_FALSE(is_destroyed);
   6838 
   6839     // Broadcasting events now should not affect default_xml_generator.
   6840     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6841         *UnitTest::GetInstance());
   6842     EXPECT_EQ(0, on_start_counter);
   6843   }
   6844   // Destroying the list should not affect the listener now, too.
   6845   EXPECT_FALSE(is_destroyed);
   6846   delete listener;
   6847 }
   6848