Home | History | Annotate | Download | only in jpeg-6b
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This is a fast-and-accurate implementation of inverse Discrete Cosine
     19  * Transform (IDCT) for ARMv6+. It also performs dequantization of the input
     20  * coefficients just like other methods.
     21  *
     22  * This implementation is based on the scaled 1-D DCT algorithm proposed by
     23  * Arai, Agui, and Nakajima. The following code is based on the figure 4-8
     24  * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients
     25  * are (almost) directly mapped into registers.
     26  *
     27  * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both
     28  * multiply 32 bits by 16 bits and store the top 32 bits of the result. It
     29  * makes 32-bit fixed-point arithmetic possible without overflow. That is
     30  * why jpeg_idct_ifast(), which is written in C, cannot be improved.
     31  *
     32  * More tricks are used to gain more speed. First of all, we use as many
     33  * registers as possible. ARM processor has 16 registers including sp (r13)
     34  * and pc (r15), so only 14 registers can be used without limitations. In
     35  * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four
     36  * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold
     37  * intermediate value. In the second pass, r9 is the loop counter. In the
     38  * first pass, r8 to r11 are used to hold quantization values, so the loop
     39  * counter is held by sp. Yes, the stack pointer. Since it must be aligned
     40  * to 4-byte boundary all the time, we align it to 32-byte boundary and use
     41  * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-)
     42  *
     43  * Second, we rearrange quantization values to access them sequentially. The
     44  * table is first transposed, and the new columns are placed in the order of
     45  * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a
     46  * time. Rearranging coefficients also helps, but that requires to change a
     47  * dozen of files, which seems not worth it. In addition, we choose to scale
     48  * up quantization values by 13 bits, so the coefficients are scaled up by
     49  * 16 bits after both passes. Then we can pack and saturate them two at a
     50  * time using PKHTB and USAT16 instructions.
     51  *
     52  * Third, we reorder the instructions to avoid bubbles in the pipeline. This
     53  * is done by hand accroding to the cycle timings and the interlock behavior
     54  * described in the technical reference manual of ARM1136JF-S. We also take
     55  * advantage of dual issue processors by interleaving instructions with
     56  * dependencies. It has been benchmarked on four devices and all the results
     57  * showed distinguishable improvements. Note that PLD instructions actually
     58  * slow things down, so they are removed at the last minute. In the future,
     59  * this might be futher improved using a system profiler.
     60  */
     61 
     62 #ifdef __arm__
     63 #include <machine/cpu-features.h>
     64 #endif
     65 
     66 #if __ARM_ARCH__ >= 6
     67 
     68 // void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col)
     69     .arm
     70     .text
     71     .align
     72     .global armv6_idct
     73     .func   armv6_idct
     74 
     75 armv6_idct:
     76     // Push everything except sp (r13) and pc (r15).
     77     stmdb   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
     78 
     79     // r12 = quans, r14 = coefs.
     80     sub     r4, sp, #236
     81     bic     sp, r4, #31
     82     add     r5, sp, #224
     83     add     r12, r1, #256
     84     stm     r5, {r2, r3, r4}
     85     add     r14, r0, #16
     86 
     87 pass1_head:
     88     // Load quantization values. (q[0, 2, 4, 6])
     89     ldmdb   r12!, {r8, r9, r10, r11}
     90 
     91     // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7])
     92     ldrsh   r4, [r14, #-2] !
     93     ldrsh   r1, [r14, #16]
     94     ldrsh   r2, [r14, #32]
     95     ldrsh   r3, [r14, #48]
     96     ldrsh   r0, [r14, #64]
     97     ldrsh   r5, [r14, #80]
     98     ldrsh   r6, [r14, #96]
     99     ldrsh   r7, [r14, #112]
    100 
    101     // r4 = q[0] * c[0];
    102     mul     r4, r8, r4
    103 
    104     // Check if ACs are all zero.
    105     cmp     r0, #0
    106     orreqs  r8, r1, r2
    107     orreqs  r8, r3, r5
    108     orreqs  r8, r6, r7
    109     beq     pass1_zero
    110 
    111     // Step 1: Dequantizations.
    112 
    113     // r2 = q[2] * c[2];
    114     // r0 = q[4] * c[4] + r4;
    115     // r6 = q[6] * c[6] + r2;
    116     mul     r2, r9, r2
    117     mla     r0, r10, r0, r4
    118     mla     r6, r11, r6, r2
    119 
    120     // Load quantization values. (q[7, 5, 1, 3])
    121     ldmdb   r12!, {r8, r9, r10, r11}
    122 
    123     // r4 = r4 * 2 - r0 = -(r0 - r4 * 2);
    124     // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
    125     rsb     r4, r0, r4, lsl #1
    126     rsb     r2, r6, r2, lsl #1
    127 
    128     // r7 = q[7] * c[7];
    129     // r5 = q[5] * c[5];
    130     // r1 = q[1] * c[1] + r7;
    131     // r3 = q[3] * c[3] + r5;
    132     mul     r7, r8, r7
    133     mul     r5, r9, r5
    134     mla     r1, r10, r1, r7
    135     mla     r3, r11, r3, r5
    136 
    137     // Load constants.
    138     ldrd    r10, constants
    139 
    140     // Step 2: Rotations and Butterflies.
    141 
    142     // r7 = r1 - r7 * 2;
    143     // r1 = r1 - r3;
    144     // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
    145     // r3 = r1 + r3 * 2;
    146     // r8 = r5 + r7;
    147     sub     r7, r1, r7, lsl #1
    148     sub     r1, r1, r3
    149     rsb     r5, r3, r5, lsl #1
    150     add     r3, r1, r3, lsl #1
    151     add     r8, r5, r7
    152 
    153     // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
    154     // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
    155     // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
    156     smlawt  r2, r2, r10, r2
    157     smulwb  r8, r8, r10
    158     smlawt  r1, r1, r10, r1
    159 
    160     // r0 = r0 + r6;
    161     // r2 = r2 - r6;
    162     // r6 = r0 - r6 * 2;
    163     add     r0, r0, r6
    164     sub     r2, r2, r6
    165     sub     r6, r0, r6, lsl #1
    166 
    167     // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
    168     // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
    169     smlawt  r5, r5, r11, r8
    170     smlawb  r8, r7, r11, r8
    171 
    172     // r4 = r4 + r2;
    173     // r0 = r0 + r3;
    174     // r2 = r4 - r2 * 2;
    175     add     r4, r4, r2
    176     add     r0, r0, r3
    177     sub     r2, r4, r2, lsl #1
    178 
    179     // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
    180     // r3 = r0 - r3 * 2;
    181     // r1 = r1 - r7;
    182     // r4 = r4 + r7;
    183     // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
    184     // r7 = r4 - r7 * 2;
    185     rsb     r7, r3, r5, lsl #3
    186     sub     r3, r0, r3, lsl #1
    187     sub     r1, r1, r7
    188     add     r4, r4, r7
    189     rsb     r5, r1, r8, lsl #3
    190     sub     r7, r4, r7, lsl #1
    191 
    192     // r2 = r2 + r1;
    193     // r6 = r6 + r5;
    194     // r1 = r2 - r1 * 2;
    195     // r5 = r6 - r5 * 2;
    196     add     r2, r2, r1
    197     add     r6, r6, r5
    198     sub     r1, r2, r1, lsl #1
    199     sub     r5, r6, r5, lsl #1
    200 
    201     // Step 3: Reorder and Save.
    202 
    203     str     r0, [sp, #-4] !
    204     str     r4, [sp, #32]
    205     str     r2, [sp, #64]
    206     str     r6, [sp, #96]
    207     str     r5, [sp, #128]
    208     str     r1, [sp, #160]
    209     str     r7, [sp, #192]
    210     str     r3, [sp, #224]
    211     b       pass1_tail
    212 
    213     // Precomputed 16-bit constants: 27146, 15137, -21407, -8867.
    214     // Put them in the middle since LDRD only accepts offsets from -255 to 255.
    215     .align  3
    216 constants:
    217     .word   0x6a0a3b21
    218     .word   0xac61dd5d
    219 
    220 pass1_zero:
    221     str     r4, [sp, #-4] !
    222     str     r4, [sp, #32]
    223     str     r4, [sp, #64]
    224     str     r4, [sp, #96]
    225     str     r4, [sp, #128]
    226     str     r4, [sp, #160]
    227     str     r4, [sp, #192]
    228     str     r4, [sp, #224]
    229     sub     r12, r12, #16
    230 
    231 pass1_tail:
    232     ands    r9, sp, #31
    233     bne     pass1_head
    234 
    235     // r12 = rows, r14 = col.
    236     ldr     r12, [sp, #256]
    237     ldr     r14, [sp, #260]
    238 
    239     // Load constants.
    240     ldrd    r10, constants
    241 
    242 pass2_head:
    243     // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7])
    244     ldmia   sp!, {r0, r1, r2, r3, r4, r5, r6, r7}
    245 
    246     // r0 = r0 + 0x00808000;
    247     add     r0, r0, #0x00800000
    248     add     r0, r0, #0x00008000
    249 
    250     // Step 1: Analog to the first pass.
    251 
    252     // r0 = r0 + r4;
    253     // r6 = r6 + r2;
    254     add     r0, r0, r4
    255     add     r6, r6, r2
    256 
    257     // r4 = r0 - r4 * 2;
    258     // r2 = r2 * 2 - r6 = -(r6 - r2 * 2);
    259     sub     r4, r0, r4, lsl #1
    260     rsb     r2, r6, r2, lsl #1
    261 
    262     // r1 = r1 + r7;
    263     // r3 = r3 + r5;
    264     add     r1, r1, r7
    265     add     r3, r3, r5
    266 
    267     // Step 2: Rotations and Butterflies.
    268 
    269     // r7 = r1 - r7 * 2;
    270     // r1 = r1 - r3;
    271     // r5 = r5 * 2 - r3 = -(r3 - r5 * 2);
    272     // r3 = r1 + r3 * 2;
    273     // r8 = r5 + r7;
    274     sub     r7, r1, r7, lsl #1
    275     sub     r1, r1, r3
    276     rsb     r5, r3, r5, lsl #1
    277     add     r3, r1, r3, lsl #1
    278     add     r8, r5, r7
    279 
    280     // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2;
    281     // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536;
    282     // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1;
    283     smlawt  r2, r2, r10, r2
    284     smulwb  r8, r8, r10
    285     smlawt  r1, r1, r10, r1
    286 
    287     // r0 = r0 + r6;
    288     // r2 = r2 - r6;
    289     // r6 = r0 - r6 * 2;
    290     add     r0, r0, r6
    291     sub     r2, r2, r6
    292     sub     r6, r0, r6, lsl #1
    293 
    294     // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8;
    295     // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8;
    296     smlawt  r5, r5, r11, r8
    297     smlawb  r8, r7, r11, r8
    298 
    299     // r4 = r4 + r2;
    300     // r0 = r0 + r3;
    301     // r2 = r4 - r2 * 2;
    302     add     r4, r4, r2
    303     add     r0, r0, r3
    304     sub     r2, r4, r2, lsl #1
    305 
    306     // r7 = r5 * 8 - r3 = -(r3 - r5 * 8);
    307     // r3 = r0 - r3 * 2;
    308     // r1 = r1 - r7;
    309     // r4 = r4 + r7;
    310     // r5 = r8 * 8 - r1 = -(r1 - r8 * 8);
    311     // r7 = r4 - r7 * 2;
    312     rsb     r7, r3, r5, lsl #3
    313     sub     r3, r0, r3, lsl #1
    314     sub     r1, r1, r7
    315     add     r4, r4, r7
    316     rsb     r5, r1, r8, lsl #3
    317     sub     r7, r4, r7, lsl #1
    318 
    319     // r2 = r2 + r1;
    320     // r6 = r6 + r5;
    321     // r1 = r2 - r1 * 2;
    322     // r5 = r6 - r5 * 2;
    323     add     r2, r2, r1
    324     add     r6, r6, r5
    325     sub     r1, r2, r1, lsl #1
    326     sub     r5, r6, r5, lsl #1
    327 
    328     // Step 3: Reorder and Save.
    329 
    330     // Load output pointer.
    331     ldr     r8, [r12], #4
    332 
    333     // For little endian: r6, r2, r4, r0, r3, r7, r1, r5.
    334     pkhtb   r6, r6, r4, asr #16
    335     pkhtb   r2, r2, r0, asr #16
    336     pkhtb   r3, r3, r1, asr #16
    337     pkhtb   r7, r7, r5, asr #16
    338     usat16  r6, #8, r6
    339     usat16  r2, #8, r2
    340     usat16  r3, #8, r3
    341     usat16  r7, #8, r7
    342     orr     r0, r2, r6, lsl #8
    343     orr     r1, r7, r3, lsl #8
    344 
    345 #ifdef __ARMEB__
    346     // Reverse bytes for big endian.
    347     rev     r0, r0
    348     rev     r1, r1
    349 #endif
    350 
    351     // Use STR instead of STRD to support unaligned access.
    352     str     r0, [r8, r14] !
    353     str     r1, [r8, #4]
    354 
    355 pass2_tail:
    356     adds    r9, r9, #0x10000000
    357     bpl     pass2_head
    358 
    359     ldr     sp, [sp, #8]
    360     add     sp, sp, #236
    361 
    362     ldmia   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14}
    363     bx      lr
    364     .endfunc
    365 
    366 #endif
    367